Introduction to Computing for Economics and
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Data vectors

The fundamental data type in R is the vector

Data vectors are created with the construct ¢
> person.height <- c¢(1.70, 1.75, 1.62)

> person.height <- c(person.height, 1.81)

Vector elements must all have the same mode

Available modes: integer, numeric, character, Boolean,
complex
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Data vectors

Missing values are denoted with NA

We can assign names to the elements of a data vector to
make the vector more readable

> person.height <- c(Can=1.70, Cem=1.75,
Hande=1.62)

> person.height
Can Cem Hande
1.70 1.75 1.62
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Data vector indexing

We can access a single element of a vector by providing the
index of the element in square brackets

> person.height[1]

Can

1.7

* We can select a subvector by providing a Boolean index
vector
> person.height[c(T,F,T) ]
Can Hande
1.70 1.62
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Data vector indexing

We can specify the element indices directly
> person.heightc (1, 3)]

Can Hande

1.70 1.62

* We exclude elements with negative indices
> person.heightc (-1, -3)]
Cem
1.75

* We can change the values of the selected elements
person.height[1l] <- 1.72
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Data vector filtering

The idea behind filtering is to apply a Boolean evaluation
function to each element of the vector
> person.height > 1.65
Can Cem Hande
TRUE TRUE FALSE

* We use the results of the evaluation function for the filtering

> person.height[person.height > 1.65]
Can Cem
1.72 1.75
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Data vector sorting

We use the function sort for sorting a vector
> sort (person.height)

Hande Can Cem
l.02 1.70 1.75

We can obtain a sorting in descending order
> sort (person.height, decreasing = TRUE)

Cem Can Hande
1.75 1.70 1.62

We can sort a vector according to the values of some other
vector

> person.welght [order (person.height) ]

Hande Can Cem

o0l 65 60
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Vector recycling

When applying an operation to two vectors which requires
them to be the same length, the shorter one will repeated
until it is long enough to match the longer one

> c(1, 2, 3) + c(1, 2, 3, 4)

Warning message:
In c(1, 2, 3) + c(1, 2, 3, 4)

longer object length 1s not a multiple of
shorter object length
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ifelse() function

ifelse (test, yes, no) returns a vector which is
created from selected elements from the vectors yes and
no: yes[1i] is selected if test[1i] istrueand no[i] is
selected if test [1i] is false

> 1felse(person.height > 1.7, "tall",

"small")
Can Cem Hande
"small" "tall" "small"
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Data vector operations

We can perform calculations with vectors just like ordinary
numbers

Element wise operations

> person.height”?2
Can Cem Hande

2.9584 3.0025 2.06244

Vector addition, e.g. persons have gained/lost weight

> person.weight + c(1.5, 1.75, -0.5)
Can Cem Hande

066.50 67.75 60.50
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Data vector operations

Operations on multiple vectors
> person.weight / person.height”2

Can Cem Hande
21.97134 21.55102 23.24341

The result of a vector calculation can be assigned to a new
data vector for further processing
> bmi <- person.weight / person.height”?2

> bmi

Can Cem Hande
21.97134 21.55102 23.24341
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Rounding of numbers
* Round to the specified number of decimal places with
function round
> round (bmi1, digits=1)
Can Cem Hande
22.0 21.6 23.2

* Alternative functions for rounding of numbers are ceiling,
floor, trunc, and signif
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Data vector operations

Often used functions that operates on vectors are mean,
length and sd

> bmi <- person.weight / person.height”?2

> mean (bmi)
(1] 23.31768

> length (bmi)
(1] 3

> sd (bmi)
(1] 2.294295
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Creating regular sequences

The from: to syntax is a simple way to generate a
sequence from from to to in steps of 1 or -1

> 1:5

(1] 1 2 3 4 5

> 11:15

(1] 11 12 13 14 15
> 3:0
(1] 3 2 1 O

> seq 1 100 <= 1:100
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Function seq

* seq function arguments

from starting value of the sequence
to end value of the sequence
by increment of the sequence

length.out desired length of the sequence
along.with take the length from the length of this argument

> seq (5, 10)
[1] 5 6 7 8 9 10

> seq (S5, 10, 2)
(1] 5 7 9
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Creating repeated values with function rep

