ion to Computing for Economics and

Introduct
Management

Ices

Matr

Lecture 3

Acknowledgement

" These slides are adapted from Bert Arnrich's R lecture.

05t October 2016 Assistant Professor Dr. Emre UGUR 2

Previous lecture: variable name conventions

" Variable names can contain letters, digits, and the dot symbol
* Name must not start with a digit
“ Name must not start with a dot followed by a digit
" Since names that start with a dot are special, we should not introduce
them in our scripts to avoid confusion
" Some names are already used by the system

" Better use descriptive names like person.height instead of
just h

Names are case-sensitive, e.g. x and X do not refer to the same
variable

05t October 2016 Assistant Professor Dr. Emre UGUR 3

Previous lecture: data vectors

" The fundamental data type in R is the vector

Data vectors are created with the construct ¢
> person.height <- c¢(1.70, 1.75, 1.62)

> person.height <- c(person.height, 1.81)

" Vector elements must all have the same mode

" Available modes: integer, numeric, character, Boolean,
complex

05t October 2016 Assistant Professor Dr. Emre UGUR 4

Previous lecture: data vectors

" Missing values are denoted with NA

We can assign names to the elements of a data vector to make
the vector more readable

> person.height <- c(Can=1.70, Cem=1.795,
Hande=1.62)

> person.height
Can Cem Hande
" 1.70 1.75 1.62

05t October 2016 Assistant Professor Dr. Emre UGUR 5

Previous lecture: data vector indexing

We can access a single element of a vector by providing the
index of the element in square brackets

> person.height[1]

Can

1.7

We can select a subvector by providing a Boolean index vector
> person.height[c(T,F,T)]

Can Hande
" 1.70 1.62

05t October 2016 Assistant Professor Dr. Emre UGUR 6

Previous lecture: data vector indexing

We can specify the element indices directly
> person.heightc(l,3)]

Can Hande

1.70 1.62

" We exclude elements with negative indices
"> person.height[c (-1, -3)]

" Cem

"1.75

We can change the values of the selected elements
person.height[1] <- 1.72

05t October 2016 Assistant Professor Dr. Emre UGUR

Previous lecture: data vector filtering

The idea behind filtering is to apply a Boolean evaluation
function to each element of the vector
> person.height > 1.65
Can Cem Hande
" TRUE TRUE FALSE

We use the results of the evaluation function for the filtering
> person.height[person.height > 1.65]

Can Cem
1.72 1.75

05t October 2016 Assistant Professor Dr. Emre UGUR

Previous lecture: data vector sorting

We use the function sort for sorting a vector
> sort (person.height)

Hande Can Cem
l1.02 1.70 1.75

" We can obtain a sorting in descending order
"> sort (person.height, decreasing = TRUE)

" Cem Can Hande
" 1.75 1.70 1.062

" We can sort a vector according to the values of some other
vector

"> person.weight[order (person.height)]

" Hande Can Cem

. 61l 65 66

05t October 2016 Assistant Professor Dr. Emre UGUR

Previous lecture: vector recycling

When applying an operation to two vectors which requires them
to be the same length, the shorter one will repeated until it is
long enough to match the longer one

> c(1, 2, 3) + c(1, 2, 3, 4)
Warning message:
In c¢c(1, 2, 3) + c(1, 2, 3, 4)

" longer object length is not a multiple of
shorter object length

05t October 2016 Assistant Professor Dr. Emre UGUR 10

Program today

"ifelse ()

" More vector functions

" Matrix creation

" Matrix operations

" Matrix indexing

" Matrix filtering

" Matrix function apply ()

" Writing own functions

" Differences between vectors and matrices
" Higher-dimensional arrays

05t October 2016 Assistant Professor Dr. Emre UGUR 11

Conditional element selection with the ifelse()

function
“We provide the ifelse (test, yes, no) function with a
Boolean vector test and two vectors yes and no

" i felse returns a vector which is created from selected
elements from the vectors yes and no: yes[i] is selected if
test[i]istrueand no[i] is selected if test[1] is false

