
Assistant Professor Dr. Bert  ARNRICH 124th February 201605th October 2016 Assistant Professor Dr. Emre Ugur

Introduction to Computing for Economics and 
Management

Lecture 3: Matrices



Assistant Professor Dr. Emre UGUR 205th October 2016

Acknowledgement

 These slides are adapted from Bert Arnrich's R lecture.



Assistant Professor Dr. Emre UGUR 305th October 2016

Previous lecture: variable name conventions

 Variable names can contain letters, digits, and the dot symbol
 Name must not start with a digit
 Name must not start with a dot followed by a digit
 Since names that start with a dot are special, we should not introduce 

them in our scripts to avoid confusion
 Some names are already used by the system

 Better use descriptive names like person.height instead of 
just h

Names are case-sensitive, e.g. x and X do not refer to the same 
variable



Assistant Professor Dr. Emre UGUR 405th October 2016

Previous lecture: data vectors

 The fundamental data type in R is the vector

Data vectors are created with the construct c 
> person.height <- c(1.70, 1.75, 1.62)

> person.height <- c(person.height, 1.81)

 Vector elements must all have the same mode

 Available modes: integer, numeric, character, Boolean, 
complex



Assistant Professor Dr. Emre UGUR 505th October 2016

Previous lecture: data vectors

 Missing values are denoted with NA

We can assign names to the elements of a data vector to make 
the vector more readable
> person.height <- c(Can=1.70, Cem=1.75, 
Hande=1.62) 

> person.height
  Can   Cem Hande 
  1.70  1.75  1.62



Assistant Professor Dr. Emre UGUR 605th October 2016

Previous lecture: data vector indexing

We can access a single element of a vector by providing the 
index of the element in square brackets
> person.height[1]
Can 
 1.7

We can select a subvector by providing a Boolean index vector 
> person.height[c(T,F,T)]
  Can Hande 
  1.70  1.62



Assistant Professor Dr. Emre UGUR 705th October 2016

Previous lecture: data vector indexing

We can specify the element indices directly
> person.height[c(1,3)]
  Can Hande 
 1.70  1.62

 We exclude elements with negative indices
 > person.height[c(-1, -3)]
  Cem 
 1.75 

We can change the values of the selected elements
person.height[1] <- 1.72



Assistant Professor Dr. Emre UGUR 805th October 2016

Previous lecture: data vector filtering

The idea behind filtering is to apply a Boolean evaluation 
function to each element of the vector
> person.height > 1.65
  Can   Cem Hande 
  TRUE  TRUE FALSE

We use the results of the evaluation function for the filtering
> person.height[person.height > 1.65]
 Can  Cem 
1.72 1.75



Assistant Professor Dr. Emre UGUR 905th October 2016

Previous lecture: data vector sorting

We use the function sort for sorting a vector
> sort(person.height)
Hande   Can   Cem 
 1.62  1.70  1.75 

 We can obtain a sorting in descending order
 > sort(person.height, decreasing = TRUE)
   Cem   Can Hande 
  1.75  1.70  1.62

 We can sort a vector according to the values of some other 
vector

 > person.weight[order(person.height)]
 Hande   Can   Cem 
    61    65    66



Assistant Professor Dr. Emre UGUR 1005th October 2016

Previous lecture: vector recycling 

When applying an operation to two vectors which requires them 
to be the same length, the shorter one will repeated until it is 
long enough to match the longer one

> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Warning message:
In c(1, 2, 3) + c(1, 2, 3, 4) :
   longer object length is not a multiple of 
shorter object length



Assistant Professor Dr. Emre UGUR 1105th October 2016

Program today

 ifelse ()
 More vector functions
 Matrix creation
 Matrix operations
 Matrix indexing
 Matrix filtering
 Matrix function apply()
 Writing own functions
 Differences between vectors and matrices 
 Higher-dimensional arrays



Assistant Professor Dr. Emre UGUR 1205th October 2016

Conditional element selection with the ifelse() 
function
 We provide the ifelse(test, yes, no) function with a 

