Introduction to Computing for Economics and
Management

Lecture 5: Data Frames

kmmmmmm

ﬂﬁn., IJ‘? L
m, 1.69, "

Midterm on 21°

" Tricky questions

" Sections

" Additional office hours (BM33):
* Today: 16:00 — 17:00
* Thursday: 10:00 — 11:00

Acknowledgement

" These slides are adapted from
Bert Arnrich's R lecture.

Previous lecture

" Shortcomings of vectors and matrices
" Creating lists

" List indexing

" Adding/deleting list elements

" Concatenate lists

" Vectors as list components

" Example: word list

" Accessing list components/values

" Example: sort word list alphabetically
* Applying functions to lists

" Example: sort word list by word frequency

19t October 2016 Assistant Professor Dr. Emre UGUR

Previous lecture: shortcomings of vectors and
matrices

" Vector elements must all have the same mode

" Matrix elements must all have the same mode

However, in practice we often have to deal with mixed mode
data sets, e.g. in an employee database we need to store

name, salary, and Boolean membership

name="Joe", salary=55000, staff=TRUE

19t October 2016 Assistant Professor Dr. Emre UGUR

Previous lecture: lists

" Lists can combine objects of different types
We create a list to represent the data from Joe
> jJoe <- list("Joe", 55000, T)

" An entire employee database might then be a list of lists

19t October 2016 Assistant Professor Dr. Emre UGUR 6

Previous lecture: creating lists

Let’'s check our new list joe
> Joe

[[1]]

[1] "Joe"

[1] TRUE

" We observe that the three components name, salary and
membership are indexed by [[1]1], [[2]1,and [[3]]

19t October 2016 Assistant Professor Dr. Emre UGUR 7

Previous lecture: creating lists

We better provide name tags for our components when
creating a list

> joe <- list (name="Joe", salary=55000,
staff=T)

> Joe
Sname

[1] "Joe"

Ssalary
[1] 55000

Sstaff
[1] TRUE

19t October 2016 Assistant Professor Dr. Emre UGUR 8

Previous lecture: list indexing

We can access list components in several different ways —
each of them is useful in different contexts

> joeS$salary
[1] 55000

> jJoel["salary"]]
[1] 55000

> joe[[2]]
[1] 55000

19t October 2016 Assistant Professor Dr. Emre UGUR 9

Previous lecture: adding list elements

" New components can be added after a list is created
We can add new components in different ways

> jJoe <- list (name="Joe", salary=55000,
staff=T)

> joeSage <- 39
> Joel[[5]] <= 1976

> joe[6:7] <- c¢(TRUE, TRUE)

19t October 2016 Assistant Professor Dr. Emre UGUR

10

Previous lecture: deleting list elements

We can delete a list component by setting it to NULL
> joeSsalary <- NULL
> JoeS$staff <- NULL

" After deleting, the indices of subsequent elements
automatically move up

19t October 2016 Assistant Professor Dr. Emre UGUR 11

Previous lecture: vectors as list components

Beside storing atomic entries like Joe or 55000 in a list, we
can have vectors as list components

> my.list <- list(vecl = c(1,2), vec2 = c(3,4),
vec3 = b:7)

> my.list
Svecl
(1] 1 2

Svec?
[1] 3 4

Svec?3
[1] 5 6 7

19t October 2016 Assistant Professor Dr. Emre UGUR 12

Previous lecture: word list

Let’s consider this sentence as our text example:
"a text consists of a word and another word
and so on and so forth

" For each word we need to obtain the location in the text:
"a ly5b
" text 2

consists 3

“"of 4

“word 6 9

"and 7 10 13

another 8

"so 11 14
"on 12
" forth 15

19t October 2016 Assistant Professor Dr. Emre UGUR 13

Previous lecture: word list

" Let's assume that we iterate through our text in a word by
word manner: a, text, consists, of, a,