Example (which uses recycling):

> 1felse(person.height > 1.7, "tall", "small")
Can Cem Hande

“"small™ "tall" "small"

05t October 2016 Assistant Professor Dr. Emre UGUR 12

Conditional element selection with the ifelse()

function
“We provide the ifelse (test, yes, no) function with a
Boolean vector test and two vectors yes and no

" i felse returns a vector which is created from selected
elements from the vectors yes and no: yes[i] is selected if
test[i]istrueand no[i] is selected if test[1] is false

Example (which uses recycling):

> 1felse(person.height > 1.7, "tall", "small")
Can Cem Hande

“"small™ "tall" "small"

05t October 2016 Assistant Professor Dr. Emre UGUR 13

More data vector operations

" An often used functions that operates on vectors is mean

For example, we can compute the mean body mass index
> bmi <- person.weight / person.height”?2

> mean (bmi)
[1] 23.31768

> Arguments of the function are
provided in parentheses

R function mean

05t October 2016 Assistant Professor Dr. Emre UGUR

14

Data vector operations

Other examples of functions are 1ength and sd which
compute the length and the standard deviation of a vector
> bmi <- person.weight / person.height”?2

> mean (bmi)
[1] 23.31768

> length (bm1)
(1] 3

> sd (bmi)
[1] 2.294295

05t October 2016 Assistant Professor Dr. Emre UGUR 15

Creating regular sequences

" In particular for graphics, we often need equidistant series of
numbers

" For example, let's assume we need to specify the x-
coordinates of a curve as 1.65,1.70,1.75,1.80,1.85, and 1.90

" In particular for long series, we are looking for way to specify
the regular sequence in compact way

05t October 2016 Assistant Professor Dr. Emre UGUR 16

Creating regular sequences

The from: to syntax is a simple way to generate a sequence
from fromto to in steps of 1 or -1

> 1:5

(1] 1 2 3 45

> 11:15

[1] 11 12 13 14 15
> 3:0
[1] 3 2 1 O

"> seq 1 100 <- 1:100

05t October 2016 Assistant Professor Dr. Emre UGUR 17

Function seq

" Function seqg allows to generate regular sequences with more
options

" The help page help (seq) shows us the full function
documentation

" Similar to many other R functions, in the parentheses we can
provide arguments as a comma-separated list

The full set of arguments can be seen from the help page
"seqg(from, to, by, length.out, along.with)

05t October 2016 Assistant Professor Dr. Emre UGUR 18

Function arguments

" seq function arguments

" from starting value of the sequence
" to end value of the sequence
" by increment of the sequence

" length.out desired length of the sequence
“along.with take the length from the length of this argument

" Like with many other R functions, arguments have default
values

" from = 1
"to =1
“by = ((to - from)/ (length.out - 1))

length.out = NULL
“along.with = NULL

05t October 2016 Assistant Professor Dr. Emre UGUR 19

Function arguments

" Usually, we only provide those arguments which values
should be different from the default values

For example, let’s specify only the first two arguments from
and to

> seq(b, 10)

“[1] 56 7 8 9 10

" We observe that default value by=1 was automatically used
Now, we provide the third parameter by in addition

> seq(b, 10, 2)
“[1]1 5 7 9

05t October 2016 Assistant Professor Dr. Emre UGUR 20

Function arguments

" Providing function arguments in a given order becomes
difficult if a function has a large number of arguments

We should better use the argument names
> seq(from=5, to=10, by=2)
“11]1 5 7 9

With argument names we can change order and omit
arguments

> seq(by=2, from=5, to=10)

(1] 5 7 9

> seq (0, 1, length.out=5)
“[1] 0.00 0.25 0.50 0.75 1.00

05t October 2016 Assistant Professor Dr. Emre UGUR 21

Function arguments

In case of long argument names, it is sufficient to write the first
letters of the argument name