* rep function arguments and default values

X vector of factor that is repeated
times = 1 number of times to repeat
length.out = NA  desired length of the result
each = 1 each element of x is repeated each times
> rep(l, 3)
(1] 1 1 1

> rep(l:4, 2)
(1] 1 2 3 4 1 2 3 4

> rep(l:4, each = 2)

(1] 1 1 2 2 3 3 4 4
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Matrix creation

In R, a matrix is a vector with two additional attributes, the
number of rows and number of columns

One of the ways to create a matrix is via the matrix
function to obtain a matrix from a given data vector with
nrow humber of rows and ncol number of columns

> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[,1] [, 2]
[1, ] 1 3
[2,] 2 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 17



Matrix column and row notation

> yv <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[[ 1] L 2j—> Notation for columns: [,1] means

[1,] 1 3 first column, [,2] second column,
[2,] 2 4 etc.
\%

Notation for rows: [1,] means firstrow, [2, ] second row,
etc.
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Matrix column and row access

We can access single columns and rows with the respective
column/row notation

> v <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[,1] [,2]
[1,] 1 3
[2, ] 2 4
> yl,1]
[1] 1 2
> yl2,]
(1] 2 4
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Matrix single element access

We can access single elements of the matrix by providing
the indices of row and column
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Matrix creation order

Storage of a matrix is in column-major order: first all of
column 1 is stored, then all of column 2, etc.

We can change the column-major order by providing the
additional argument byrow = TRUE for filling the matrix by
rows

> vy <- matrix(c(l,2,3,4), nrow=2, ncol=2,
byrow=TRUE)

>y

[,1] [, 2]
[1,] 1 2
[2,] 3 4
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Matrix row names and column names

* We can provide names for the rows and columns of a matrix

>y

[,11 [, 2]
[1,] 1 3
[2,] 2 4

> rownames (y) <- c("Rowl", "Row2")
> colnames (y) <- c("Coll", "Col2")

>y

Coll Col?Z2
Rowl 1 3
Row?2 2 4
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Matrix creation with cbind and rbind

We can “glue” vectors together, columnwise or rowwise,
using the cbind and rbind functions

> cbind(c(1,2), c(3,4))
[,1] [,2]

(1, ] 1 3

(2, ] 2 4

> rbind(c(1,2), c(3,4))
[,1] [,2]

(1, ] 1 2

(2, ] 3 4
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Matrix modification with cbind and rbind

Add a column to an existing matrix

> v <- matrix(c(l,2,3,4),nrow=2)

>y

[,11 [, 2]
[1,] 1 3
[2,] 2 4

>y

[,11 [,2] [,3]
[1,] 11 1 3
[2, ] 12 2 4
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Matrix recycling

The automatic lengthening of vectors also works with matrices
> 7z <— matrix(c(l:9),nrow=3)

> Z

[,11 [,2] [,3]
(1, ] 1 4 7
(2, ] 2 5 8
[ 3, ] 3 6 9
> cbind (10, z)

[,11 [,2] [,3] [,4]
(1, ] 10 1 4 7
(2, ] 10 2 5 8
[ 3, ] 10 3 6 9
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Matrix operations

Matrix transposition t (y)

* Element by element product v * v
Matrix multiplication v $*% v

* Matrix scalar multiplication 3 * vy

* Matrix addition v + v
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Matrix indexing

We can access more than a single column/row/element at
once

> 7z <— matrix(c(l1l:9),nrow=3)

> Z

[,11 [,2] [,3]
(1, ] 1 4 7
(2, ] 2 5 8
(3, ] 3 6 9

Select columns 2 and 3
> z[,c(2,3)]

[, 1] [,2]
(1, ] 4 7
(2, ] 0 8
[3,] 6 9

19™ October 2016 Assistant Professor Dr. Emre UGUR 27



Matrix indexing

Select first and second row
> z[c(1l,2),]

[, 1] [,2] [,3]
(1, ] 1 4 ]
(2, ] 2 5 8

" Select third column of first and second row
> z[c(1l,2),3]
(1] 7 8
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Matrix indexing

We use negative subscripts to exclude certain elements, e.qg.
request all rows except the second

> z[,-2]

[,1] [,2]
(1, ] 1 7
(2, ] 2 8
(3, ] 3 9
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Matrix indexing

We can assign new values to submatrices
> 7z

e ?

