
19th October 2016 Assistant Professor Dr. Emre UGUR

Introduction to Computing for Economics and
Management

Midterm Summary

Assistant Professor Dr. Emre UGUR 219Th October 2016

Data vectors

 The fundamental data type in R is the vector

 Data vectors are created with the construct c
> person.height <- c(1.70, 1.75, 1.62)

> person.height <- c(person.height, 1.81)

 Vector elements must all have the same mode

 Available modes: integer, numeric, character, Boolean,
complex

Assistant Professor Dr. Emre UGUR 319Th October 2016

Data vectors

 Missing values are denoted with NA

 We can assign names to the elements of a data vector to
make the vector more readable
> person.height <- c(Can=1.70, Cem=1.75,
Hande=1.62)

> person.height
 Can Cem Hande
 1.70 1.75 1.62

Assistant Professor Dr. Emre UGUR 419Th October 2016

Data vector indexing

 We can access a single element of a vector by providing the
index of the element in square brackets
> person.height[1]
Can
1.7

 We can select a subvector by providing a Boolean index
vector
> person.height[c(T,F,T)]
 Can Hande
 1.70 1.62

Assistant Professor Dr. Emre UGUR 519Th October 2016

Data vector indexing

 We can specify the element indices directly
> person.height[c(1,3)]
 Can Hande
 1.70 1.62

 We exclude elements with negative indices
> person.height[c(-1, -3)]
 Cem
1.75

 We can change the values of the selected elements
person.height[1] <- 1.72

Assistant Professor Dr. Emre UGUR 619Th October 2016

Data vector filtering

 The idea behind filtering is to apply a Boolean evaluation
function to each element of the vector
> person.height > 1.65
 Can Cem Hande
 TRUE TRUE FALSE

 We use the results of the evaluation function for the filtering
> person.height[person.height > 1.65]
 Can Cem
1.72 1.75

Assistant Professor Dr. Emre UGUR 719Th October 2016

Data vector sorting

 We use the function sort for sorting a vector
> sort(person.height)
Hande Can Cem
 1.62 1.70 1.75

 We can obtain a sorting in descending order
> sort(person.height, decreasing = TRUE)
 Cem Can Hande
 1.75 1.70 1.62

 We can sort a vector according to the values of some other
vector
> person.weight[order(person.height)]
Hande Can Cem
 61 65 66

Assistant Professor Dr. Emre UGUR 819Th October 2016

Vector recycling

 When applying an operation to two vectors which requires
them to be the same length, the shorter one will repeated
until it is long enough to match the longer one

> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Warning message:
In c(1, 2, 3) + c(1, 2, 3, 4) :
 longer object length is not a multiple of
shorter object length

Assistant Professor Dr. Emre UGUR 919Th October 2016

ifelse() function

 ifelse(test, yes, no) returns a vector which is
created from selected elements from the vectors yes and
no: yes[i] is selected if test[i] is true and no[i] is
selected if test[i] is false

> ifelse(person.height > 1.7, "tall",
"small")
 Can Cem Hande
"small" "tall" "small"

Assistant Professor Dr. Emre UGUR 1019Th October 2016

Data vector operations

 We can perform calculations with vectors just like ordinary
numbers

 Element wise operations
> person.height^2
 Can Cem Hande
2.9584 3.0625 2.6244

 Vector addition, e.g. persons have gained/lost weight
> person.weight + c(1.5, 1.75, -0.5)
 Can Cem Hande
66.50 67.75 60.50

Assistant Professor Dr. Emre UGUR 1119Th October 2016

Data vector operations

 Operations on multiple vectors
> person.weight / person.height^2
 Can Cem Hande
21.97134 21.55102 23.24341

 The result of a vector calculation can be assigned to a new
data vector for further processing
> bmi <- person.weight / person.height^2

> bmi
 Can Cem Hande
21.97134 21.55102 23.24341

Assistant Professor Dr. Emre UGUR 1219Th October 2016

Rounding of numbers

 Round to the specified number of decimal places with
function round
> round(bmi, digits=1)
 Can Cem Hande
 22.0 21.6 23.2

 Alternative functions for rounding of numbers are ceiling,
floor, trunc, and signif

Assistant Professor Dr. Emre UGUR 1319Th October 2016

Data vector operations

 Often used functions that operates on vectors are mean,
length and sd
> bmi <- person.weight / person.height^2