Boolean vector test and two vectors yes and no

 ifelse returns a vector which is created from selected 
elements from the vectors yes and no: yes[i] is selected if 
test[i] is true and no[i] is selected if test[i] is false

Example (which uses recycling):
> ifelse(person.height > 1.7, "tall", "small")
    Can     Cem   Hande 
 "small"  "tall" "small"



Assistant Professor Dr. Emre UGUR 1305th October 2016

Conditional element selection with the ifelse() 
function
 We provide the ifelse(test, yes, no) function with a 

Boolean vector test and two vectors yes and no

 ifelse returns a vector which is created from selected 
elements from the vectors yes and no: yes[i] is selected if 
test[i] is true and no[i] is selected if test[i] is false

Example (which uses recycling):
> ifelse(person.height > 1.7, "tall", "small")
    Can     Cem   Hande 
 "small"  "tall" "small"



Assistant Professor Dr. Emre UGUR 1405th October 2016

More data vector operations

 An often used functions that operates on vectors is mean

For example, we can compute the mean body mass index
> bmi <- person.weight / person.height^2

> mean(bmi)
[1] 23.31768

> mean(bmi)

  
R function mean 

Arguments of the function are 
provided in parentheses  



Assistant Professor Dr. Emre UGUR 1505th October 2016

Data vector operations 

Other examples of functions are length and sd which 
compute the length and the standard deviation of a vector
> bmi <- person.weight / person.height^2

> mean(bmi)
[1] 23.31768

> length(bmi)
[1] 3

> sd(bmi)
[1] 2.294295
  



Assistant Professor Dr. Emre UGUR 1605th October 2016

Creating regular sequences

 In particular for graphics, we often need equidistant series of 
numbers

 For example, let’s assume we need to specify the x-
coordinates of a curve as 1.65,1.70,1.75,1.80,1.85, and 1.90

 In particular for long series, we are looking for way to specify 
the regular sequence in compact way 



Assistant Professor Dr. Emre UGUR 1705th October 2016

Creating regular sequences

The from:to syntax is a simple way to generate a sequence 
from from to to in steps of 1 or -1
> 1:5
[1] 1 2 3 4 5

> 11:15
[1] 11 12 13 14 15

> 3:0
[1] 3 2 1 0

 > seq_1_100 <- 1:100



Assistant Professor Dr. Emre UGUR 1805th October 2016

Function seq

 Function seq allows to generate regular sequences with more 
options

 The help page help(seq) shows us the full function 
documentation

 Similar to many other R functions, in the parentheses we can 
provide arguments as a comma-separated list

The full set of arguments can be seen from the help page
 seq(from, to, by, length.out, along.with) 



Assistant Professor Dr. Emre UGUR 1905th October 2016

Function arguments

 seq function arguments
 from starting value of the sequence
 to end value of the sequence
 by increment of the sequence
 length.out desired length of the sequence
 along.with take the length from the length of this argument

 Like with many other R functions, arguments have default 
values
 from = 1
 to = 1
 by = ((to - from)/(length.out - 1))
 length.out = NULL 
 along.with = NULL



Assistant Professor Dr. Emre UGUR 2005th October 2016

Function arguments

 Usually, we only provide those arguments which values 
should be different from the default values

For example, let’s specify only the first two arguments from 
and to
> seq(5, 10) 
 [1] 5 6 7 8 9 10

 We observe that default value by=1 was automatically used

Now, we provide the third parameter by in addition
> seq(5, 10, 2) 
 [1] 5 7 9



Assistant Professor Dr. Emre UGUR 2105th October 2016

Function arguments

 Providing function arguments in a given order becomes 
difficult if a function has a large number of arguments

We should better use the argument names
> seq(from=5, to=10, by=2) 
 [1] 5 7 9

With argument names we can change order and omit 
arguments
> seq(by=2, from=5, to=10) 
[1] 5 7 9 