> z c(2:3)]] <- matrix(c(20,21,22,23),
Nrow= 2
>
[, 1] [,
(1, ] 1
(2, ] 2 21 23
[ 3, ] 3 6 9
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Matrix indexing

We can delete rows or columns by reassignment, e.g. keep
only first two rows and delete third row

> Z

[,11 [,2] [,3]
1, 1 1 ]
[ 2, 2 5 8
(3, ] 3 6 9

> Z

[,11 [,2] [,3]
[1, ] 1 4 '/
[2,] 2 5 8

19™ October 2016 Assistant Professor Dr. Emre UGUR 31



Matrix filtering

Similar to data vector filtering, the concept behind is to first
apply a Boolean evaluation function

For each single element, the Boolean evaluation function
returns TRUE in case of a positive evaluation and FALSE in
case of a negative evaluation

> z > 3

[,1] [,2] [,3]
(1, ] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE
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Matrix filtering

Similar to data vector filtering, we can perform evaluation
and filtering in one line

>z[[z >3]]
[1] 4 6 78 9

N
We provide the evaluation function directly in the square
brackets for selecting those elements that fulfill the
evaluation function
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Matrix filtering

* In contrast to data vector filtering, we can perform more
complex filtering tasks with matrices, e.g. obtain those rows
of matrix z having elements in the second column which are

at least equal to 5

> Z
[,1] [,2] [,3]
1, 1 4 7
2 [2 5 8]
3, 3 6 9
——
> zl[z[,2] >= 5,
[,1] [,2] [,3]
[1, ] 2 5 8
[2, ] 3 6 9
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Matrix function apply ()

An often used generic function in Ris apply ()

" apply () executes a user-specified function on each of the
rows or each of the columns of a matrix

apply (m,dimcode, £, fargs)
m IS the matrix

dimcode equal to 1 means that the function is applied to rows,
dimcode equal to 2 means that the function is applied to columns
f is the function to be applied

fargs is an optional set of arguments to be supplied to £
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Writing our own function

* We write a simple function that adds 1 to its input and
returns the result

>[Add0ne] <- function
|
“ v

v
Function Function Instructions that take the

name iInputs Inputs and use them to
compute other values.

The last computed value
IS returned by default.
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Writing our own function

* Let’s write another more sophisticated function that adds a
user-specified value to its first input

{x+Addend}

> Addvalue <- function|(x, Addend=1)

\V4
In addition to the first

input x we specify a
second input Addend
with default value 1.
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Using our own function with apply ()

First we apply Addvalue to the rows of z

> Z

[,1] [, 2] [,3]
(1, ] |1 4 7|
(2, ] 2 5 8
[ 3, ] 3 6 9
> apply(z,1,AddValue)

1] [,2) [,3]
(1, 2 3 4
[ 2, 5 6 /]
[ 3, ] _Eﬁ, 9 10

A\
Resulting vector when adding 1 to the first row
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Lists

* Lists can combine objects of different types

“ We create a list to represent the data from Joe
> jJoe <- list("Joe", 55000, T)

* An entire employee database might then be a list of lists
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Creating lists
“ Let's check our new list joe
> joe

[[1]]
[l] "Joe"

[1] TRUE

* We observe that the three components name, salary and
membership are indexed by [[1]1], [[2]]1,and [[31]]
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Creating lists

We better provide name tags for our components when
creating a list

> jJjoe <- list (name="Joe", salary=55000,
staff=T)

> joe
Sname

[l] "Joe"

Ssalary
[1] 55000

Sstaff
[1] TRUE
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List indexing

We can access list components in several different ways —
each of them is useful in different contexts

> joeS$salary
[1] 55000

> jJoe[["salary"]]
[1] 55000

> joe[[2]]
[1] 55000
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Adding list elements

New components can be added after a list is created

* We can add new components in different ways

> jJoe <- list (name="Joe", salary=55000,
staff=T)

> joeSage <- 39
> Joel[[5]] <= 1976

> jJoe[6:7] <- c¢(TRUE, TRUE)
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Deleting list elements

