Introduction to Computing for Economics and
Management

Midterm Summary

Data vectors

The fundamental data type in R is the vector

Data vectors are created with the construct ¢
> person.height <- c¢(1.70, 1.75, 1.62)

> person.height <- c(person.height, 1.81)

Vector elements must all have the same mode

Available modes: integer, numeric, character, Boolean,
complex

19™ October 2016 Assistant Professor Dr. Emre UGUR 2

Data vectors

Missing values are denoted with NA

We can assign names to the elements of a data vector to
make the vector more readable

> person.height <- c(Can=1.70, Cem=1.75,
Hande=1.62)

> person.height
Can Cem Hande
1.70 1.75 1.62

19™ October 2016 Assistant Professor Dr. Emre UGUR 3

Data vector indexing

We can access a single element of a vector by providing the
index of the element in square brackets

> person.height[1]

Can

1.7

* We can select a subvector by providing a Boolean index
vector
> person.height[c(T,F,T)]
Can Hande
1.70 1.62

19™ October 2016 Assistant Professor Dr. Emre UGUR 4

Data vector indexing

We can specify the element indices directly
> person.heightc (1, 3)]

Can Hande

1.70 1.62

* We exclude elements with negative indices
> person.heightc (-1, -3)]
Cem
1.75

* We can change the values of the selected elements
person.height[1l] <- 1.72

19™ October 2016 Assistant Professor Dr. Emre UGUR 5

Data vector filtering

The idea behind filtering is to apply a Boolean evaluation
function to each element of the vector
> person.height > 1.65
Can Cem Hande
TRUE TRUE FALSE

* We use the results of the evaluation function for the filtering

> person.height[person.height > 1.65]
Can Cem
1.72 1.75

19™ October 2016 Assistant Professor Dr. Emre UGUR 6

Data vector sorting

We use the function sort for sorting a vector
> sort (person.height)

Hande Can Cem
l.02 1.70 1.75

We can obtain a sorting in descending order
> sort (person.height, decreasing = TRUE)

Cem Can Hande
1.75 1.70 1.62

We can sort a vector according to the values of some other
vector

> person.welght [order (person.height)]

Hande Can Cem

o0l 65 60

19™ October 2016 Assistant Professor Dr. Emre UGUR

Vector recycling

When applying an operation to two vectors which requires
them to be the same length, the shorter one will repeated
until it is long enough to match the longer one

> c(1, 2, 3) + c(1, 2, 3, 4)

Warning message:
In c(1, 2, 3) + c(1, 2, 3, 4)

longer object length 1s not a multiple of
shorter object length

19™ October 2016 Assistant Professor Dr. Emre UGUR

ifelse() function

ifelse (test, yes, no) returns a vector which is
created from selected elements from the vectors yes and
no: yes[1i] is selected if test[1i] istrueand no[i] is
selected if test [1i] is false

> 1felse(person.height > 1.7, "tall",

"small")
Can Cem Hande
"small" "tall" "small"

19™ October 2016 Assistant Professor Dr. Emre UGUR 9

Data vector operations

We can perform calculations with vectors just like ordinary
numbers

Element wise operations

> person.height”?2
Can Cem Hande

2.9584 3.0025 2.06244

Vector addition, e.g. persons have gained/lost weight

> person.weight + c(1.5, 1.75, -0.5)
Can Cem Hande

066.50 67.75 60.50

19™ October 2016 Assistant Professor Dr. Emre UGUR 10

Data vector operations

Operations on multiple vectors
> person.weight / person.height”2

Can Cem Hande
21.97134 21.55102 23.24341

The result of a vector calculation can be assigned to a new
data vector for further processing
> bmi <- person.weight / person.height”?2

> bmi

Can Cem Hande
21.97134 21.55102 23.24341

19™ October 2016 Assistant Professor Dr. Emre UGUR 11

Rounding of numbers
* Round to the specified number of decimal places with
function round
> round (bmi1, digits=1)
Can Cem Hande
22.0 21.6 23.2

* Alternative functions for rounding of numbers are ceiling,
floor, trunc, and signif