> seq (0, 1, length.out=5)
[1] 0.00 0.25 0.50 0.75 1.00

> seq (0, 1, len=5)
“11] 0.00 0.25 0.50 0.75 1.00

05t October 2016 Assistant Professor Dr. Emre UGUR 22

Creating repeated values

" We often need to generate repeated group codes

" For example, let's assume we have 10 observations from
group 1 and 15 observations from group 2

In the example we need to generate a group code which
consists of 10 times 1 and 15 times 2:

1 11111111122 2222222222272
2

" We are looking for way to specify such repeated values in a
compact way

05t October 2016 Assistant Professor Dr. Emre UGUR 23

Creating repeated values with function rep

" The function rep (stands for “replicate”), is used to generate
repeated values

rep function arguments and default values

" X vector of factor that is repeated

“times = 1 number of times to repeat

“ length.out = NA desired length of the result
“each =1 each element of x is repeated each times

05t October 2016 Assistant Professor Dr. Emre UGUR 24

Creating repeated values with function rep

> rep(l, 3)
(1] 1 1 1

> rep(l:4)
(1] 1 2 3 4 1 2 3 4

> rep(l:4 =
(1] 1 1 2 2 3 3 4 4

> rep(l:4, each 2, len = 4)

(1] 1 1 2 2

05t October 2016 Assistant Professor Dr. Emre UGUR 25

Creating repeated values with function rep

Coming back to our example: generate a group code which
consists of 10 times 1 and 15 times 2:

(10

S
N — 'O

> rep(1:2,c(10,15))
[1 1111 1111122 22222222272
2

NI_I

05t October 2016 Assistant Professor Dr. Emre UGUR 26

Program today

"ifelse ()

" More vector functions

" Matrix creation

" Matrix operations

" Matrix indexing

" Matrix filtering

" Matrix function apply ()

" Writing own functions

" Differences between vectors and matrices
" Higher-dimensional arrays

05t October 2016 Assistant Professor Dr. Emre UGUR 27

Matrix creation

"In R, a matrix is a vector with two additional attributes, the
number of rows and number of columns

One of the ways to create a matrix is via the matrix function
to obtain a matrix from a given data vector with nrow number
of rows and ncol number of columns

> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

05t October 2016 Assistant Professor Dr. Emre UGUR 28

Conditional element selection with the ifelse()

function
“We provide the ifelse (test, yes, no) function with a
Boolean vector test and two vectors yes and no

" i felse returns a vector which is created from selected
elements from the vectors yes and no: yes[i] is selected if
test[i]istrueand no[i] is selected if test[1] is false

Example (which uses recycling):

> 1felse(person.height > 1.7, "tall", "small")
Can Cem Hande

“"small™ "tall" "small"

05t October 2016 Assistant Professor Dr. Emre UGUR 29

Conditional element selection with the ifelse()

function
“We provide the ifelse (test, yes, no) function with a
Boolean vector test and two vectors yes and no

" i felse returns a vector which is created from selected
elements from the vectors yes and no: yes[i] is selected if
test[i]istrueand no[i] is selected if test[1] is false

Example (which uses recycling):

> 1felse(person.height > 1.7, "tall", "small")
Can Cem Hande

“"small™ "tall" "small"

05t October 2016 Assistant Professor Dr. Emre UGUR 30

Matrix column and row notation

> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[[1] [, 2]]—> Notation for columns: [,1] means

[1,] 1 3 first column, [, 2] second column,
[2,] 2 4 etc.
\%

Notation for rows: [1,] means firstrow, [2,] second row,
etc.

05t October 2016 Assistant Professor Dr. Emre UGUR 31

Matrix column and row access

We can access single columns and rows with the respective
column/row notation

> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

05t October 2016 Assistant Professor Dr. Emre UGUR 32

Matrix single element access

We can access single elements of the matrix by providing the
indices of row and column

05t October 2016 Assistant Professor Dr. Emre UGUR 33

Matrix creation order

" Storage of a matrix is in column-major order: first all of
column 1 is stored, then all of column 2, etc.