" Let's further assume that the current word in our iteration is
always stored in the variable word

" Let’s further assume that we have a counter i which is

iIncreased by 1 for every word: the counter tells the current
position in the text

19t October 2016 Assistant Professor Dr. Emre UGUR 14

Previous lecture: word list

Let’s start with initializing our word list
> word.list <- 1list()

Our first word a is stored in the variable word

>word <- "a"

Since it is our first word, our counter i has the value 1

> 1 <- 1

Now we add our current word a to our word list

> word.list|[[word]] <- c(word.list[[word]], I)

19t October 2016 Assistant Professor Dr. Emre UGUR 15

Previous lecture: word list

Let’s check our word list after the first iteration
> word.list

Sa
(1] 1
" We interpret this intermediate result as word a has position 1

" We go on with a few other words

19t October 2016 Assistant Professor Dr. Emre UGUR 16

Previous lecture: word list

When we check word. 11ist again we obtain
> word.list

Sa
[1] 1 5

Stext
[1] 2

Sconsists
[1] 3

Sof
[1] 4

19t October 2016 Assistant Professor Dr. Emre UGUR 17

Previous lecture: accessing list components

If the components in a list do have tags, we can obtain them via
names ()

> names (joe)
[1] "name" "salary" "staff"

> names (word.list)
[l] "a" "teXt" "COnSiStS" "Of"

19t October 2016 Assistant Professor Dr. Emre UGUR 18

Previous lecture: sort word list alphabetically

We can write all three steps in one line
> word.list[sort (names (word.list))]

Sa
[1] 1 5

Sconsists
[1] 3

Sof
[1] 4

Stext
[1] 2

19t October 2016 Assistant Professor Dr. Emre UGUR 19

Previous lecture: accessing list values

We can obtain list values by using unlist ()
> unlist (joe)

name sSalary staff

"Joe" "55000" "TRUE"

> unlist (word.list)
al a’ text consists of

1 o) 2 3 4

" We observe that in the first case we retrieve a vector of
character strings and in the second case a numeric vector

" The reason for the different result modes is that list components
are coerced to a common mode during unlist

19t October 2016 Assistant Professor Dr. Emre UGUR 20

Previous lecture: applying functions to lists

"apply () executes a user-specified function on each of the
rows or each of the columns of a matrix, e.g.
apply(z,1,mean) compute the row means of matrix z

" The function 1lapply () works like the apply () function: the
specified function is applied on each component of a list and
another list is returned

lapply (1, £, fargs)

" 1 is the list

" £ is the function

" fargs is an optional set of arguments for function £

19t October 2016 Assistant Professor Dr. Emre UGUR 21

Previous lecture: applying functions to lists

Example: count number of words from our word.list
> lapply(word.list, length)

Sa

(1] 2

Stext
[1] 1

Sconsists
[1] 1

Sof
[1] 1

19t October 2016 Assistant Professor Dr. Emre UGUR 22

Previous lecture: applying functions to lists

" sapply () works like lapply () butinstead of a list it
returns a vector or a matrix

Previous example with sapply ()
> sapply(word.list, length)

a text consists of
2 1 1 1

19t October 2016 Assistant Professor Dr. Emre UGUR

23

u&c;\“”“’q,%
Previous lecture: sort word list by word frequenc

We can write all three steps in one line

> word.list[order (sapply(word.list, length))]
Stext

(1] 2

Sconsists
[1] 3

Sof
[1] 4

Sa
[1] 1 5

19t October 2016 Assistant Professor Dr. Emre UGUR 24

Previous lecture: Homework

1.Create a word list from the full text “a text consists of a
word and another word and so on and so forth”
using the helper variables word and i as shown in the lecture

2.5ort your word list alphabetically by word

3.Sort your word list by word frequency

Create another list which contains the vectors

(1.65,1.70,1.75,1.80,1.85, 1.90) and (1 1 2 3 3

4) . Use the seqg function to create the vectors first.