19™ October 2016 Assistant Professor Dr. Emre UGUR 12

Data vector operations

Often used functions that operates on vectors are mean,
length and sd

> bmi <- person.weight / person.height”?2

> mean (bmi)
(1] 23.31768

> length (bmi)
(1] 3

> sd (bmi)
(1] 2.294295

19™ October 2016 Assistant Professor Dr. Emre UGUR 13

Creating regular sequences

The from: to syntax is a simple way to generate a
sequence from from to to in steps of 1 or -1

> 1:5

(1] 1 2 3 4 5

> 11:15

(1] 11 12 13 14 15
> 3:0
(1] 3 2 1 O

> seq 1 100 <= 1:100

19™ October 2016 Assistant Professor Dr. Emre UGUR 14

Function seq

* seq function arguments

from starting value of the sequence
to end value of the sequence
by increment of the sequence

length.out desired length of the sequence
along.with take the length from the length of this argument

> seq (5, 10)
[1] 5 6 7 8 9 10

> seq (S5, 10, 2)
(1] 5 7 9

19™ October 2016 Assistant Professor Dr. Emre UGUR 15

Creating repeated values with function rep

* rep function arguments and default values

X vector of factor that is repeated
times = 1 number of times to repeat
length.out = NA desired length of the result
each = 1 each element of x is repeated each times
> rep(l, 3)
(1] 1 1 1

> rep(l:4, 2)
(1] 1 2 3 4 1 2 3 4

> rep(l:4, each = 2)

(1] 1 1 2 2 3 3 4 4
19™ October 2016 Assistant Professor Dr. Emre UGUR 16

Matrix creation

In R, a matrix is a vector with two additional attributes, the
number of rows and number of columns

One of the ways to create a matrix is via the matrix
function to obtain a matrix from a given data vector with
nrow humber of rows and ncol number of columns

> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[,1] [, 2]
[1,] 1 3
[2,] 2 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 17

Matrix column and row notation

> yv <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[[1] L 2j—> Notation for columns: [,1] means

[1,] 1 3 first column, [,2] second column,
[2,] 2 4 etc.
\%

Notation for rows: [1,] means firstrow, [2,] second row,
etc.

19™ October 2016 Assistant Professor Dr. Emre UGUR 18

Matrix column and row access

We can access single columns and rows with the respective
column/row notation

> v <- matrix(c(l,2,3,4),nrow=2,ncol=2)
>y

[,1] [,2]
[1,] 1 3
[2,] 2 4
> yl,1]
[1] 1 2
> yl2,]
(1] 2 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 19

Matrix single element access

We can access single elements of the matrix by providing
the indices of row and column

19™ October 2016 Assistant Professor Dr. Emre UGUR 20

Matrix creation order

Storage of a matrix is in column-major order: first all of
column 1 is stored, then all of column 2, etc.

We can change the column-major order by providing the
additional argument byrow = TRUE for filling the matrix by
rows

> vy <- matrix(c(l,2,3,4), nrow=2, ncol=2,
byrow=TRUE)

>y

[,1] [, 2]
[1,] 1 2
[2,] 3 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 21

Matrix row names and column names

* We can provide names for the rows and columns of a matrix

>y

[,11 [, 2]
[1,] 1 3
[2,] 2 4

> rownames (y) <- c("Rowl", "Row2")
> colnames (y) <- c("Coll", "Col2")

>y

Coll Col?Z2
Rowl 1 3
Row?2 2 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 22

Matrix creation with cbind and rbind

We can “glue” vectors together, columnwise or rowwise,
using the cbind and rbind functions

> cbind(c(1,2), c(3,4))
[,1] [,2]

(1,] 1 3

(2,] 2 4

> rbind(c(1,2), c(3,4))
[,1] [,2]

(1,] 1 2

(2,] 3 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 23

Matrix modification with cbind and rbind

Add a column to an existing matrix

> v <- matrix(c(l,2,3,4),nrow=2)

>y

[,11 [, 2]
[1,] 1 3
[2,] 2 4

>y

[,11 [,2] [,3]
[1,] 11 1 3
[2,] 12 2 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 24