> mean(bmi)
[1] 23.31768

> length(bmi)
[1] 3

> sd(bmi)
[1] 2.294295

Assistant Professor Dr. Emre UGUR 1419Th October 2016

Creating regular sequences

 The from:to syntax is a simple way to generate a
sequence from from to to in steps of 1 or -1
> 1:5
[1] 1 2 3 4 5

> 11:15
[1] 11 12 13 14 15

> 3:0
[1] 3 2 1 0

> seq_1_100 <- 1:100

Assistant Professor Dr. Emre UGUR 1519Th October 2016

Function seq

 seq function arguments
 from starting value of the sequence
 to end value of the sequence
 by increment of the sequence
 length.out desired length of the sequence
 along.with take the length from the length of this argument

> seq(5, 10)
[1] 5 6 7 8 9 10

> seq(5, 10, 2)
[1] 5 7 9

Assistant Professor Dr. Emre UGUR 1619Th October 2016

Creating repeated values with function rep

 rep function arguments and default values
 x vector of factor that is repeated
 times = 1 number of times to repeat
 length.out = NA desired length of the result
 each = 1 each element of x is repeated each times

> rep(1, 3)
[1] 1 1 1

> rep(1:4, 2)
[1] 1 2 3 4 1 2 3 4

> rep(1:4, each = 2)
[1] 1 1 2 2 3 3 4 4

Assistant Professor Dr. Emre UGUR 1719Th October 2016

Matrix creation

 In R, a matrix is a vector with two additional attributes, the
number of rows and number of columns

 One of the ways to create a matrix is via the matrix
function to obtain a matrix from a given data vector with
nrow number of rows and ncol number of columns

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4

Assistant Professor Dr. Emre UGUR 1819Th October 2016

Matrix column and row notation

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4

Notation for rows: [1,] means first row, [2,] second row,
etc.

Notation for columns: [,1] means
first column, [,2] second column,
etc.

Assistant Professor Dr. Emre UGUR 1919Th October 2016

Matrix column and row access

 We can access single columns and rows with the respective
column/row notation

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> y[,1]
[1] 1 2

> y[2,]
[1] 2 4

Assistant Professor Dr. Emre UGUR 2019Th October 2016

Matrix single element access

 We can access single elements of the matrix by providing
the indices of row and column

> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> y[1,1]
[1] 1

> y[2,1]
[1] 2

Assistant Professor Dr. Emre UGUR 2119Th October 2016

Matrix creation order

 Storage of a matrix is in column-major order: first all of
column 1 is stored, then all of column 2, etc.

 We can change the column-major order by providing the
additional argument byrow = TRUE for filling the matrix by
rows

> y <- matrix(c(1,2,3,4), nrow=2, ncol=2,
byrow=TRUE)

> y
 [,1] [,2]
[1,] 1 2
[2,] 3 4

Assistant Professor Dr. Emre UGUR 2219Th October 2016

Matrix row names and column names

 We can provide names for the rows and columns of a matrix

> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> rownames(y) <- c("Row1", "Row2")
> colnames(y) <- c("Col1", "Col2")

> y
 Col1 Col2
Row1 1 3
Row2 2 4

Assistant Professor Dr. Emre UGUR 2319Th October 2016

Matrix creation with cbind and rbind

 We can “glue” vectors together, columnwise or rowwise,
using the cbind and rbind functions

> cbind(c(1,2), c(3,4))
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> rbind(c(1,2), c(3,4))
 [,1] [,2]
[1,] 1 2
[2,] 3 4

Assistant Professor Dr. Emre UGUR 2419Th October 2016

Matrix modification with cbind and rbind

 Add a column to an existing matrix

> y <- matrix(c(1,2,3,4),nrow=2)
> y
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> y <- cbind(c(11, 12), y)
> y
 [,1] [,2] [,3]
[1,] 11 1 3
[2,] 12 2 4

Assistant Professor Dr. Emre UGUR 2519Th October 2016

Matrix recycling

 The automatic lengthening of vectors also works with matrices
> z <- matrix(c(1:9),nrow=3)
> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> cbind(10, z)
 [,1] [,2] [,3] [,4]
[1,] 10 1 4 7
[2,] 10 2 5 8
[3,] 10 3 6 9

Assistant Professor Dr. Emre UGUR 2619Th October 2016

Matrix operations

 Matrix transposition t(y)