* We can delete a list component by setting it to NULL
> joeSsalary <- NULL

> jJoeSstaff <- NULL

* After deleting, the indices of subsequent elements
automatically move up

19™ October 2016 Assistant Professor Dr. Emre UGUR 44



Vectors as list components

Beside storing atomic entries like Joe or 55000 in a list, we
can have vectors as list components

> my.list <- list(vecl = c(1,2), vec2 =
c(3,4), vec3 = 5:7)

> my.list
Svecl
[1] 1 2

Svec?2
(1] 3 4

Svec?3
(1] 5 6 7
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Word list

Let’'s consider this sentence as our text example:
a text consists of a word and another word
and so on and so forth

For each word we need to obtain the location in the text:
al b
text 2
consists 3
of 4
word 6 9
and 7/ 10 13
another 8

so 11 14
on 12
forth 15
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Word list

Let's assume that we iterate through our text in a word by
word manner: a, text, consists, of, a,

Let's further assume that the current word in our iteration is
always stored in the variable word

Let’s further assume that we have a counter i which is
iIncreased by 1 for every word: the counter tells the current
position in the text
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Word list

Let’s start with initializing our word list
> word.list <- 1list ()

Our first word a is stored in the variable word
word <- "a"

Since it is our first word, our counter 1 has the value 1
> 1 <= 1

Now we add our current word a to our word list
> word.list[[word]] <- c(word.list|[[word]], 1)
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Word list

Let’'s check our word list after the first iteration
> word.list

Sa
[1] 1

* We interpret this intermediate result as word a has position 1

* We go on with a few other words
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Word list

When we check word.11ist again we obtain
> word.list

Sa
[1] 1 5

Stext
(1] 2

Sconsists
[1] 3

Sof
(1] 4
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Accessing list components

* If the components in a list do have tags, we can obtain them
via names ()

> names (joe)
[1] "name" "salary" "staff"

> names (word.list)
[1] "a" "text" llconSiStS" "Of"
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Sort word list alphabetically

We can write all three steps in one line
> word.list([sort (names (word.list)) ]

Sa
[1] 1 5

Sconsists
[1] 3

Sof
(1] 4

Stext
(1] 2
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Accessing list values

* We can obtain list values by using unlist ()
> unlist (joe)
name salary staff
"Joe"™ "55000" "TRUE"

> unlist (word.list)
al az text consists of

1 5 2 3 4

* We observe that in the first case we retrieve a vector of
character strings and in the second case a numeric vector

* The reason for the different result modes is that list
components are coerced to a common mode during unlist
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Applying functions to lists

* apply () executes a user-specified function on each of the
rows or each of the columns of a matrix, e.g.
apply(z,1,mean) compute the row means of matrix z

" The function 1apply () works like the applyv () function: the
specified function is applied on each component of a list and
another list is returned

lapply (1, £, fargs)
1 is the list
f is the function
fargs is an optional set of arguments for function £
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Applying functions to lists

Example: count number of words from our word.list
> lapply(word.list, length)

Sa

[1] 2

Stext
[1] 1

Sconsists
[1] 1

Sof
[1] 1
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Applying functions to lists

sapply () works like lapply () butinstead of a list it
returns a vector or a matrix

Previous example with sapply ()
> sapply(word.list, length)

a text consists of
2 1 1 1
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Sort word list by word frequency

We can write all three steps in one line

> word.list[order (sapply (word.list, length)) ]
Stext

[1] 2

Sconsists
[1] 3

Sof
(1] 4

Sa
[1] 1 5
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Data frame

A data frame is like a matrix, with a two-dimensional rows-
and columns structure

Each column may have a different mode, e.g. one column
may consist of numbers, and another column might have
character strings or Boolean entries

On a technical level, a data frame is a list: each component
of that list consists of equal-length vectors
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Creating data frames

One way to create a data frame is to combine available
equal-length vectors

> person <- data.frame (height=person.height,
welght=person.weight, member=person.member,
j_l’litial:C("C", "C"’ "H"))

> person

height weight member initial
Can 1.70 65 TRUE C
Cem 1.75 66 TRUE C
Hande 1.62 61 FALSE H

We observe that the columns retain their original mode and
that the vector element names are used to label the rows of the
data frame
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Accessing data frames

Since a data frame is technically a list, we can access it via
component index values or component names

> person|[[1]]