In our example with the data vector ¢ (1, 2, 3, 4) the numbers
1 and 2 were stored in the first column and the numbers 3 and
4 in the second column

> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

05t October 2016 Assistant Professor Dr. Emre UGUR 34

Matrix creation order

We can change the column-major order by providing the

additional argument byrow = TRUE for filling the matrix by
rows

> vy <- matrix(c(l,2,3,4), nrow=2, ncol=2,
byrow=TRUE)

05t October 2016 Assistant Professor Dr. Emre UGUR 35

Matrix creation with data vector and nrow

When we specify a data vector for matrix creation, we don’t
need to specify ncol since nrow is enough

> vy <- matrix(c(l,2,3,4),nrow=2)
>y

05t October 2016 Assistant Professor Dr. Emre UGUR 36

Matrix row names and column names

We can provide names for the rows and columns of a matrix

>y

[,1] [,2]
[1,] 1 3
[2,] 2 4

> rownames (y) <- c("Rowl", "Row2")
> colnames (y) <- c("Coll", "Col2")

>y

Coll Col?Z
Rowl 1 3
"Row?2 2 4

05t October 2016 Assistant Professor Dr. Emre UGUR 37

Matrix creation by specifying element individually

Another way to create a matrix is to first specify the dimension
of the matrix and next specify elements individually

y <—- matrix(nrow=2,ncol=2)
1,1] =1

vV V. V V V

= 2
= 3
4

V
N

05t October 2016 Assistant Professor Dr. Emre UGUR 38

Matrix creation with cbind and rbind

We can “glue” vectors together, columnwise or rowwise, using
the cbind and rbind functions

r2), c(3,4))
2

4

> rbind(c(1l,2), c(3,4))

05t October 2016 Assistant Professor Dr. Emre UGUR 39

Matrix creation with cbind and rbind

" A typical use case for a matrix is that
* rows correspond to different observations, e.g. various people
* columns correspond to variables, e.g. height and weight

In the previous lecture we have seen how to manage height
and weight observations with vectors
> person.height

Can Cem Hande
1.70 1.75 1.062

> person.weight
Can Cem Hande
05 00 ol

05t October 2016 Assistant Professor Dr. Emre UGUR 40

Matrix creation with cbind and rbind

Now we manage height and weight observations with a matrix
> person.height.weight <- rbind(c(l1.7,65),
c(l.75,006), c(l.62,061))

> rownames (person.height.weight) <- c("Can",
"Cem", "Hande")

> colnames (person.height.weight) <- c("Height",
"Weight")

> person.height.weight
Height Weight

Can 1.70 05
Cem 1.75 00
" Hande 1.62 61

05t October 2016 Assistant Professor Dr. Emre UGUR 41

Matrix modification with cbind and rbind

Add a column to an existing matrix

> vy <- matrix(c(l,2,3,4),nrow=2)

>y

[,1] [,2]
[1,] 1 3
[2,] 2 4

05t October 2016 Assistant Professor Dr. Emre UGUR 42

Matrix modification with cbind and rbind

Add a row to an existing matrix
> vy <- matrix(c(l,2,3,4),nrow=2)

>y

[,1] [,2]
[1,] 1 3
[2,] 2 4

> vy <- rbind(c(11,12), vy)

>y

[,1] [,2]
[1,] 11 12
[2,] 1 3
"13,] 2 4

05t October 2016 Assistant Professor Dr. Emre UGUR 43

Matrix recycling

" We already learned that when applying an operation to two
vectors which requires them to be the same length, the
shorter one will repeated until it is long enough to match the
longer one

Example: vector addition
> c(1l, 2, 3) + c(1, 2, 3, 4)
"[1] 2 4 6 5

The shorter vector was automatically “recycled” to be as

> c(1l,2, 3, 1)+ c(1, 2, 3, 4)
" [1] Bll 6 5 E

05t October 2016 Assistant Professor Dr. Emre UGUR 44

Matrix recycling

The automatic lengthening of vectors also works with matrices
> 7z <-— matrix(c(l:9),nrow=3)