> seq(0, 1, length.out=5) 
 [1] 0.00 0.25 0.50 0.75 1.00



Assistant Professor Dr. Emre UGUR 2205th October 2016

Function arguments

In case of long argument names, it is sufficient to write the first 
letters of the argument name

> seq(0, 1, length.out=5) 
[1] 0.00 0.25 0.50 0.75 1.00

> seq(0, 1, len=5)
 [1] 0.00 0.25 0.50 0.75 1.00



Assistant Professor Dr. Emre UGUR 2305th October 2016

Creating repeated values

 We often need to generate repeated group codes

 For example, let’s assume we have 10 observations from 
group 1 and 15 observations from group 2

In the example we need to generate a group code which 
consists of 10 times 1 and 15 times 2: 
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2

 We are looking for way to specify such repeated values in a 
compact way 



Assistant Professor Dr. Emre UGUR 2405th October 2016

Creating repeated values with function rep

 The function rep (stands for “replicate”), is used to generate 
repeated values

 rep function arguments and default values
 x vector of factor that is repeated
 times = 1 number of times to repeat
 length.out = NA desired length of the result
 each = 1 each element of x is repeated each times



Assistant Professor Dr. Emre UGUR 2505th October 2016

Creating repeated values with function rep

> rep(1, 3)
[1] 1 1 1

> rep(1:4, 2)
[1] 1 2 3 4 1 2 3 4

> rep(1:4, each = 2) 
[1] 1 1 2 2 3 3 4 4

> rep(1:4, each = 2, len = 4)
[1] 1 1 2 2



Assistant Professor Dr. Emre UGUR 2605th October 2016

Creating repeated values with function rep

Coming back to our example: generate a group code which 
consists of 10 times 1 and 15 times 2: 

> rep(1:2,c(10,15))
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2



Assistant Professor Dr. Emre UGUR 2705th October 2016

Program today

 ifelse ()
 More vector functions
 Matrix creation
 Matrix operations
 Matrix indexing
 Matrix filtering
 Matrix function apply()
 Writing own functions
 Differences between vectors and matrices 
 Higher-dimensional arrays



Assistant Professor Dr. Emre UGUR 2805th October 2016

Matrix creation

 In R, a matrix is a vector with two additional attributes, the 
number of rows and number of columns

One of the ways to create a matrix is via the matrix function 
to obtain a matrix from a given data vector with nrow number 
of rows and ncol number of columns 

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
 [2,]    2    4



Assistant Professor Dr. Emre UGUR 2905th October 2016

Conditional element selection with the ifelse() 
function
 We provide the ifelse(test, yes, no) function with a 

Boolean vector test and two vectors yes and no

 ifelse returns a vector which is created from selected 
elements from the vectors yes and no: yes[i] is selected if 
test[i] is true and no[i] is selected if test[i] is false

Example (which uses recycling):
> ifelse(person.height > 1.7, "tall", "small")
    Can     Cem   Hande 
 "small"  "tall" "small"



Assistant Professor Dr. Emre UGUR 3005th October 2016

Conditional element selection with the ifelse() 
function
 We provide the ifelse(test, yes, no) function with a 

Boolean vector test and two vectors yes and no

 ifelse returns a vector which is created from selected 
elements from the vectors yes and no: yes[i] is selected if 
test[i] is true and no[i] is selected if test[i] is false

Example (which uses recycling):
> ifelse(person.height > 1.7, "tall", "small")
    Can     Cem   Hande 
 "small"  "tall" "small"



Assistant Professor Dr. Emre UGUR 3105th October 2016

Matrix column and row notation

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

Notation for rows: [1,] means first row, [2,] second row, 
etc.

Notation for columns: [,1] means 
first column, [,2] second column, 
etc.