(1] 1.70 1.75 1.62

> person[["height"]]
[1] 1.70 1.75 1.62

> person$height
(1] 1.70 1.75 1.62
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Accessing data frames

We can access it in a matrix-like fashion as well, e.g. view
column 1

> person|, 1]
[1] 1.70 1.75 1.62

Element in third row, second column
> personl|[3, 2]
[1] ol
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Data frame indexing

Since data frames can be accessed in a matrix-like fashion,
we can select rows and columns in a matrix-like way

First and second row
> person[c(l,2),]

height weight member
Can 1.70 65 TRUE
Cem 1.75 00 TRUE

Third column of first and second row
> person[c(l,2),3]
[1] TRUE TRUE
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Data frame indexing

* Like for matrices, we can use negative indices to exclude
rows or columns
> person[—-3, ]
height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE

> personl, —3]
height weight

Can 1.70 05
Cem 1.75 00
Hande 1.02 ol
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Data frame filtering

Similar to data vector and matrix filtering, the concept behind
is to apply a Boolean evaluation function

Example: retrieve all observations for which person height is
at least 1.7

> person|[personSheight >= 1.7, ]
height weight member

Can 1.70 65 TRUE

Cem 1.75 66 TRUE
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Data frame modifications

“ Like for matrices, we can use rbind () and cbind () to
add new rows or columns to a data frame

* Usually, we add a new row in form of a list
> person <- rbind(person, Lale=list(l.76, 64,
T))

> person
height weight member

Can 1.70 65 TRUE
Cem 1.75 00 TRUE
Hande 1.62 ol TRUE
Lale 1.76 604 TRUE
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Data frame modifications

* We use cbind () for adding a new column

> person <- cbind(person, initial=c("C", "C",
"H"’ "L") )

> person
height weight member initial

Can 1.70 65 TRUE C
Cem 1.75 006 TRUE C
Hande 1.62 ol TRUE H
Lale 1.76 604 TRUE L
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Data frame modifications

As an alternative to cbind () we can use the $ notation

> person$BMI <- person$weight /
personSheight”?2

> person

height weight member initial BMI
Can 1.70 65 TRUE C 22.49135
Cem 1.75 66 TRUE C 21.55102
Hande 1.62 6l TRUE H 23.24341
Lale 1.76 04 TRUE L 20.606116
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Data import with read. table

The function read. table is the most convenient way to read
In a rectangular grid of data from a text file

> help(read.table)

read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE,

fill = !blank.lines.skip,

strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",

allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors (),
fileEncoding = "", encoding = "unknown", text)
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Data import

Now, we import the data into the data frame person.data
by using the function read.table

> person.data <- read.table (header=TRUE,
"height weight data.txt", sep=",")

> person.data
Name Height Weight

1 Can 1.70 65
2 Cem 1.75 606
3 Hande 1.62 6l
4 Lale 1.76 04
5 Arda 1.78 63
6 Bilgin 1.77 84
I Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
10 Haluk 1.71 81
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Data modifications

We add a new column BMI like we did before
> person.data$BMI <- person.data$SWeight /
person.dataSHeight”2

> person.data

Name Height Weight BMTI
1 Can 1.70 65 22.49135
2 Cem 1.75 66 21.55102
3 Hande 1.62 6l 23.24341
4 Lale 1.76 64 20.66116
5 Arda 1.78 63 19.88385
© Bilgin 1.77 84 26.81222
I Cem 1.69 75 26.25958
8 Ozlem 1.75 65 21.22449
9 Alil 1.73 75 25.05931
10 Haluk 1.71 81 27.70083
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Data modifications

We can change the values of a column by reassigning the

column with the new values, e.g. rounding BMI
> person.data$BMI <- round (person.data$BMI, 2)

> person.data
Name Height Weight BMI

1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 6l 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
10 Haluk 1.71 81 27.70
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Data modifications

When creating new columns, we can make use of functions
to compute the values of a new column

Let’s recapitulate the ifelse () function

ifelse (test, vyes, no) returns a vector which is
created from selected elements from the vectors yes and
no: yes[i] is selected if test[1i] istrueand no[1i] IS
selected if test [i] is false

> 1felse(person.height > 1.7, "tall",
"small")

Can Cem Hande
"small" "tall" "small"
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Data frame modifications

