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Data vectors

 The fundamental data type in R is the vector

 Data vectors are created with the construct c 
> person.height <- c(1.70, 1.75, 1.62)

> person.height <- c(person.height, 1.81)

 Vector elements must all have the same mode

 Available modes: integer, numeric, character, Boolean, 
complex
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Data vectors

 Missing values are denoted with NA

 We can assign names to the elements of a data vector to 
make the vector more readable
> person.height <- c(Can=1.70, Cem=1.75, 
Hande=1.62) 

> person.height
  Can   Cem Hande 
 1.70  1.75  1.62
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Data vector indexing

 We can access a single element of a vector by providing the 
index of the element in square brackets
> person.height[1]
Can 
1.7

 We can select a subvector by providing a Boolean index 
vector 
> person.height[c(T,F,T)]
  Can Hande 
 1.70  1.62
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Data vector indexing

 We can specify the element indices directly
> person.height[c(1,3)]
  Can Hande 
 1.70  1.62

 We exclude elements with negative indices
> person.height[c(-1, -3)]
 Cem 
1.75 

 We can change the values of the selected elements
person.height[1] <- 1.72
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Data vector filtering

 The idea behind filtering is to apply a Boolean evaluation 
function to each element of the vector
> person.height > 1.65
  Can   Cem Hande 
 TRUE  TRUE FALSE

 We use the results of the evaluation function for the filtering
> person.height[person.height > 1.65]
 Can  Cem 
1.72 1.75
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Data vector sorting

 We use the function sort for sorting a vector
> sort(person.height)
Hande   Can   Cem 
 1.62  1.70  1.75 

 We can obtain a sorting in descending order
> sort(person.height, decreasing = TRUE)
  Cem   Can Hande 
 1.75  1.70  1.62

 We can sort a vector according to the values of some other 
vector
> person.weight[order(person.height)]
Hande   Can   Cem 
   61    65    66
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Vector recycling 

 When applying an operation to two vectors which requires 
them to be the same length, the shorter one will repeated 
until it is long enough to match the longer one

> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Warning message:
In c(1, 2, 3) + c(1, 2, 3, 4) :
  longer object length is not a multiple of 
shorter object length
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ifelse() function

 ifelse(test, yes, no) returns a vector which is 
created from selected elements from the vectors yes and 
no: yes[i] is selected if test[i] is true and no[i] is 
selected if test[i] is false

> ifelse(person.height > 1.7, "tall", 
"small")
    Can     Cem   Hande 
"small"  "tall" "small"
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Data vector operations

 We can perform calculations with vectors just like ordinary 
numbers

 Element wise operations
> person.height^2
   Can    Cem  Hande 
2.9584 3.0625 2.6244

 Vector addition, e.g. persons have gained/lost weight
> person.weight + c(1.5, 1.75, -0.5)
  Can   Cem Hande 
66.50 67.75 60.50 
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Data vector operations

 Operations on multiple vectors
> person.weight / person.height^2
     Can      Cem    Hande 
21.97134 21.55102 23.24341 

 The result of a vector calculation can be assigned to a new 
data vector for further processing 
> bmi <- person.weight / person.height^2

> bmi
     Can      Cem    Hande 
21.97134 21.55102 23.24341 
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Rounding of numbers

 Round to the specified number of decimal places with 
function round
> round(bmi, digits=1)
  Can   Cem Hande 
 22.0  21.6  23.2 

 Alternative functions for rounding of numbers are ceiling, 
floor, trunc, and signif 
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Data vector operations 

 Often used functions that operates on vectors are mean, 
length and sd
> bmi <- person.weight / person.height^2

> mean(bmi)
[1] 23.31768

> length(bmi)
[1] 3

> sd(bmi)
[1] 2.294295
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Creating regular sequences

 The from:to syntax is a simple way to generate a 
sequence from from to to in steps of 1 or -1
> 1:5
[1] 1 2 3 4 5

> 11:15
[1] 11 12 13 14 15

> 3:0
[1] 3 2 1 0

> seq_1_100 <- 1:100
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Function seq

 seq function arguments
 from starting value of the sequence
 to end value of the sequence
 by increment of the sequence
 length.out desired length of the sequence
 along.with take the length from the length of this argument

> seq(5, 10) 
[1] 5 6 7 8 9 10

> seq(5, 10, 2) 
[1] 5 7 9
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Creating repeated values with function rep

 rep function arguments and default values
 x vector of factor that is repeated
 times = 1 number of times to repeat
 length.out = NA desired length of the result
 each = 1 each element of x is repeated each times

> rep(1, 3)
[1] 1 1 1

> rep(1:4, 2)
[1] 1 2 3 4 1 2 3 4

> rep(1:4, each = 2) 
[1] 1 1 2 2 3 3 4 4
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Matrix creation

 In R, a matrix is a vector with two additional attributes, the 
number of rows and number of columns

 One of the ways to create a matrix is via the matrix 
function to obtain a matrix from a given data vector with 
nrow number of rows and ncol number of columns 

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4
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Matrix column and row notation

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

Notation for rows: [1,] means first row, [2,] second row, 
etc.