> 7

[,11 [,2] [,3]
(1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> cbind (10, z)

[,11 [,2] [,3]1 [,4]
(1,] 10 1 4 7
(2,] 10 2 5 3
"[3,] 10 3 6 9

05t October 2016 Assistant Professor Dr. Emre UGUR 45

Matrix operations

We can perform various operations on matrices, e.g. matrix
transposition, element by element product, matrix multiplication,
matrix scalar multiplication and matrix addition

" Matrix transposition

>y

. [,1] [,2]
"1,] 1 3
"12,] 2 g
"> t(y)

. [,1] [,2]
"1,] 1 2
"12,] 3 g

05t October 2016 Assistant Professor Dr. Emre UGUR 46

Matrix operations

Matrix element by element product for matrices of the same
size

>y

[,1]1 [,2]
[1,] 1 3
[2,] 2 4
>y *y

[,1]1 [,2]
[1,] 1 9
"[2,] 4 16

05t October 2016 Assistant Professor Dr. Emre UGUR 47

Matrix operations

Matrix multiplication

>y

[,1]1 [,2]
(1,] 1 3
[2,] 2 4
> v $*% vy

[,1]1 [,2]
(1,] 7 15
"“12,] 10 22

05t October 2016

Assistant Professor Dr. Emre UGUR

48

Matrix operations

Matrix scalar multiplication

>y

[,1]1 [,2]
[1,] 1 3
[2,] 2 4
> 3 %y

[,1]1 [,2]
[1,] 3 9
"“12,] 0 12

05t October 2016 Assistant Professor Dr. Emre UGUR 49

Matrix operations

Matrix addition
>y

[, 1] [,2]
[1,] 1 3
[2,] 2 4
>y Tty

[, 1] [,2]
(1,] 2 6
[2,] 4 8

05t October 2016

Assistant Professor Dr. Emre UGUR

50

Matrix indexing

05t October 2016 Assistant Professor Dr. Emre UGUR 51

Matrix indexing

We have already seen how to access single elements of the
matrix

>y

[,1] [,2]
[1,] 1 3
[2,] 2 4
> yll,1]
(1] 1
> yl2,1]
"11] 2

05t October 2016 Assistant Professor Dr. Emre UGUR 52

Matrix indexing

We can access more than a single column/row/element at once
> 7z <— matrix(c(l1l:9),nrow=3)

> Z

[, 11 [,2]1 [,3]
(1,] 1 4 7
[2,] 2 5 8
"13,] 3 6 9

Select columns 2 and 3
> z[,c(2,3)]
[,1] [,2]

[1,] 4 7
[2,] 5 8
" [3,] 6 9

05t October 2016 Assistant Professor Dr. Emre UGUR 53

Matrix indexing

Select first and second row
> z[c(1,2),]

[, 1] [,2] [,3]
[1,] 1 4 7
"“12,] 2 5 8

Select third column of first and second row

> z[c(l,2),3]
“[1] 7 8

05t October 2016 Assistant Professor Dr. Emre UGUR 54

Matrix indexing

We use negative subscripts to exclude certain elements, e.g.
request all rows except the second

> Z

[,1] [,2]1 [,3]
(1,] 1 4]
(2,] 2 5 8
[3,] 3 6 9
> z[,-2]

[,1] [,2]
(1,] 1]
(2,] 2 8
[3,] 3 9

05t October 2016 Assistant Professor Dr. Emre UGUR 55

Matrix indexing

We can assign new values to submatrices
>z

> 7 c(2:3)] - matrix(c(20,21,22,23),
Nrow= 2
> 2 \
,l
[2,] 23

05t October 2016 Assistant Professor Dr. Emre UGUR 56

Matrix indexing

We can delete rows or columns by reassignment, e.g. keep
only first two rows and delete third row