Let's use i felse () to create a new column which indicates
whether BMI is above 22.5

> person.dataSabove22.5 <- ifelse(person.data$BMI>22.5, T ,F)
> person.data
Name Height Weight BMI abovel22.5

1 Can 1.70 65 22.49 FALSE
2 Cem 1.75 66 21.55 FALSE
3 Hande 1.62 6l 23.24 TRUE
4 Lale 1.76 64 20.66 FALSE
5 Arda 1.78 63 19.88 FALSE
6 Bilgin 1.77 84 26.81 TRUE
7 Cem 1.69 75 26.26 TRUE
8 Ozlem 1.75 65 21.22 FALSE
9 Ali 1.73 75 25.06 TRUE
10 Haluk 1.71 81 27.70 TRUE
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Scatter Plot

Beside numeric summary statistics, a convenient way for data
exploration is plotting

R provides us many powerful tools for plotting
We will learn more about plotting later

For now, we create a simple scatter plot by plotting height on
the x-axis and weight on the y-axis
> plot (person.data$Height, person.data$Weight)
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Scatter Plot

person.data$Weight
70 75 80

65

19™ October 2016

I
1.65 1.70
person.data$Height

Assistant Professor Dr. Emre UGUR

1.75

75



Merging data frames

We merge the two data frames using the merge() function
> merge (person.data, person.data?)
Name Height Weight BMI aboveZ22.5 Initial Member

1 Can 1.70 65 22.49 FALSE C T
2 Cem 1.69 75 26.2606 TRUE C T
3 Cem 1.75 oo 21.55 FALSE C T
4 Hande 1.62 6l 23.24 TRUE H F
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Short Summary Vectors

Integer mode
> person.weight <- c (65, 66, ©61)

Numeric (floating-point number)
> person.height <- c¢(1.70, 1.75, 1.62)

Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- ¢ (FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+21, -1+01)
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Short Summary Vectors

Assign names to the elements of a data vector

> person.height <- c¢c(Can=1.70, Cem=1.75,
Hande=1.62)

* Indexing
> person.height[c(T,F,T)]
Can Hande
1.70 1.62

> person.heightc (1, 3)]
Can Hande
1.70 1.62

> person.height[-1]
Cem Hande

1.75 1.62
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Short Summary Vectors

Filtering
> person.height[person.height > 1.65]

Can Cem
1.72 1.75

* Recycling
> c(1l, 2, 3) + c(1, 2, 3, 4)
(1] 2 4 6 5

* Vector operations
> person.weight / person.height”?2

Can Cem Hande
21.97134 21.55102 23.24341

19™ October 2016 Assistant Professor Dr. Emre UGUR 79



Short Summary Matrices

Creation
> v <- matrix(c(l,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

* Matrix operations
Transposition t (vy)
Element by element product y * vy
Matrix multiplication y $*% vy
Matrix scalar multiplication 3 * vy
Matrix addition y + vy

* Indexing, e.g. select first and second row
> z[c(1l,2),]

19™ October 2016 Assistant Professor Dr. Emre UGUR 80



Short Summary Matrices

Assign new values to submatrices
> z[c(l:2), c(2:3)] <= matrix(c(20,21,22,23), nrow=2)

Filtering, e.g. obtain those rows of matrix z having elements
In the second column which are at least equal to 5
> z[z[,2] >= 5,]
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Short Summary Lists
* Creation

> joe <- list (name="Joe", salary=55000,
staff=T)

* Indexing
> joeS$salary
> jJoel[["salary"]]
> jJoe[[2]]

* Vectors as list components
> my.list <- list(vecl = c(1,2), vec2 =
c(3,4), vec3 = 5:7)
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Short Summary Data frames

Creation
> person <- data.frame (height=person.height,
welght=person.weight)

Indexing

> person|[1]]
person|[ ["height"]]
personS$Sheight
person[c(l,2),]
person[-3, ]

vV V V V

* Filtering
> person|[personSheight >= 1.7, ]
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Short Summary Data frames

* Data import
> person.data <- read.table (header=TRUE,

"height weight data.txt", sep=",")

Data modifications
> person.data$BMI <- person.dataSWeight /
person.dataSHeight”"?2

Summary
> summary (person.data)

* Merging

> merge (person.data, person.data2?)
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