 Element by element product y * y

 Matrix multiplication y %*% y

 Matrix scalar multiplication 3 * y

 Matrix addition y + y

Assistant Professor Dr. Emre UGUR 2719Th October 2016

Matrix indexing

 We can access more than a single column/row/element at
once
> z <- matrix(c(1:9),nrow=3)
> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

 Select columns 2 and 3
> z[,c(2,3)]
 [,1] [,2]
[1,] 4 7
[2,] 5 8
[3,] 6 9

Assistant Professor Dr. Emre UGUR 2819Th October 2016

Matrix indexing

 Select first and second row
> z[c(1,2),]
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8

 Select third column of first and second row
> z[c(1,2),3]
[1] 7 8

Assistant Professor Dr. Emre UGUR 2919Th October 2016

Matrix indexing

 We use negative subscripts to exclude certain elements, e.g.
request all rows except the second
> z[,-2]
 [,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9

Assistant Professor Dr. Emre UGUR 3019Th October 2016

Matrix indexing

 We can assign new values to submatrices
> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23),
nrow=2)

> z
 [,1] [,2] [,3]
[1,] 1 20 22
[2,] 2 21 23
[3,] 3 6 9

Assistant Professor Dr. Emre UGUR 3119Th October 2016

Matrix indexing

 We can delete rows or columns by reassignment, e.g. keep
only first two rows and delete third row

> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> z <- z[c(1,2),]
> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8

Assistant Professor Dr. Emre UGUR 3219Th October 2016

Matrix filtering

 Similar to data vector filtering, the concept behind is to first
apply a Boolean evaluation function

 For each single element, the Boolean evaluation function
returns TRUE in case of a positive evaluation and FALSE in
case of a negative evaluation

> z > 3
 [,1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

Assistant Professor Dr. Emre UGUR 3319Th October 2016

Matrix filtering

 Similar to data vector filtering, we can perform evaluation
and filtering in one line

> z[z > 3]
[1] 4 5 6 7 8 9

We provide the evaluation function directly in the square
brackets for selecting those elements that fulfill the
evaluation function

Assistant Professor Dr. Emre UGUR 3419Th October 2016

Matrix filtering

 In contrast to data vector filtering, we can perform more
complex filtering tasks with matrices, e.g. obtain those rows
of matrix z having elements in the second column which are
at least equal to 5

> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> z[z[,2] >= 5,]
 [,1] [,2] [,3]
[1,] 2 5 8
[2,] 3 6 9

Assistant Professor Dr. Emre UGUR 3519Th October 2016

Matrix function apply()

 An often used generic function in R is apply()

 apply() executes a user-specified function on each of the
rows or each of the columns of a matrix

 apply(m,dimcode,f,fargs)
 m is the matrix
 dimcode equal to 1 means that the function is applied to rows,
dimcode equal to 2 means that the function is applied to columns

 f is the function to be applied
 fargs is an optional set of arguments to be supplied to f

Assistant Professor Dr. Emre UGUR 3619Th October 2016

Writing our own function

 We write a simple function that adds 1 to its input and
returns the result

> AddOne <- function(x) {x+1}

Function
name

Function
inputs

Instructions that take the
inputs and use them to
compute other values.

The last computed value
is returned by default.

Assistant Professor Dr. Emre UGUR 3719Th October 2016

Writing our own function

 Let’s write another more sophisticated function that adds a
user-specified value to its first input

> AddValue <- function(x, Addend=1) {x+Addend}

In addition to the first
input x we specify a
second input Addend
with default value 1.

Assistant Professor Dr. Emre UGUR 3819Th October 2016

Using our own function with apply()

 First we apply AddValue to the rows of z
> z
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> apply(z,1,AddValue)
 [,1] [,2] [,3]
[1,] 2 3 4
[2,] 5 6 7
[3,] 8 9 10

Resulting vector when adding 1 to the first row

Assistant Professor Dr. Emre UGUR 3919Th October 2016

Lists

 Lists can combine objects of different types

 We create a list to represent the data from Joe
> joe <- list("Joe", 55000, T)

 An entire employee database might then be a list of lists

Assistant Professor Dr. Emre UGUR 4019Th October 2016

Creating lists

 Let’s check our new list joe
> joe
[[1]]
[1] "Joe"

[[2]]
[1] 55000

[[3]]
[1] TRUE

 We observe that the three components name, salary and
membership are indexed by [[1]], [[2]], and [[3]]