>z

[,11 [,2] [,3]
[1,] 1 4 '/
(2,] 2 5 8
[3,] 3 6 9

05t October 2016 Assistant Professor Dr. Emre UGUR 57

Matrix indexing

We can delete rows or columns by reassignment, e.g. keep
only first and third column and delete second column

> Z

[,1] [,2]
[1,] 1 7
[2,] 2 8
"[3,] 3 9

05t October 2016 Assistant Professor Dr. Emre UGUR 58

Matrix filtering

" Similar to data vector filtering, the concept behind is to first
apply a Boolean evaluation function

For each single element, the Boolean evaluation function
returns TRUE in case of a positive evaluation and FALSE in
case of a negative evaluation

> z > 3

[, 1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
“[3,] FALSE TRUE TRUE

05t October 2016 Assistant Professor Dr. Emre UGUR 59

Matrix filtering

" In a second step, we use the results of the evaluation function
for the filtering

Example: obtain elements of z that are larger than 3
> greater3 <- z > 3

> greater3

[,11 [,2] [,3]
(1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

> z[greater3]
"1 4 5 6 7 8 9

05t October 2016 Assistant Professor Dr. Emre UGUR 60

Matrix filtering

Similar to data vector filtering, we can perform evaluation and
filtering in one line

> z[z[> 3]
[1] 4 5 7 8 9

N
We provide the evaluation function directly in the square

brackets for selecting those elements that fulfill the
evaluation function

61

05t October 2016 Assistant Professor Dr. Emre UGUR

Matrix filtering example

" In contrast to data vector filtering, we can perform more
complex filtering tasks with matrices, e.g. obtain those rows of
matrix z having elements in the second column which are at
least equal to 5

We first define the evaluation function: elements in the second
column which are at least equal to 5

> 7

[, 1] [,2T TY3]
(1,] 1 4 7
[2,] 2 5 8
3,1 3 |6 | o9

> z[,2] >=

" [1] {'KZSE TRUE. 'I'RUEI

05t October 2016 Assistant Professor Dr. Emre UGUR 62

Matrix filtering example

In a second step, we apply the evaluation function when
selecting the rows

> 7

[,11 [,2] [,3]
(1,] 1 4 7
(2,] 2[5 3]
(3,] 3 6 9

05t October 2016 Assistant Professor Dr. Emre UGUR 63

Matrix functions

" There exist many useful functions that operate on matrices
Some examples:
> rowMeans (z)

[1] 4 5 ©

> colMeans (z)
[1] 2 5 8

> rowSums (z)
[1] 12 15 18

> colSums (z)
"1 o 15 24

05t October 2016 Assistant Professor Dr. Emre UGUR 64

Matrix function apply ()

" An often used generic function in R is apply ()

"apply () executes a user-specified function on each of the
rows or each of the columns of a matrix

"apply (m,dimcode, £, fargs)
" m is the matrix
dimcode equal to 1 means that the function is applied to rows,

dimcode equal to 2 means that the function is applied to columns
f is the function to be applied

fargs is an optional set of arguments to be supplied to £

05t October 2016 Assistant Professor Dr. Emre UGUR 65

Matrix function apply ()

" With the generic function apply (), we can compute the
means and sums from the previous examples

rowMeans
> apply(z,1l,mean)
“"[1] 4 5 6

colSums

> apply(z, 2, sum)
(1] 6 15 24

05t October 2016 Assistant Professor Dr. Emre UGUR 66

Writing our own function

" So far, we have applied some of R’s inbuilt functions like
mean (), sum (), length (), sd (), etc.

" Often, we need to write our own functions that fit our needs

" In general, a function is a group of instructions that takes

Inputs, uses them to compute other values, and returns a
result

" Today, we will start with a simple example and employ it later
on a matrix using apply ()

05t October 2016 Assistant Professor Dr. Emre UGUR 67

Writing our own function

We write a simple function that adds 1 to its input and returns
the result

"> {%ddOne <- function (x) {

v yA.
Function Function Insvtructions that take the

name iInputs iInputs and use them to
compute other values.