Assistant Professor Dr. Emre UGUR 3205th October 2016

Matrix column and row access 

We can access single columns and rows with the respective 
column/row notation

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y[,1]
[1] 1 2

> y[2,]
 [1] 2 4 



Assistant Professor Dr. Emre UGUR 3305th October 2016

Matrix single element access

We can access single elements of the matrix by providing the 
indices of row and column

> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y[1,1]
[1] 1

> y[2,1]
 [1] 2



Assistant Professor Dr. Emre UGUR 3405th October 2016

Matrix creation order

 Storage of a matrix is in column-major order: first all of 
column 1 is stored, then all of column 2, etc.

In our example with the data vector c(1,2,3,4) the numbers 
1 and 2 were stored in the first column and the numbers 3 and 
4 in the second column

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
 [2,]    2    4



Assistant Professor Dr. Emre UGUR 3505th October 2016

Matrix creation order

We can change the column-major order by providing the 
additional argument byrow = TRUE for filling the matrix by 
rows

> y <- matrix(c(1,2,3,4), nrow=2, ncol=2, 
byrow=TRUE)

> y
     [,1] [,2]
[1,]    1    2
 [2,]    3    4



Assistant Professor Dr. Emre UGUR 3605th October 2016

Matrix creation with data vector and nrow

When we specify a data vector for matrix creation, we don’t 
need to specify ncol since nrow is enough

> y <- matrix(c(1,2,3,4),nrow=2)
> y
     [,1] [,2]
[1,]    1    3
 [2,]    2    4



Assistant Professor Dr. Emre UGUR 3705th October 2016

Matrix row names and column names

We can provide names for the rows and columns of a matrix

> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> rownames(y) <- c("Row1", "Row2")
> colnames(y) <- c("Col1", "Col2")

> y
     Col1 Col2
Row1    1    3
 Row2    2    4



Assistant Professor Dr. Emre UGUR 3805th October 2016

Matrix creation by specifying element individually

Another way to create a matrix is to first specify the dimension 
of the matrix and next specify elements individually

> y <- matrix(nrow=2,ncol=2)
> y[1,1] = 1
> y[2,1] = 2
> y[1,2] = 3
> y[2,2] = 4

> y
     [,1] [,2]
[1,]    1    3
 [2,]    2    4



Assistant Professor Dr. Emre UGUR 3905th October 2016

Matrix creation with cbind and rbind

We can “glue” vectors together, columnwise or rowwise, using 
the cbind and rbind functions

> cbind(c(1,2), c(3,4))
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> rbind(c(1,2), c(3,4))
     [,1] [,2]
[1,]    1    2
 [2,]    3    4



Assistant Professor Dr. Emre UGUR 4005th October 2016

Matrix creation with cbind and rbind

 A typical use case for a matrix is that
 rows correspond to different observations, e.g. various people
 columns correspond to variables, e.g. height and weight

In the previous lecture we have seen how to manage height 
and weight observations with vectors
> person.height
  Can   Cem Hande 
 1.70  1.75  1.62 

> person.weight
  Can   Cem Hande 
   65    66    61



Assistant Professor Dr. Emre UGUR 4105th October 2016

Matrix creation with cbind and rbind

Now we manage height and weight observations with a matrix
> person.height.weight <- rbind(c(1.7,65), 
c(1.75,66), c(1.62,61))

> rownames(person.height.weight) <- c("Can", 
"Cem", "Hande")

> colnames(person.height.weight) <- c("Height", 
"Weight")

> person.height.weight
      Height Weight
Can     1.70     65
Cem     1.75     66
 Hande   1.62     61



Assistant Professor Dr. Emre UGUR 4205th October 2016

Matrix modification with cbind and rbind

Add a column to an existing matrix

> y <- matrix(c(1,2,3,4),nrow=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y <- cbind(c(11, 12), y)
> y
     [,1] [,2] [,3]
[1,]   11    1    3
 [2,]   12    2    4



Assistant Professor Dr. Emre UGUR 4305th October 2016

Matrix modification with cbind and rbind

Add a row to an existing matrix
> y <- matrix(c(1,2,3,4),nrow=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y <- rbind(c(11,12), y)
> y
     [,1] [,2]
[1,]   11   12
[2,]    1    3
 [3,]    2    4