Assistant Professor Dr. Emre UGUR 4119Th October 2016

Creating lists

 We better provide name tags for our components when
creating a list
> joe <- list(name="Joe", salary=55000,
staff=T)

> joe
$name
[1] "Joe"

$salary
[1] 55000

$staff
[1] TRUE

Assistant Professor Dr. Emre UGUR 4219Th October 2016

List indexing

 We can access list components in several different ways –
each of them is useful in different contexts

> joe$salary
[1] 55000

> joe[["salary"]]
[1] 55000

> joe[[2]]
[1] 55000

Assistant Professor Dr. Emre UGUR 4319Th October 2016

Adding list elements

 New components can be added after a list is created

 We can add new components in different ways

> joe <- list(name="Joe", salary=55000,
staff=T)

> joe$age <- 39

> joe[[5]] <- 1976

> joe[6:7] <- c(TRUE, TRUE)

Assistant Professor Dr. Emre UGUR 4419Th October 2016

Deleting list elements

 We can delete a list component by setting it to NULL

> joe$salary <- NULL

> joe$staff <- NULL

 After deleting, the indices of subsequent elements
automatically move up

Assistant Professor Dr. Emre UGUR 4519Th October 2016

Vectors as list components

 Beside storing atomic entries like Joe or 55000 in a list, we
can have vectors as list components

> my.list <- list(vec1 = c(1,2), vec2 =
c(3,4), vec3 = 5:7)

> my.list
$vec1
[1] 1 2

$vec2
[1] 3 4

$vec3
[1] 5 6 7

Assistant Professor Dr. Emre UGUR 4619Th October 2016

Word list

 Let’s consider this sentence as our text example:
a text consists of a word and another word
and so on and so forth

 For each word we need to obtain the location in the text:
 a 1 5
 text 2
 consists 3
 of 4
 word 6 9
 and 7 10 13
 another 8
 so 11 14
 on 12
 forth 15

Assistant Professor Dr. Emre UGUR 4719Th October 2016

Word list

 Let’s assume that we iterate through our text in a word by
word manner: a, text, consists, of, a, ...

 Let’s further assume that the current word in our iteration is
always stored in the variable word

 Let’s further assume that we have a counter i which is
increased by 1 for every word: the counter tells the current
position in the text

Assistant Professor Dr. Emre UGUR 4819Th October 2016

Word list

 Let’s start with initializing our word list
> word.list <- list()

 Our first word a is stored in the variable word
word <- "a"

 Since it is our first word, our counter i has the value 1
> i <- 1

 Now we add our current word a to our word list
> word.list[[word]] <- c(word.list[[word]], i)

Assistant Professor Dr. Emre UGUR 4919Th October 2016

Word list

 Let’s check our word list after the first iteration
> word.list
$a
[1] 1

 We interpret this intermediate result as word a has position 1

 We go on with a few other words

Assistant Professor Dr. Emre UGUR 5019Th October 2016

Word list

 When we check word.list again we obtain
> word.list
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4

Assistant Professor Dr. Emre UGUR 5119Th October 2016

Accessing list components

 If the components in a list do have tags, we can obtain them
via names()

> names(joe)
[1] "name" "salary" "staff"

> names(word.list)
[1] "a" "text" "consists" "of"

Assistant Professor Dr. Emre UGUR 5219Th October 2016

Sort word list alphabetically

 We can write all three steps in one line
> word.list[sort(names(word.list))]
$a
[1] 1 5

$consists
[1] 3

$of
[1] 4

$text
[1] 2

Assistant Professor Dr. Emre UGUR 5319Th October 2016

Accessing list values

 We can obtain list values by using unlist()
> unlist(joe)
 name salary staff
 "Joe" "55000" "TRUE"

> unlist(word.list)
 a1 a2 text consists of
 1 5 2 3 4

 We observe that in the first case we retrieve a vector of
character strings and in the second case a numeric vector

 The reason for the different result modes is that list
components are coerced to a common mode during unlist

Assistant Professor Dr. Emre UGUR 5419Th October 2016

Applying functions to lists

 apply() executes a user-specified function on each of the
rows or each of the columns of a matrix, e.g.
apply(z,1,mean) compute the row means of matrix z

 The function lapply() works like the apply() function: the
specified function is applied on each component of a list and
another list is returned

 lapply(l, f, fargs)
 l is the list
 f is the function
 fargs is an optional set of arguments for function f