4.Compute the median of both vectors in the list using sapply

19t October 2016 Assistant Professor Dr. Emre UGUR 25

Program today

" Shortcomings of vectors and matrices
" Creating data frames

" Accessing data frames

" Data frame indexing

" Data frame modifications

" Data import from file

" Data frame summary

" Scatter plot

" Merging data frames

19t October 2016 Assistant Professor Dr. Emre UGUR 26

Shortcomings of vectors and matrices

" Let's come back to our person height and weight example

In a previous lecture we have seen how to manage height and
weight observations with vectors

> person.height <- c(Can=1.70, Cem=1.795,
Hande=1.62)

> person.weight <- c(Can=65, Cem=66, Hande=61)

> person.height
Can Cem Hande
1.70 1.75 1.62

> person.weight
Can Cem Hande
65 66 6l

19t October 2016 Assistant Professor Dr. Emre UGUR 27

Shortcomings of vectors and matrices

Next, we stored height and weight in a matrix

> person.height.weight <- rbind(c (1l
c(l.75,006), c(l.62,061))

> rownames (person.height.weight) <-
"Cem", "Hande")

> colnames (person.height.weight) <-
"Weight")

> person.height.weight
Height Weight

Can 1.70 05
Cem 1.75 00
Hande 1.02 ol

19t October 2016 Assistant Professor Dr. Emre UGUR

.7,065),

C ("Can" ,

c ("Height™",

28

Shortcomings of vectors and matrices

" Let’'s now assume we need to add a Boolean membership as
a third dimension

When working with vectors, we need to create a new vector to
handle the Boolean membership

> person.member <- c¢(Can=T, Cem=T, Hande=F)

" In general, we need a separate vector for each dimension of
our data set

" Shortcomings
“ No single data structure but several vectors
* When performing data modifications, like deleting/adding an entry, we
have to modify many vectors

19t October 2016 Assistant Professor Dr. Emre UGUR 29

Shortcomings of vectors and matrices

" The main shortcoming of matrices is the fact that all entries
must have the same mode

If we try to create a matrix with different modes, all entries will
be coerced to one common mode, e.g. Boolean in combination
with numbers will be coerced to numbers

> person.height.weight <- rbind(c(l1.7,65,T),
c(l.75,0606,T), c(l.62,061,F))

> person.height.weight
[,11 [,2] [,3]
(1,1 1.70 65 1
[(2,] 1.75 66 1
[3,] 1.62 61 0

19t October 2016 Assistant Professor Dr. Emre UGUR 30

Shortcomings of vectors and matrices

If we try to create a matrix with numbers and character strings,
all entries will be coerced to strings

> person.height.weight <- rbind(c(1.7,65,T,"C"),
c(l.75,060,T,"C"), c(l.02,01,F,"H"))

> person.height.weight

[, 1] [, 2] [,3] [, 4]
[1,] "1 . '7" "65" "TRUE" "C"
[2,] "1.75" "66" HTRUE" "C"
[3,] "1.62" "61" HFALSE" "H"

“ Such a coercing is a serious disadvantage since we can not
longer calculate with the numbers, e.g. BMI computation does
not work any longer

19t October 2016 Assistant Professor Dr. Emre UGUR 31

Data frame

" A data frame is like a matrix, with a two-dimensional rows-and
columns structure

" Each column may have a different mode, e.g. one column
may consist of numbers, and another column might have
character strings or Boolean entries

" On a technical level, a data frame is a list: each component of
that list consists of equal-length vectors

19t October 2016 Assistant Professor Dr. Emre UGUR 32

Creating data frames

One way to create a data frame is to combine available
equal-length vectors

> person <- data.frame (height=person.height,
welight=person.weight, member=person.member, initial=c("C",
"C", "H"))

> person

height weight member initial
Can 1.70 65 TRUE C
Cem 1.75 66 TRUE C
Hande 1.62 61 FALSE H