Assistant Professor Dr. Emre UGUR 4405th October 2016

Matrix recycling 

 We already learned that when applying an operation to two 
vectors which requires them to be the same length, the 
shorter one will repeated until it is long enough to match the 
longer one

Example: vector addition
> c(1, 2, 3) + c(1, 2, 3, 4)
 [1] 2 4 6 5

The shorter vector was automatically “recycled” to be as
> c(1, 2, 3, 1) + c(1, 2, 3, 4)
 [1] 2 4 6 5



Assistant Professor Dr. Emre UGUR 4505th October 2016

Matrix recycling 

The automatic lengthening of vectors also works with matrices
> z <- matrix(c(1:9),nrow=3)
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> cbind(10, z)
     [,1] [,2] [,3] [,4]
[1,]   10    1    4    7
[2,]   10    2    5    8
 [3,]   10    3    6    9



Assistant Professor Dr. Emre UGUR 4605th October 2016

Matrix operations

We can perform various operations on matrices, e.g. matrix 
transposition, element by element product, matrix multiplication, 
matrix scalar multiplication and matrix addition

 Matrix transposition
 > y
      [,1] [,2]
 [1,]    1    3
 [2,]    2    4

 > t(y)
      [,1] [,2]
 [1,]    1    2
 [2,]    3    4



Assistant Professor Dr. Emre UGUR 4705th October 2016

Matrix operations

Matrix element by element product for matrices of the same 
size
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y * y
     [,1] [,2]
[1,]    1    9
 [2,]    4   16



Assistant Professor Dr. Emre UGUR 4805th October 2016

Matrix operations

Matrix multiplication 
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y %*% y
     [,1] [,2]
[1,]    7   15
 [2,]   10   22



Assistant Professor Dr. Emre UGUR 4905th October 2016

Matrix operations

Matrix scalar multiplication
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

 > 3 * y
     [,1] [,2]
[1,]    3    9
 [2,]    6   12



Assistant Professor Dr. Emre UGUR 5005th October 2016

Matrix operations

Matrix addition
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y + y
     [,1] [,2]
[1,]    2    6
[2,]    4    8
  



Assistant Professor Dr. Emre UGUR 5105th October 2016

Matrix indexing 

We have already seen how to access single columns and rows

> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y[,1]
[1] 1 2

> y[2,]
 [1] 2 4 



Assistant Professor Dr. Emre UGUR 5205th October 2016

Matrix indexing 

We have already seen how to access single elements of the 
matrix

> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y[1,1]
[1] 1

> y[2,1]
 [1] 2



Assistant Professor Dr. Emre UGUR 5305th October 2016

Matrix indexing

We can access more than a single column/row/element at once
> z <- matrix(c(1:9),nrow=3)
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
 [3,]    3    6    9

Select columns 2 and 3
> z[,c(2,3)]
     [,1] [,2]
[1,]    4    7
[2,]    5    8
 [3,]    6    9



Assistant Professor Dr. Emre UGUR 5405th October 2016

Matrix indexing

Select first and second row
> z[c(1,2),]
     [,1] [,2] [,3]
[1,]    1    4    7
 [2,]    2    5    8

Select third column of first and second row
> z[c(1,2),3]
 [1] 7 8 



Assistant Professor Dr. Emre UGUR 5505th October 2016

Matrix indexing

We use negative subscripts to exclude certain elements, e.g. 
request all rows except the second
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z[,-2]
     [,1] [,2]
[1,]    1    7
[2,]    2    8
[3,]    3    9



Assistant Professor Dr. Emre UGUR 5605th October 2016

Matrix indexing

We can assign new values to submatrices
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), 
nrow=2)

> z
     [,1] [,2] [,3]
[1,]    1   20   22
[2,]    2   21   23
 [3,]    3    6    9



Assistant Professor Dr. Emre UGUR 5705th October 2016

Matrix indexing

We can delete rows or columns by reassignment, e.g. keep 
only first two rows and delete third row

> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z <- z[c(1,2),]
> z
     [,1] [,2] [,3]
[1,]    1    4    7
 [2,]    2    5    8



Assistant Professor Dr. Emre UGUR 5805th October 2016

Matrix indexing

We can delete rows or columns by reassignment, e.g. keep 
only first and third column and delete second column

> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z <- z[,c(1,3)]
> z
     [,1] [,2]
[1,]    1    7
[2,]    2    8
 [3,]    3    9



Assistant Professor Dr. Emre UGUR 5905th October 2016

Matrix filtering

 Similar to data vector filtering, the concept behind is to first 
apply a Boolean evaluation function

For each single element, the Boolean evaluation function 
returns TRUE in case of a positive evaluation and FALSE in 
case of a negative evaluation

> z > 3
      [,1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
 [3,] FALSE TRUE TRUE



Assistant Professor Dr. Emre UGUR 6005th October 2016

Matrix filtering

 In a second step, we use the results of the evaluation function 
for the filtering

Example: obtain elements of z that are larger than 3
> greater3 <- z > 3

> greater3
      [,1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

> z[greater3]
 [1] 4 5 6 7 8 9



Assistant Professor Dr. Emre UGUR 6105th October 2016

Matrix filtering

Similar to data vector filtering, we can perform evaluation and 
filtering in one line

> z[z > 3]
[1] 4 5 6 7 8 9

We provide the evaluation function directly in the square 
brackets for selecting those elements that fulfill the 
evaluation function 



Assistant Professor Dr. Emre UGUR 6205th October 2016

Matrix filtering example

 In contrast to data vector filtering, we can perform more 
complex filtering tasks with matrices, e.g. obtain those rows of 
matrix z having elements in the second column which are at 
least equal to 5

We first define the evaluation function: elements in the second 
column which are at least equal to 5
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z[,2] >= 5
 [1] FALSE  TRUE  TRUE



Assistant Professor Dr. Emre UGUR 6305th October 2016

Matrix filtering example

In a second step, we apply the evaluation function when 
selecting the rows
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z[z[,2] >= 5,]
     [,1] [,2] [,3]
[1,]    2    5    8
 [2,]    3    6    9



Assistant Professor Dr. Emre UGUR 6405th October 2016

Matrix functions

 There exist many useful functions that operate on matrices

Some examples:
> rowMeans(z)
[1] 4 5 6

> colMeans(z)
[1] 2 5 8

> rowSums(z)
[1] 12 15 18

> colSums(z)
 [1]  6 15 24



Assistant Professor Dr. Emre UGUR 6505th October 2016

Matrix function apply()

 An often used generic function in R is apply()

 apply() executes a user-specified function on each of the 
rows or each of the columns of a matrix

 apply(m,dimcode,f,fargs)
 m is the matrix
 dimcode equal to 1 means that the function is applied to rows, 
dimcode equal to 2 means that the function is applied to columns

 f is the function to be applied
 fargs is an optional set of arguments to be supplied to f



Assistant Professor Dr. Emre UGUR 6605th October 2016

Matrix function apply()

 With the generic function apply(), we can compute the 
means and sums from the previous examples

rowMeans
> apply(z,1,mean)
 [1] 4 5 6

colSums
> apply(z,2,sum)
[1]  6 15 24



Assistant Professor Dr. Emre UGUR 6705th October 2016

Writing our own function 

 So far, we have applied some of R’s inbuilt functions like 
mean(), sum(), length(), sd(), etc.

 Often, we need to write our own functions that fit our needs

 In general, a function is a group of instructions that takes 
inputs, uses them to compute other values, and returns a 
result

 Today, we will start with a simple example and employ it later 
on a matrix using apply()



Assistant Professor Dr. Emre UGUR 6805th October 2016

Writing our own function 

We write a simple function that adds 1 to its input and returns 
the result

 > AddOne <- function(x) {x+1}

Function 
name

Function 
inputs

Instructions that take the 
inputs and use them to 
compute other values.

The last computed value 
is returned by default. 