Assistant Professor Dr. Emre UGUR 5519Th October 2016

Applying functions to lists

 Example: count number of words from our word.list

> lapply(word.list, length)
$a
[1] 2

$text
[1] 1

$consists
[1] 1

$of
[1] 1

Assistant Professor Dr. Emre UGUR 5619Th October 2016

Applying functions to lists

 sapply() works like lapply() but instead of a list it
returns a vector or a matrix

 Previous example with sapply()

> sapply(word.list, length)
 a text consists of
 2 1 1 1

Assistant Professor Dr. Emre UGUR 5719Th October 2016

Sort word list by word frequency

 We can write all three steps in one line
> word.list[order(sapply(word.list, length))]
$text
[1] 2

$consists
[1] 3

$of
[1] 4

$a
[1] 1 5

Assistant Professor Dr. Emre UGUR 5819Th October 2016

Data frame

 A data frame is like a matrix, with a two-dimensional rows-
and columns structure

 Each column may have a different mode, e.g. one column
may consist of numbers, and another column might have
character strings or Boolean entries

 On a technical level, a data frame is a list: each component
of that list consists of equal-length vectors

Assistant Professor Dr. Emre UGUR 5919Th October 2016

Creating data frames

 One way to create a data frame is to combine available
equal-length vectors

> person <- data.frame(height=person.height,
weight=person.weight, member=person.member,
initial=c("C", "C", "H"))

> person
 height weight member initial
Can 1.70 65 TRUE C
Cem 1.75 66 TRUE C
Hande 1.62 61 FALSE H

 We observe that the columns retain their original mode and
that the vector element names are used to label the rows of the
data frame

Assistant Professor Dr. Emre UGUR 6019Th October 2016

Accessing data frames

 Since a data frame is technically a list, we can access it via
component index values or component names
> person[[1]]
[1] 1.70 1.75 1.62

> person[["height"]]
[1] 1.70 1.75 1.62

> person$height
[1] 1.70 1.75 1.62

Assistant Professor Dr. Emre UGUR 6119Th October 2016

Accessing data frames

 We can access it in a matrix-like fashion as well, e.g. view
column 1
> person[,1]
[1] 1.70 1.75 1.62

 Element in third row, second column
> person[3,2]
[1] 61

Assistant Professor Dr. Emre UGUR 6219Th October 2016

Data frame indexing

 Since data frames can be accessed in a matrix-like fashion,
we can select rows and columns in a matrix-like way

 First and second row
> person[c(1,2),]
 height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE

 Third column of first and second row
> person[c(1,2),3]
[1] TRUE TRUE

Assistant Professor Dr. Emre UGUR 6319Th October 2016

Data frame indexing

 Like for matrices, we can use negative indices to exclude
rows or columns
> person[-3,]
 height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE

> person[,-3]
 height weight
Can 1.70 65
Cem 1.75 66
Hande 1.62 61

Assistant Professor Dr. Emre UGUR 6419Th October 2016

Data frame filtering

 Similar to data vector and matrix filtering, the concept behind
is to apply a Boolean evaluation function

 Example: retrieve all observations for which person height is
at least 1.7

> person[person$height >= 1.7,]
 height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE

Assistant Professor Dr. Emre UGUR 6519Th October 2016

Data frame modifications

 Like for matrices, we can use rbind() and cbind() to
add new rows or columns to a data frame

 Usually, we add a new row in form of a list
> person <- rbind(person, Lale=list(1.76, 64,
T))

> person
 height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE
Hande 1.62 61 TRUE
Lale 1.76 64 TRUE

Assistant Professor Dr. Emre UGUR 6619Th October 2016

Data frame modifications

 We use cbind() for adding a new column

> person <- cbind(person, initial=c("C", "C",
"H", "L"))

> person
 height weight member initial
Can 1.70 65 TRUE C
Cem 1.75 66 TRUE C
Hande 1.62 61 TRUE H
Lale 1.76 64 TRUE L

Assistant Professor Dr. Emre UGUR 6719Th October 2016

Data frame modifications

 As an alternative to cbind() we can use the $ notation

> person$BMI <- person$weight /
person$height^2

> person
 height weight member initial BMI
Can 1.70 65 TRUE C 22.49135
Cem 1.75 66 TRUE C 21.55102
Hande 1.62 61 TRUE H 23.24341
Lale 1.76 64 TRUE L 20.66116