Matrix recycling

The automatic lengthening of vectors also works with matrices
> 7z <— matrix(c(l:9),nrow=3)

> Z

[,11 [,2] [,3]
(1,] 1 4 7
(2,] 2 5 8
[3,] 3 6 9
> cbind (10, z)

[,11 [,2] [,3] [,4]
(1,] 10 1 4 7
(2,] 10 2 5 8
[3,] 10 3 6 9

19™ October 2016 Assistant Professor Dr. Emre UGUR 25

Matrix operations

Matrix transposition t (y)

* Element by element product v * v
Matrix multiplication v $*% v

* Matrix scalar multiplication 3 * vy

* Matrix addition v + v

19™ October 2016 Assistant Professor Dr. Emre UGUR 26

Matrix indexing

We can access more than a single column/row/element at
once

> 7z <— matrix(c(l1l:9),nrow=3)

> Z

[,11 [,2] [,3]
(1,] 1 4 7
(2,] 2 5 8
(3,] 3 6 9

Select columns 2 and 3
> z[,c(2,3)]

[, 1] [,2]
(1,] 4 7
(2,] 0 8
[3,] 6 9

19™ October 2016 Assistant Professor Dr. Emre UGUR 27

Matrix indexing

Select first and second row
> z[c(1l,2),]

[, 1] [,2] [,3]
(1,] 1 4]
(2,] 2 5 8

" Select third column of first and second row
> z[c(1l,2),3]
(1] 7 8

19™ October 2016 Assistant Professor Dr. Emre UGUR 28

Matrix indexing

We use negative subscripts to exclude certain elements, e.qg.
request all rows except the second

> z[,-2]

[,1] [,2]
(1,] 1 7
(2,] 2 8
(3,] 3 9

19™ October 2016 Assistant Professor Dr. Emre UGUR 29

Matrix indexing

We can assign new values to submatrices
> 7z

e ?

> z c(2:3)]] <- matrix(c(20,21,22,23),
Nrow= 2
>
[, 1] [,
(1,] 1
(2,] 2 21 23
[3,] 3 6 9

19™ October 2016 Assistant Professor Dr. Emre UGUR 30

Matrix indexing

We can delete rows or columns by reassignment, e.g. keep
only first two rows and delete third row

> Z

[,11 [,2] [,3]
1, 1 1]
[2, 2 5 8
(3,] 3 6 9

> Z

[,11 [,2] [,3]
[1,] 1 4 '/
[2,] 2 5 8

19™ October 2016 Assistant Professor Dr. Emre UGUR 31

Matrix filtering

Similar to data vector filtering, the concept behind is to first
apply a Boolean evaluation function

For each single element, the Boolean evaluation function
returns TRUE in case of a positive evaluation and FALSE in
case of a negative evaluation

> z > 3

[,1] [,2] [,3]
(1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

19™ October 2016 Assistant Professor Dr. Emre UGUR 32

Matrix filtering

Similar to data vector filtering, we can perform evaluation
and filtering in one line

>z[[z >3]]
[1] 4 6 78 9

N
We provide the evaluation function directly in the square
brackets for selecting those elements that fulfill the
evaluation function

19™ October 2016 Assistant Professor Dr. Emre UGUR 33

Matrix filtering

* In contrast to data vector filtering, we can perform more
complex filtering tasks with matrices, e.g. obtain those rows
of matrix z having elements in the second column which are

at least equal to 5

> Z
[,1] [,2] [,3]
1, 1 4 7
2 [2 5 8]
3, 3 6 9
——
> zl[z[,2] >= 5,
[,1] [,2] [,3]
[1,] 2 5 8
[2,] 3 6 9

19™ October 2016 Assistant Professor Dr. Emre UGUR

34

Matrix function apply ()

An often used generic function in Ris apply ()

" apply () executes a user-specified function on each of the
rows or each of the columns of a matrix

apply (m,dimcode, £, fargs)
m IS the matrix

dimcode equal to 1 means that the function is applied to rows,
dimcode equal to 2 means that the function is applied to columns
f is the function to be applied

fargs is an optional set of arguments to be supplied to £

19™ October 2016 Assistant Professor Dr. Emre UGUR 35

Writing our own function

* We write a simple function that adds 1 to its input and
returns the result

>[Add0ne] <- function
|
“ v

v
Function Function Instructions that take the

name iInputs Inputs and use them to
compute other values.