Assistant Professor Dr. Emre UGUR 6905th October 2016

Writing our own function 

After defining our function, we can work with it

> AddOne <- function(x) {x+1}

> AddOne(1)
[1] 2

> AddOne(-5)
[1] -4

> AddOne(c(1,2,3))
[1] 2 3 4



Assistant Professor Dr. Emre UGUR 7005th October 2016

Writing our own function 

Let’s write another more sophisticated function that adds a user-
specified value to its first input

 > AddValue <- function(x, Addend=1) {x+Addend}

In addition to the first 
input x we specify a 
second input Addend 
with default value 1.



Assistant Professor Dr. Emre UGUR 7105th October 2016

Writing our own function 

After defining our new function, we can work with it

> AddValue <- function(x, Addend=1) {x+Addend}

> AddValue(1)
[1] 2

> AddValue(1,2)
[1] 3

> AddValue(c(1:3),2)
 [1] 3 4 5



Assistant Professor Dr. Emre UGUR 7205th October 2016

Using our own function with apply()

First we apply AddValue to the rows of z
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> apply(z,1,AddValue)
     [,1] [,2] [,3]
[1,]    2    3    4
[2,]    5    6    7
 [3,]    8    9   10

Resulting vector when adding 1 to the first row



Assistant Professor Dr. Emre UGUR 7305th October 2016

Using our own function with apply()

Second we apply AddValue to the columns of z
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> apply(z,2,AddValue)
     [,1] [,2] [,3]
[1,]    2    5    8
[2,]    3    6    9
[3,]    4    7   10

Resulting vector when adding 1 to the first column



Assistant Professor Dr. Emre UGUR 7405th October 2016

Using our own function with apply()

Third we supply an optional value to AddValue
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> apply(z,2,AddValue,10)
     [,1] [,2] [,3]
[1,]   11   14   17
[2,]   12   15   18
 [3,]   13   16   19 

Resulting vector when adding 10 to the first column



Assistant Professor Dr. Emre UGUR 7505th October 2016

Differences between vectors and matrices 

We have learned that a matrix is a vector with two additional 
attributes, the number of rows and number of columns
> z <- matrix(c(1:8),nrow=4)
> z
     [,1] [,2]
[1,]    1    5
[2,]    2    6
[3,]    3    7
 [4,]    4    8

As z is still a vector, we can query its length:
> length(z)
 [1] 8



Assistant Professor Dr. Emre UGUR 7605th October 2016

Differences between vectors and matrices 

As a matrix, z is a bit more than a vector:
> class(z)
[1] "matrix" 

> attributes(z)
$dim
 [1] 4 2

 We observe that there exists a class called matrix

The matrix class has one attribute named dim which is a vector 
containing the numbers of rows and columns

 We learn more about classes in object-oriented programming



Assistant Professor Dr. Emre UGUR 7705th October 2016

Differences between vectors and matrices 

We can transform a vector into a matrix
> a <- c(1,2,3)

> b <- as.matrix(a)

> a
[1] 1 2 3

> b
     [,1]
[1,]    1
[2,]    2
 [3,]    3



Assistant Professor Dr. Emre UGUR 7805th October 2016

Dimensions of a matrix

We can obtain the numbers of rows and columns of matrix in 
different ways

> dim(z)
[1] 4 2

> nrow(z)
[1] 4

> ncol(z)
 [1] 2



Assistant Professor Dr. Emre UGUR 7905th October 2016

Higher-dimensional arrays

 So far we have operated with two-dimensional matrices which 
represent a typical use case in data analysis:
 rows correspond to different observations, e.g. various people
 columns correspond to variables, e.g. height and weight

 > person.height.weight
       Height Weight
 Can     1.70     65
 Cem     1.75     66
 Hande   1.62     61

 Let’s suppose we have collected data at different times, e.g. 
asking people every month for height and weight 

 Time then becomes the third dimension, in addition to rows 
and columns and we call such data sets arrays.