Assistant Professor Dr. Emre UGUR 6819Th October 2016

Data import with read.table

The function read.table is the most convenient way to read
in a rectangular grid of data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "", quote = "\"'",
 dec = ".", row.names, col.names,
 as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA, nrows = -1,
 skip = 0, check.names = TRUE,
 fill = !blank.lines.skip,
 strip.white = FALSE, blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "", encoding = "unknown", text)

Assistant Professor Dr. Emre UGUR 6919Th October 2016

Data import

 Now, we import the data into the data frame person.data
by using the function read.table

> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

> person.data
 Name Height Weight
1 Can 1.70 65
2 Cem 1.75 66
3 Hande 1.62 61
4 Lale 1.76 64
5 Arda 1.78 63
6 Bilgin 1.77 84
7 Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
10 Haluk 1.71 81

Assistant Professor Dr. Emre UGUR 7019Th October 2016

Data modifications

 We add a new column BMI like we did before
> person.data$BMI <- person.data$Weight /
person.data$Height^2

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49135
2 Cem 1.75 66 21.55102
3 Hande 1.62 61 23.24341
4 Lale 1.76 64 20.66116
5 Arda 1.78 63 19.88385
6 Bilgin 1.77 84 26.81222
7 Cem 1.69 75 26.25958
8 Ozlem 1.75 65 21.22449
9 Ali 1.73 75 25.05931
10 Haluk 1.71 81 27.70083

Assistant Professor Dr. Emre UGUR 7119Th October 2016

Data modifications

 We can change the values of a column by reassigning the
column with the new values, e.g. rounding BMI
> person.data$BMI <- round(person.data$BMI, 2)

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 61 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
10 Haluk 1.71 81 27.70

Assistant Professor Dr. Emre UGUR 7219Th October 2016

Data modifications

 When creating new columns, we can make use of functions
to compute the values of a new column

 Let’s recapitulate the ifelse() function

 ifelse(test, yes, no) returns a vector which is
created from selected elements from the vectors yes and
no: yes[i] is selected if test[i] is true and no[i] is
selected if test[i] is false

> ifelse(person.height > 1.7, "tall",
"small")
 Can Cem Hande
"small" "tall" "small"

Assistant Professor Dr. Emre UGUR 7319Th October 2016

Data frame modifications

Let’s use ifelse() to create a new column which indicates
whether BMI is above 22.5

> person.data$above22.5 <- ifelse(person.data$BMI>22.5, T ,F)
> person.data
 Name Height Weight BMI above22.5
1 Can 1.70 65 22.49 FALSE
2 Cem 1.75 66 21.55 FALSE
3 Hande 1.62 61 23.24 TRUE
4 Lale 1.76 64 20.66 FALSE
5 Arda 1.78 63 19.88 FALSE
6 Bilgin 1.77 84 26.81 TRUE
7 Cem 1.69 75 26.26 TRUE
8 Ozlem 1.75 65 21.22 FALSE
9 Ali 1.73 75 25.06 TRUE
10 Haluk 1.71 81 27.70 TRUE

Assistant Professor Dr. Emre UGUR 7419Th October 2016

Scatter Plot

 Beside numeric summary statistics, a convenient way for data
exploration is plotting

 R provides us many powerful tools for plotting

 We will learn more about plotting later

 For now, we create a simple scatter plot by plotting height on
the x-axis and weight on the y-axis
> plot(person.data$Height, person.data$Weight)

Assistant Professor Dr. Emre UGUR 7519Th October 2016

1.65 1.70 1.75

65
70

75
80

person.data$Height

pe
rs

on
.d

at
a$

W
e

ig
h

t
Scatter Plot

Assistant Professor Dr. Emre UGUR 7619Th October 2016

Merging data frames

 We merge the two data frames using the merge() function
> merge(person.data, person.data2)
 Name Height Weight BMI above22.5 Initial Member
1 Can 1.70 65 22.49 FALSE C T
2 Cem 1.69 75 26.26 TRUE C T
3 Cem 1.75 66 21.55 FALSE C T
4 Hande 1.62 61 23.24 TRUE H F

Assistant Professor Dr. Emre UGUR 7719Th October 2016

Short Summary Vectors

 Integer mode
> person.weight <- c(65, 66, 61)

 Numeric (floating-point number)
> person.height <- c(1.70, 1.75, 1.62)

 Character (string)
> person.name <- c("Can", "Cem", "Hande")