The last computed value
IS returned by default.

19™ October 2016 Assistant Professor Dr. Emre UGUR 36

Writing our own function

* Let’s write another more sophisticated function that adds a
user-specified value to its first input

{x+Addend}

> Addvalue <- function|(x, Addend=1)

\V4
In addition to the first

input x we specify a
second input Addend
with default value 1.

19™ October 2016 Assistant Professor Dr. Emre UGUR 37

Using our own function with apply ()

First we apply Addvalue to the rows of z

> Z

[,1] [, 2] [,3]
(1,] |1 4 7|
(2,] 2 5 8
[3,] 3 6 9
> apply(z,1,AddValue)

1] [,2) [,3]
(1, 2 3 4
[2, 5 6 /]
[3,] _Eﬁ, 9 10

A\
Resulting vector when adding 1 to the first row

19™ October 2016 Assistant Professor Dr. Emre UGUR 38

Lists

* Lists can combine objects of different types

“ We create a list to represent the data from Joe
> jJoe <- list("Joe", 55000, T)

* An entire employee database might then be a list of lists

19™ October 2016 Assistant Professor Dr. Emre UGUR 39

Creating lists
“ Let's check our new list joe
> joe

[[1]]
[l] "Joe"

[1] TRUE

* We observe that the three components name, salary and
membership are indexed by [[1]1], [[2]]1,and [[31]]

19™ October 2016 Assistant Professor Dr. Emre UGUR 40

Creating lists

We better provide name tags for our components when
creating a list

> jJjoe <- list (name="Joe", salary=55000,
staff=T)

> joe
Sname

[l] "Joe"

Ssalary
[1] 55000

Sstaff
[1] TRUE

19™ October 2016 Assistant Professor Dr. Emre UGUR 41

List indexing

We can access list components in several different ways —
each of them is useful in different contexts

> joeS$salary
[1] 55000

> jJoe[["salary"]]
[1] 55000

> joe[[2]]
[1] 55000

19™ October 2016 Assistant Professor Dr. Emre UGUR 42

Adding list elements

New components can be added after a list is created

* We can add new components in different ways

> jJoe <- list (name="Joe", salary=55000,
staff=T)

> joeSage <- 39
> Joel[[5]] <= 1976

> jJoe[6:7] <- c¢(TRUE, TRUE)

19™ October 2016 Assistant Professor Dr. Emre UGUR

43

Deleting list elements

* We can delete a list component by setting it to NULL
> joeSsalary <- NULL

> jJoeSstaff <- NULL

* After deleting, the indices of subsequent elements
automatically move up

19™ October 2016 Assistant Professor Dr. Emre UGUR 44

Vectors as list components

Beside storing atomic entries like Joe or 55000 in a list, we
can have vectors as list components

> my.list <- list(vecl = c(1,2), vec2 =
c(3,4), vec3 = 5:7)

> my.list
Svecl
[1] 1 2

Svec?2
(1] 3 4

Svec?3
(1] 5 6 7

19™ October 2016 Assistant Professor Dr. Emre UGUR 45

Word list

Let’'s consider this sentence as our text example:
a text consists of a word and another word
and so on and so forth

For each word we need to obtain the location in the text:
al b
text 2
consists 3
of 4
word 6 9
and 7/ 10 13
another 8

so 11 14
on 12
forth 15

19™ October 2016 Assistant Professor Dr. Emre UGUR 46

Word list

Let's assume that we iterate through our text in a word by
word manner: a, text, consists, of, a,

Let's further assume that the current word in our iteration is
always stored in the variable word

Let’s further assume that we have a counter i which is
iIncreased by 1 for every word: the counter tells the current
position in the text