Assistant Professor Dr. Emre UGUR 8005th October 2016

Higher-dimensional arrays

 Let’s consider another example: students and test scores

 Each test consists of two parts

 For each test we record two scores, one from the first part 
and one form the second part

 Let’s create an example with two tests and three students



Assistant Professor Dr. Emre UGUR 8105th October 2016

Higher-dimensional arrays

 For the beginning we start with matrix notation to represent 
first and second test

In the first test, student 1 had scores of 11 in the first part and 
13 in the second part, student 2 scored 25 and 21, and so on:
> firsttest <- rbind(c(11,13), c(25,21), 
c(33,39))

> firsttest
     [,1] [,2]
[1,]   11   13
[2,]   25   21
 [3,]   33   39



Assistant Professor Dr. Emre UGUR 8205th October 2016

Higher-dimensional arrays

In the second test, the same student 1 had scores of 12 in the 
first part and 18 in the second part, student 2 scored 22 and 26, 
and so on:

> secondtest <- rbind(c(12,18), c(22,26), 
c(38,36))

> secondtest
     [,1] [,2]
[1,]   12   18
[2,]   22   26
 [3,]   38   36



Assistant Professor Dr. Emre UGUR 8305th October 2016

Higher-dimensional arrays

 Now let’s put both tests into one data structure, which we’ll 
name tests

 We’ll arrange it to have two “layers”: we’ll store firsttest in the 
first layer and secondtest in the second

 In each layer there will be three rows for the three students’ 
scores on the respective test

 Each layer consists of two columns for the two parts of a test



Assistant Professor Dr. Emre UGUR 8405th October 2016

Higher-dimensional arrays

We create the two-layer data structure with the array function
> tests <- 
array(data=c(firsttest,secondtest),dim=c(3,2,2)
)

> tests
, , 1

     [,1] [,2]
[1,]   11   13
[2,]   25   21
[3,]   33   39

, , 2

     [,1] [,2]
[1,]   12   18
[2,]   22   26
 [3,]   38   36



Assistant Professor Dr. Emre UGUR 8505th October 2016

Higher-dimensional arrays

 In the dim argument we have specified
 3 rows for the three students
 2 columns for the two parts of the test
 2 layers for the two tests

 Each element of tests now has three subscripts which 
correspond to the respecitve element in the dim vector

Example: the score for student 3 in the second part of test 1 is 
retrieved by
> tests[3,2,1]
 [1] 39



Assistant Professor Dr. Emre UGUR 8605th October 2016

Lessons learned today

 Matrix creation
 Function matrix
 Specify elements individually
 Glue vectors together with cbind and rbind

 Matrix operations
 Transposition, element by element product, matrix multiplication, matrix 

scalar multiplication and matrix addition

 Matrix Indexing
 Access more than a single column/row/element at once
 Use negative subscripts to exclude certain elements
 Assign new values to submatrices



Assistant Professor Dr. Emre UGUR 8705th October 2016

Lessons learned today

 Matrix Filtering
 Boolean evaluation function
 Perform evaluation and filtering in one line
 Obtaining rows that fulfill a column condition

 Matrix Function apply

 Writing our own function

 Differences between vectors and matrices 

 Higher-dimensional arrays



Assistant Professor Dr. Emre UGUR 8805th October 2016

Homework

1.From the previous homework, use the body height and weight 
data from 10 of your friends and create a matrix 

2.Assign row names and col names to your matrix

3.Add a new column to your matrix which contains the BMI

4.Increase the body weight of the first 5 persons by 10%, 
decrease the weight of the remaining 5 persons by 5% and 
recompute the BMI

5.Select those persons whose body height is larger than 1.7



Assistant Professor Dr. Emre UGUR 8905th October 2016

Homework

1.Compute the mean BMI of those persons whose body height 
is less 1.75

2.Write your own function which increases the function input by 
x%

3.Decrease body weight by 5% when using your own function 
with the apply function

4.Assume you have collected body weight data a second time. 
Construct an array with two layers which contains the first and 
the second data collection


	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