 Logical (Boolean)
> person.female <- c(FALSE, FALSE, TRUE)

 Complex
> complex.numbers <- c(1+2i, -1+0i)

Assistant Professor Dr. Emre UGUR 7819Th October 2016

Short Summary Vectors

 Assign names to the elements of a data vector
> person.height <- c(Can=1.70, Cem=1.75,
Hande=1.62)

 Indexing
> person.height[c(T,F,T)]
 Can Hande
 1.70 1.62

> person.height[c(1,3)]
 Can Hande
 1.70 1.62

> person.height[-1]
 Cem Hande
 1.75 1.62

Assistant Professor Dr. Emre UGUR 7919Th October 2016

Short Summary Vectors

 Filtering
> person.height[person.height > 1.65]
 Can Cem
1.72 1.75

 Recycling
> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

 Vector operations
> person.weight / person.height^2
 Can Cem Hande
21.97134 21.55102 23.24341

Assistant Professor Dr. Emre UGUR 8019Th October 2016

Short Summary Matrices

 Creation
> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

 Matrix operations
 Transposition t(y)
 Element by element product y * y
 Matrix multiplication y %*% y
 Matrix scalar multiplication 3 * y
 Matrix addition y + y

 Indexing, e.g. select first and second row
> z[c(1,2),]

Assistant Professor Dr. Emre UGUR 8119Th October 2016

Short Summary Matrices

 Assign new values to submatrices
> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

 Filtering, e.g. obtain those rows of matrix z having elements
in the second column which are at least equal to 5
> z[z[,2] >= 5,]

Assistant Professor Dr. Emre UGUR 8219Th October 2016

Short Summary Lists

 Creation
> joe <- list(name="Joe", salary=55000,
staff=T)

 Indexing
> joe$salary
> joe[["salary"]]
> joe[[2]]

 Vectors as list components
> my.list <- list(vec1 = c(1,2), vec2 =
c(3,4), vec3 = 5:7)

Assistant Professor Dr. Emre UGUR 8319Th October 2016

Short Summary Data frames

 Creation
> person <- data.frame(height=person.height,
weight=person.weight)

 Indexing
> person[[1]]
> person[["height"]]
> person$height
> person[c(1,2),]
> person[-3,]

 Filtering
> person[person$height >= 1.7,]

Assistant Professor Dr. Emre UGUR 8419Th October 2016

Short Summary Data frames

 Data import
> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

 Data modifications
> person.data$BMI <- person.data$Weight /
person.data$Height^2

 Summary
> summary(person.data)

 Merging
> merge(person.data, person.data2)

	Slide 1
	Data vectors
	Data vectors
	Data vector indexing
	Data vector indexing
	Data vector filtering
	Data vector sorting
	Vector recycling
	ifelse() function
	Data vector operations
	Data vector operations
	Rounding of numbers
	Data vector operations
	Creating regular sequences
	Function seq
	Creating repeated values with function rep
	Matrix creation
	Matrix column and row notation
	Matrix column and row access
	Matrix single element access
	Matrix creation order
	Matrix row names and column names
	Matrix creation with cbind and rbind
	Matrix modification with cbind and rbind
	Matrix recycling
	Matrix operations
	Matrix indexing
	Matrix indexing
	Matrix indexing
	Matrix indexing
	Matrix indexing
	Matrix filtering
	Matrix filtering
	Matrix filtering
	Matrix function apply()
	Writing our own function
	Writing our own function
	Using our own function with apply()
	Lists
	Creating lists
	Creating lists
	List indexing
	Adding list elements
	Deleting list elements
	Vectors as list components
	Word list
	Word list
	Word list
	Word list
	Word list
	Accessing list components
	Sort word list alphabetically
	Accessing list values
	Applying functions to lists
	Applying functions to lists
	Applying functions to lists
	Sort word list by word frequency
	Data frame
	Creating data frames
	Accessing data frames
	Accessing data frames
	Data frame indexing
	Data frame indexing
	Data frame filtering
	Data frame modifications
	Data frame modifications
	Data frame modifications
	Data import with read.table
	Data import
	Data modifications
	Data modifications
	Data modifications
	Data frame modifications
	Scatter Plot
	Scatter Plot
	Merging data frames
	Short Summary Vectors
	Short Summary Vectors
	Short Summary Vectors
	Short Summary Matrices
	Short Summary Matrices
	Short Summary Lists
	Short Summary Data frames
	Short Summary Data frames