19™ October 2016 Assistant Professor Dr. Emre UGUR 47

Word list

Let’s start with initializing our word list
> word.list <- 1list ()

Our first word a is stored in the variable word
word <- "a"

Since it is our first word, our counter 1 has the value 1
> 1 <= 1

Now we add our current word a to our word list
> word.list[[word]] <- c(word.list|[[word]], 1)

19™ October 2016 Assistant Professor Dr. Emre UGUR 48

Word list

Let’'s check our word list after the first iteration
> word.list

Sa
[1] 1

* We interpret this intermediate result as word a has position 1

* We go on with a few other words

19™ October 2016 Assistant Professor Dr. Emre UGUR 49

Word list

When we check word.11ist again we obtain
> word.list

Sa
[1] 1 5

Stext
(1] 2

Sconsists
[1] 3

Sof
(1] 4

19™ October 2016 Assistant Professor Dr. Emre UGUR 50

Accessing list components

* If the components in a list do have tags, we can obtain them
via names ()

> names (joe)
[1] "name" "salary" "staff"

> names (word.list)
[1] "a" "text" llconSiStS" "Of"

19™ October 2016 Assistant Professor Dr. Emre UGUR 51

Sort word list alphabetically

We can write all three steps in one line
> word.list([sort (names (word.list))]

Sa
[1] 1 5

Sconsists
[1] 3

Sof
(1] 4

Stext
(1] 2

19™ October 2016 Assistant Professor Dr. Emre UGUR 52

Accessing list values

* We can obtain list values by using unlist ()
> unlist (joe)
name salary staff
"Joe"™ "55000" "TRUE"

> unlist (word.list)
al az text consists of

1 5 2 3 4

* We observe that in the first case we retrieve a vector of
character strings and in the second case a numeric vector

* The reason for the different result modes is that list
components are coerced to a common mode during unlist

19™ October 2016 Assistant Professor Dr. Emre UGUR 53

Applying functions to lists

* apply () executes a user-specified function on each of the
rows or each of the columns of a matrix, e.g.
apply(z,1,mean) compute the row means of matrix z

" The function 1apply () works like the applyv () function: the
specified function is applied on each component of a list and
another list is returned

lapply (1, £, fargs)
1 is the list
f is the function
fargs is an optional set of arguments for function £

19™ October 2016 Assistant Professor Dr. Emre UGUR 54

Applying functions to lists

Example: count number of words from our word.list
> lapply(word.list, length)

Sa

[1] 2

Stext
[1] 1

Sconsists
[1] 1

Sof
[1] 1

19™ October 2016 Assistant Professor Dr. Emre UGUR 55

Applying functions to lists

sapply () works like lapply () butinstead of a list it
returns a vector or a matrix

Previous example with sapply ()
> sapply(word.list, length)

a text consists of
2 1 1 1

19™ October 2016 Assistant Professor Dr. Emre UGUR 56

Sort word list by word frequency

We can write all three steps in one line

> word.list[order (sapply (word.list, length))]
Stext

[1] 2

Sconsists
[1] 3

Sof
(1] 4

Sa
[1] 1 5

19™ October 2016 Assistant Professor Dr. Emre UGUR 57

Data frame

A data frame is like a matrix, with a two-dimensional rows-
and columns structure

Each column may have a different mode, e.g. one column
may consist of numbers, and another column might have
character strings or Boolean entries

On a technical level, a data frame is a list: each component
of that list consists of equal-length vectors

19™ October 2016 Assistant Professor Dr. Emre UGUR 58

Creating data frames

One way to create a data frame is to combine available
equal-length vectors

> person <- data.frame (height=person.height,
welght=person.weight, member=person.member,
j_l’litial:C("C", "C"’ "H"))

> person

height weight member initial
Can 1.70 65 TRUE C
Cem 1.75 66 TRUE C
Hande 1.62 61 FALSE H

We observe that the columns retain their original mode and
that the vector element names are used to label the rows of the
data frame