The last computed value
IS returned by default.

05t October 2016 Assistant Professor Dr. Emre UGUR 68

Writing our own function

After defining our function, we can work with it
> AddOne <- function (x) {x+1}

> AddOne (1)
[1] 2

> AddOne (-9)
[1] -4

> AddOne(c (1,2, 3))
[1] 2 3 4

05t October 2016 Assistant Professor Dr. Emre UGUR 69

Writing our own function

Let’s write another more sophisticated function that adds a user-
specified value to its first input

"> AddValue <- function {x, Addend=1)] {x+Addend}

\"4
In addition to the first

input x we specify a
second input Addend
with default value 1.

05t October 2016 Assistant Professor Dr. Emre UGUR 70

Writing our own function

After defining our new function, we can work with it
> AddValue <- function(x, Addend=1l) {x+Addend}

> AddValue (1)
[1] 2

> AddValue (1, 2)
(1] 3

> AddValue(c(1l:3),2)
"[1] 3 4 5

05t October 2016 Assistant Professor Dr. Emre UGUR 71

Using our own function with apply ()

First we apply Addvalue to the rows of z

> Z

[,1] [,2] [,3]
[1,] l| 4 L
[2,] 2 5 8
[3,] 3 6 9
> apply(z,1,AddValue)

[, 1] [,2] [,3]
(1,] 2] 3 4
[2,] 5 6]

Resulting vector when adding 1 to the first row

05t October 2016 Assistant Professor Dr. Emre UGUR 72

Using our own function with apply ()

Second we apply Addvalue to the columns of z
> 7

2

Resulting vector when adding 1 to the first column

05t October 2016 Assistant Professor Dr. Emre UGUR 73

Using our own function with apply ()

Third we supply an optional value to Addvalue
> 7

[, 3

2

o O b —

[

> apply(z,2,AddValue, 10)
[, 1] [,2] [,3]

(1,] 1 14 17
[2,] 1 15 18
"[3,] 3 16 19

v

Resulting vector when adding 10 to the first column

05t October 2016 Assistant Professor Dr. Emre UGUR 74

Differences between vectors and matrices

We have learned that a matrix is a vector with two additional
attributes, the number of rows and number of columns
> 7z <— matrix(c(l:8),nrow=4)

> Z

[,1] [,2]
[1,] 1 5
[2,] 2 0
[3,] 3 7
"14,] 4 8

As z is still a vector, we can query its length:
> length(z)
“11] 8

05t October 2016 Assistant Professor Dr. Emre UGUR 75

Differences between vectors and matrices

As a matrix, z is a bit more than a vector:

> class (z)

[1] "matrix"

> attributes (z)

Sdim

"11] 4 2

" We observe that there exists a class called matrix

The matrix class has one attribute named dim which is a vector
containing the numbers of rows and columns

" We learn more about classes in object-oriented programming

05t October 2016 Assistant Professor Dr. Emre UGUR 76

Differences between vectors and matrices

We can transform a vector into a matrix
> a <- c¢c(1,2,3)

> b <- as.matrix(a)

> a
[1] 1 2 3
> b

[, 1]
[1,] 1
[2,] 2
" [3,] 3

05t October 2016 Assistant Professor Dr. Emre UGUR 77

Dimensions of a matrix

We can obtain the numbers of rows and columns of matrix in
different ways

> dim(z)
(1] 4 2

> Nrow (z)
[1] 4

> ncol (z)
"[1] 2

05t October 2016 Assistant Professor Dr. Emre UGUR 78

Higher-dimensional arrays

" So far we have operated with two-dimensional matrices which

represent a typical use case in data analysis:
* rows correspond to different observations, e.g. various people
columns correspond to variables, e.g. height and weight

> person.height.weight

. Height Weight
" Can 1.70 65
" Cem 1.75 66
" Hande 1.62 61

" Let’'s suppose we have collected data at different times, e.qg.
asking people every month for height and weight

" Time then becomes the third dimension, in addition to rows
and columns and we call such data sets arrays.