We observe that the columns retain their original mode and that
the vector element names are used to label the rows of the data
frame

19t October 2016 Assistant Professor Dr. Emre UGUR 33

Creating data frames

Data recycling works for data frames as well

> person <- data.frame (height=person.height,
welght=person.weight, member=T)

> person
height weight member

Can 1.70 05 TRUE
Cem 1.75 00 TRUE
Hande 1.02 ol TRUE

TRUE was repeated until it matched the length of the other
vectors

19t October 2016 Assistant Professor Dr. Emre UGUR 34

Accessing data frames

Since a data frame is technically a list, we can access it via
component index values or component names

> person| [1]]
[1] 1.70 1.75 1.62

> person|[["height"]]
[1] 1.70 1.75 1.62

> person$height
(1] 1.70 1.75 1.62

19t October 2016 Assistant Professor Dr. Emre UGUR 35

Accessing data frames

We can access it in a matrix-like fashion as well, e.g. view
column 1

> person|, 1]
[1] 1.70 1.75 1.62

Element in third row, second column

> person|[3, 2]
[1] ol

19t October 2016 Assistant Professor Dr. Emre UGUR 36

Data frame indexing

" Since data frames can be accessed in a matrix-like fashion,
we can select rows and columns in a matrix-like way

First and second row
> person[c(l,2),]

height weight member
Can 1.70 65 TRUE
Cem 1.75 606 TRUE

Third column of first and second row

> person[c(l,2),3]
[1] TRUE TRUE

19t October 2016 Assistant Professor Dr. Emre UGUR 37

Data frame indexing

Like for matrices, we can use negative indices to exclude rows
or columns
> person|[—3,]
height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE

> person|, —3]
height weight

Can 1.70 05
Cem 1.75 00
Hande 1.02 ol

19t October 2016 Assistant Professor Dr. Emre UGUR 38

Data frame filtering

" Similar to data vector and matrix filtering, the concept behind
Is to apply a Boolean evaluation function

Example: retrieve all observations for which person height is at
least 1.7

> person|[personSheight >= 1.7,]
height weight member

Can 1.70 65 TRUE

Cem 1.75 66 TRUE

19t October 2016 Assistant Professor Dr. Emre UGUR 39

Data frame modifications

" Like for matrices, we can use rbind () and cbind () to
add new rows or columns to a data frame

Usually, we add a new row in form of a list
> person <- rbind(person, Lale=list(l.76, 64,
T))

> person
height weight member

Can 1.70 65 TRUE
Cem 1.75 606 TRUE
Hande 1.62 ol TRUE
Lale 1.76 04 TRUE

19t October 2016 Assistant Professor Dr. Emre UGUR 40

Data frame modifications

We use cbind () for adding a new column

> person <- cbind(person, initial=c("C", "C",
"H"’ "L"))

> person
height weight member i1nitial

Can 1.70 65 TRUE C
Cem 1.75 606 TRUE C
Hande 1.62 ol TRUE H
Lale 1.76 04 TRUE L

19t October 2016 Assistant Professor Dr. Emre UGUR

41

Data frame modifications

As an alternative to cbind () we can use the $ notation

> person$SBMI <- person$Sweight / personSheight”?2

> person
height weight member i1nitial

Can 1.70 65 TRUE C
Cem 1.75 606 TRUE C
Hande 1.62 ol TRUE H
Lale 1.76 04 TRUE L

19t October 2016 Assistant Professor Dr. Emre UGUR

22 .

21
23

BMIT
49135

.55102
.24341
20.

66116

42

Data import

So far, we have entered our data into R
> person.height <- c(Can=1.70, Cem=1.795,
Hande=1.62)

" In practice, data is usually stored in data bases or files and
we import it from there

" In the following lecture, we will prepare a file which contains
our data and import the file content into R

19t October 2016 Assistant Professor Dr. Emre UGUR 43

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