19™ October 2016 Assistant Professor Dr. Emre UGUR 59

Accessing data frames

Since a data frame is technically a list, we can access it via
component index values or component names

> person|[[1]]

(1] 1.70 1.75 1.62

> person[["height"]]
[1] 1.70 1.75 1.62

> person$height
(1] 1.70 1.75 1.62

19™ October 2016 Assistant Professor Dr. Emre UGUR 60

Accessing data frames

We can access it in a matrix-like fashion as well, e.g. view
column 1

> person|, 1]
[1] 1.70 1.75 1.62

Element in third row, second column
> personl|[3, 2]
[1] ol

19™ October 2016 Assistant Professor Dr. Emre UGUR 61

Data frame indexing

Since data frames can be accessed in a matrix-like fashion,
we can select rows and columns in a matrix-like way

First and second row
> person[c(l,2),]

height weight member
Can 1.70 65 TRUE
Cem 1.75 00 TRUE

Third column of first and second row
> person[c(l,2),3]
[1] TRUE TRUE

19™ October 2016 Assistant Professor Dr. Emre UGUR 62

Data frame indexing

* Like for matrices, we can use negative indices to exclude
rows or columns
> person[—-3,]
height weight member
Can 1.70 65 TRUE
Cem 1.75 66 TRUE

> personl, —3]
height weight

Can 1.70 05
Cem 1.75 00
Hande 1.02 ol

19™ October 2016 Assistant Professor Dr. Emre UGUR 63

Data frame filtering

Similar to data vector and matrix filtering, the concept behind
is to apply a Boolean evaluation function

Example: retrieve all observations for which person height is
at least 1.7

> person|[personSheight >= 1.7,]
height weight member

Can 1.70 65 TRUE

Cem 1.75 66 TRUE

19™ October 2016 Assistant Professor Dr. Emre UGUR 64

Data frame modifications

“ Like for matrices, we can use rbind () and cbind () to
add new rows or columns to a data frame

* Usually, we add a new row in form of a list
> person <- rbind(person, Lale=list(l.76, 64,
T))

> person
height weight member

Can 1.70 65 TRUE
Cem 1.75 00 TRUE
Hande 1.62 ol TRUE
Lale 1.76 604 TRUE

19™ October 2016 Assistant Professor Dr. Emre UGUR 65

Data frame modifications

* We use cbind () for adding a new column

> person <- cbind(person, initial=c("C", "C",
"H"’ "L"))

> person
height weight member initial

Can 1.70 65 TRUE C
Cem 1.75 006 TRUE C
Hande 1.62 ol TRUE H
Lale 1.76 604 TRUE L

19™ October 2016 Assistant Professor Dr. Emre UGUR 66

Data frame modifications

As an alternative to cbind () we can use the $ notation

> person$BMI <- person$weight /
personSheight”?2

> person

height weight member initial BMI
Can 1.70 65 TRUE C 22.49135
Cem 1.75 66 TRUE C 21.55102
Hande 1.62 6l TRUE H 23.24341
Lale 1.76 04 TRUE L 20.606116

19™ October 2016 Assistant Professor Dr. Emre UGUR 67

Data import with read. table

The function read. table is the most convenient way to read
In a rectangular grid of data from a text file

> help(read.table)

read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE,

fill = !blank.lines.skip,

strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",

allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors (),
fileEncoding = "", encoding = "unknown", text)

19™ October 2016 Assistant Professor Dr. Emre UGUR 68

Data import

Now, we import the data into the data frame person.data
by using the function read.table

> person.data <- read.table (header=TRUE,
"height weight data.txt", sep=",")

> person.data
Name Height Weight

1 Can 1.70 65
2 Cem 1.75 606
3 Hande 1.62 6l
4 Lale 1.76 04
5 Arda 1.78 63
6 Bilgin 1.77 84
I Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
10 Haluk 1.71 81

19™ October 2016 Assistant Professor Dr. Emre UGUR 69

Data modifications

We add a new column BMI like we did before
> person.data$BMI <- person.data$SWeight /
person.dataSHeight”2