05t October 2016 Assistant Professor Dr. Emre UGUR 79

Higher-dimensional arrays

" Let's consider another example: students and test scores
" Each test consists of two parts

" For each test we record two scores, one from the first part
and one form the second part

" Let's create an example with two tests and three students

05t October 2016 Assistant Professor Dr. Emre UGUR 80

Higher-dimensional arrays

" For the beginning we start with matrix notation to represent
first and second test

In the first test, student 1 had scores of 11 in the first part and
13 in the second part, student 2 scored 25 and 21, and so on:
> firsttest <- rbind(c(11l,13), c(25,21),
c(33,39))

> firsttest
[,1] [,2]

(1,] 11 13
(2,] 25 21
"[3,] 33 39

05t October 2016 Assistant Professor Dr. Emre UGUR 81

Higher-dimensional arrays

In the second test, the same student 1 had scores of 12 in the
first part and 18 in the second part, student 2 scored 22 and 26,

and so on:

> secondtest <- rbind(c(1l2,18), c(22,206),

c(38,30))

> secondtest
[,1] [,2]

(1,] 12 18
(2,] 22 26
"[3,] 38 36

05t October 2016

Assistant Professor Dr. Emre UGUR 82

Higher-dimensional arrays

" Now let’s put both tests into one data structure, which we’ll
name tests

" We'll arrange it to have two “layers™: we'll store firsttest in the
first layer and secondtest in the second

" In each layer there will be three rows for the three students’
scores on the respective test

" Each layer consists of two columns for the two parts of a test

05t October 2016 Assistant Professor Dr. Emre UGUR 83

Higher-dimensional arrays

We create the two-layer data structure with the array function
> tests <-

array (data=c(firsttest, secondtest),dim=c (3,2, 2)

05t Octobev[Z,O{b] [/ 2] Assistant Professor Dr. Emre UGUR 84

Higher-dimensional arrays

" In the dim argument we have specified
" 3 rows for the three students
" 2 columns for the two parts of the test
" 2 layers for the two tests

" Each element of tests now has three subscripts which
correspond to the respecitve element in the dim vector

Example: the score for student 3 in the second part of test 1 is
retrieved by

> tests[3,2,1]

“"[1]1 39

05t October 2016 Assistant Professor Dr. Emre UGUR 85

Lessons learned today

" Matrix creation
" Function matrix
" Specify elements individually
" Glue vectors together with cbind and rbind

" Matrix operations
" Transposition, element by element product, matrix multiplication, matrix
scalar multiplication and matrix addition

" Matrix Indexing
* Access more than a single column/row/element at once
" Use negative subscripts to exclude certain elements
" Assign new values to submatrices

05t October 2016 Assistant Professor Dr. Emre UGUR 86

Lessons learned today

" Matrix Filtering
“ Boolean evaluation function
* Perform evaluation and filtering in one line
* Obtaining rows that fulfill a column condition

" Matrix Function apply
" Writing our own function
" Differences between vectors and matrices

" Higher-dimensional arrays

05t October 2016 Assistant Professor Dr. Emre UGUR

87

Homework

1.From the previous homework, use the body height and weight
data from 10 of your friends and create a matrix

2.Assign row names and col names to your matrix

3.Add a new column to your matrix which contains the BMI

4.Increase the body weight of the first 5 persons by 10%,
decrease the weight of the remaining 5 persons by 5% and

recompute the BMI

5.Select those persons whose body height is larger than 1.7

05t October 2016 Assistant Professor Dr. Emre UGUR 88

Homework

1.Compute the mean BMI of those persons whose body height
IS less 1.75

2.Write your own function which increases the function input by
X%

3.Decrease body weight by 5% when using your own function
with the apply function

4.Assume you have collected body weight data a second time.
Construct an array with two layers which contains the first and
the second data collection

05t October 2016 Assistant Professor Dr. Emre UGUR 89

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