> person.data

Name Height Weight BMTI
1 Can 1.70 65 22.49135
2 Cem 1.75 66 21.55102
3 Hande 1.62 6l 23.24341
4 Lale 1.76 64 20.66116
5 Arda 1.78 63 19.88385
© Bilgin 1.77 84 26.81222
I Cem 1.69 75 26.25958
8 Ozlem 1.75 65 21.22449
9 Alil 1.73 75 25.05931
10 Haluk 1.71 81 27.70083

19™ October 2016 Assistant Professor Dr. Emre UGUR 70

Data modifications

We can change the values of a column by reassigning the

column with the new values, e.g. rounding BMI
> person.data$BMI <- round (person.data$BMI, 2)

> person.data
Name Height Weight BMI

1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 6l 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
10 Haluk 1.71 81 27.70

19™ October 2016 Assistant Professor Dr. Emre UGUR 71

Data modifications

When creating new columns, we can make use of functions
to compute the values of a new column

Let’s recapitulate the ifelse () function

ifelse (test, vyes, no) returns a vector which is
created from selected elements from the vectors yes and
no: yes[i] is selected if test[1i] istrueand no[1i] IS
selected if test [i] is false

> 1felse(person.height > 1.7, "tall",
"small")

Can Cem Hande
"small" "tall" "small"

19™ October 2016 Assistant Professor Dr. Emre UGUR 72

Data frame modifications

Let's use i felse () to create a new column which indicates
whether BMI is above 22.5

> person.dataSabove22.5 <- ifelse(person.data$BMI>22.5, T ,F)
> person.data
Name Height Weight BMI abovel22.5

1 Can 1.70 65 22.49 FALSE
2 Cem 1.75 66 21.55 FALSE
3 Hande 1.62 6l 23.24 TRUE
4 Lale 1.76 64 20.66 FALSE
5 Arda 1.78 63 19.88 FALSE
6 Bilgin 1.77 84 26.81 TRUE
7 Cem 1.69 75 26.26 TRUE
8 Ozlem 1.75 65 21.22 FALSE
9 Ali 1.73 75 25.06 TRUE
10 Haluk 1.71 81 27.70 TRUE

19™ October 2016 Assistant Professor Dr. Emre UGUR 73

Scatter Plot

Beside numeric summary statistics, a convenient way for data
exploration is plotting

R provides us many powerful tools for plotting
We will learn more about plotting later

For now, we create a simple scatter plot by plotting height on
the x-axis and weight on the y-axis
> plot (person.data$Height, person.data$Weight)

19™ October 2016 Assistant Professor Dr. Emre UGUR 74

Scatter Plot

person.data$Weight
70 75 80

65

19™ October 2016

I
1.65 1.70
person.data$Height

Assistant Professor Dr. Emre UGUR

1.75

75

Merging data frames

We merge the two data frames using the merge() function
> merge (person.data, person.data?)
Name Height Weight BMI aboveZ22.5 Initial Member

1 Can 1.70 65 22.49 FALSE C T
2 Cem 1.69 75 26.2606 TRUE C T
3 Cem 1.75 oo 21.55 FALSE C T
4 Hande 1.62 6l 23.24 TRUE H F

19™ October 2016 Assistant Professor Dr. Emre UGUR 76

Short Summary Vectors

Integer mode
> person.weight <- c (65, 66, ©61)

Numeric (floating-point number)
> person.height <- c¢(1.70, 1.75, 1.62)

Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- ¢ (FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+21, -1+01)

19™ October 2016 Assistant Professor Dr. Emre UGUR 77

Short Summary Vectors

Assign names to the elements of a data vector

> person.height <- c¢c(Can=1.70, Cem=1.75,
Hande=1.62)

* Indexing
> person.height[c(T,F,T)]
Can Hande
1.70 1.62

> person.heightc (1, 3)]
Can Hande
1.70 1.62

> person.height[-1]
Cem Hande

1.75 1.62

19™ October 2016 Assistant Professor Dr. Emre UGUR 78

Short Summary Vectors

Filtering
> person.height[person.height > 1.65]

Can Cem
1.72 1.75

* Recycling
> c(1l, 2, 3) + c(1, 2, 3, 4)
(1] 2 4 6 5

* Vector operations
> person.weight / person.height”?2

Can Cem Hande
21.97134 21.55102 23.24341

19™ October 2016 Assistant Professor Dr. Emre UGUR 79

Short Summary Matrices

Creation
> v <- matrix(c(l,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

* Matrix operations
Transposition t (vy)
Element by element product y * vy
Matrix multiplication y $*% vy
Matrix scalar multiplication 3 * vy
Matrix addition y + vy

* Indexing, e.g. select first and second row
> z[c(1l,2),]

19™ October 2016 Assistant Professor Dr. Emre UGUR 80

Short Summary Matrices

Assign new values to submatrices
> z[c(l:2), c(2:3)] <= matrix(c(20,21,22,23), nrow=2)

Filtering, e.g. obtain those rows of matrix z having elements
In the second column which are at least equal to 5
> z[z[,2] >= 5,]

19™ October 2016 Assistant Professor Dr. Emre UGUR 81

Short Summary Lists
* Creation

> joe <- list (name="Joe", salary=55000,
staff=T)

* Indexing
> joeS$salary
> jJoel[["salary"]]
> jJoe[[2]]

* Vectors as list components
> my.list <- list(vecl = c(1,2), vec2 =
c(3,4), vec3 = 5:7)

19™ October 2016 Assistant Professor Dr. Emre UGUR 82

Short Summary Data frames

Creation
> person <- data.frame (height=person.height,
welght=person.weight)

Indexing

> person|[1]]
person|[["height"]]
personS$Sheight
person[c(l,2),]
person[-3,]

vV V V V

* Filtering
> person|[personSheight >= 1.7,]

19™ October 2016 Assistant Professor Dr. Emre UGUR 83

Short Summary Data frames

* Data import
> person.data <- read.table (header=TRUE,

"height weight data.txt", sep=",")

Data modifications
> person.data$BMI <- person.dataSWeight /
person.dataSHeight”"?2

Summary
> summary (person.data)

* Merging

> merge (person.data, person.data2?)

19™ October 2016 Assistant Professor Dr. Emre UGUR 84

	Slide 1
	Data vectors
	Data vectors
	Data vector indexing
	Data vector indexing
	Data vector filtering
	Data vector sorting
	Vector recycling
	ifelse() function
	Data vector operations
	Data vector operations
	Rounding of numbers
	Data vector operations
	Creating regular sequences
	Function seq
	Creating repeated values with function rep
	Matrix creation
	Matrix column and row notation
	Matrix column and row access
	Matrix single element access
	Matrix creation order
	Matrix row names and column names
	Matrix creation with cbind and rbind
	Matrix modification with cbind and rbind
	Matrix recycling
	Matrix operations
	Matrix indexing
	Matrix indexing
	Matrix indexing
	Matrix indexing
	Matrix indexing
	Matrix filtering
	Matrix filtering
	Matrix filtering
	Matrix function apply()
	Writing our own function
	Writing our own function
	Using our own function with apply()
	Lists
	Creating lists
	Creating lists
	List indexing
	Adding list elements
	Deleting list elements
	Vectors as list components
	Word list
	Word list
	Word list
	Word list
	Word list
	Accessing list components
	Sort word list alphabetically
	Accessing list values
	Applying functions to lists
	Applying functions to lists
	Applying functions to lists
	Sort word list by word frequency
	Data frame
	Creating data frames
	Accessing data frames
	Accessing data frames
	Data frame indexing
	Data frame indexing
	Data frame filtering
	Data frame modifications
	Data frame modifications
	Data frame modifications
	Data import with read.table
	Data import
	Data modifications
	Data modifications
	Data modifications
	Data frame modifications
	Scatter Plot
	Scatter Plot
	Merging data frames
	Short Summary Vectors
	Short Summary Vectors
	Short Summary Vectors
	Short Summary Matrices
	Short Summary Matrices
	Short Summary Lists
	Short Summary Data frames
	Short Summary Data frames