Notation for columns: [,1] means 
first column, [,2] second column, 
etc.
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Matrix column and row access 

 We can access single columns and rows with the respective 
column/row notation

> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y[,1]
[1] 1 2

> y[2,]
[1] 2 4 



Assistant Professor Dr. Emre UGUR 2019Th October 2016

Matrix single element access

 We can access single elements of the matrix by providing 
the indices of row and column

> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y[1,1]
[1] 1

> y[2,1]
[1] 2
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Matrix creation order

 Storage of a matrix is in column-major order: first all of 
column 1 is stored, then all of column 2, etc.

 We can change the column-major order by providing the 
additional argument byrow = TRUE for filling the matrix by 
rows

> y <- matrix(c(1,2,3,4), nrow=2, ncol=2, 
byrow=TRUE)

> y
     [,1] [,2]
[1,]    1    2
[2,]    3    4
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Matrix row names and column names

 We can provide names for the rows and columns of a matrix

> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> rownames(y) <- c("Row1", "Row2")
> colnames(y) <- c("Col1", "Col2")

> y
     Col1 Col2
Row1    1    3
Row2    2    4
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Matrix creation with cbind and rbind

 We can “glue” vectors together, columnwise or rowwise, 
using the cbind and rbind functions

> cbind(c(1,2), c(3,4))
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> rbind(c(1,2), c(3,4))
     [,1] [,2]
[1,]    1    2
[2,]    3    4
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Matrix modification with cbind and rbind

 Add a column to an existing matrix

> y <- matrix(c(1,2,3,4),nrow=2)
> y
     [,1] [,2]
[1,]    1    3
[2,]    2    4

> y <- cbind(c(11, 12), y)
> y
     [,1] [,2] [,3]
[1,]   11    1    3
[2,]   12    2    4
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Matrix recycling 

 The automatic lengthening of vectors also works with matrices
> z <- matrix(c(1:9),nrow=3)
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> cbind(10, z)
     [,1] [,2] [,3] [,4]
[1,]   10    1    4    7
[2,]   10    2    5    8
[3,]   10    3    6    9
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Matrix operations

 Matrix transposition t(y)

 Element by element product y * y

 Matrix multiplication y %*% y

 Matrix scalar multiplication 3 * y

 Matrix addition y + y
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Matrix indexing

 We can access more than a single column/row/element at 
once
> z <- matrix(c(1:9),nrow=3)
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

 Select columns 2 and 3
> z[,c(2,3)]
     [,1] [,2]
[1,]    4    7
[2,]    5    8
[3,]    6    9



Assistant Professor Dr. Emre UGUR 2819Th October 2016

Matrix indexing

 Select first and second row
> z[c(1,2),]
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8

 Select third column of first and second row
> z[c(1,2),3]
[1] 7 8 
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Matrix indexing

 We use negative subscripts to exclude certain elements, e.g. 
request all rows except the second
> z[,-2]
     [,1] [,2]
[1,]    1    7
[2,]    2    8
[3,]    3    9
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Matrix indexing

 We can assign new values to submatrices
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), 
nrow=2)

> z
     [,1] [,2] [,3]
[1,]    1   20   22
[2,]    2   21   23
[3,]    3    6    9
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Matrix indexing

 We can delete rows or columns by reassignment, e.g. keep 
only first two rows and delete third row

> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z <- z[c(1,2),]
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
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Matrix filtering

 Similar to data vector filtering, the concept behind is to first 
apply a Boolean evaluation function

 For each single element, the Boolean evaluation function 
returns TRUE in case of a positive evaluation and FALSE in 
case of a negative evaluation

> z > 3
      [,1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE
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Matrix filtering

 Similar to data vector filtering, we can perform evaluation 
and filtering in one line

> z[z > 3]
[1] 4 5 6 7 8 9

We provide the evaluation function directly in the square 
brackets for selecting those elements that fulfill the 
evaluation function 
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Matrix filtering

 In contrast to data vector filtering, we can perform more 
complex filtering tasks with matrices, e.g. obtain those rows 
of matrix z having elements in the second column which are 
at least equal to 5

> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> z[z[,2] >= 5,]
     [,1] [,2] [,3]
[1,]    2    5    8
[2,]    3    6    9
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Matrix function apply()

 An often used generic function in R is apply()

 apply() executes a user-specified function on each of the 
rows or each of the columns of a matrix

 apply(m,dimcode,f,fargs)
 m is the matrix
 dimcode equal to 1 means that the function is applied to rows, 
dimcode equal to 2 means that the function is applied to columns

 f is the function to be applied
 fargs is an optional set of arguments to be supplied to f
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Writing our own function 

 We write a simple function that adds 1 to its input and 
returns the result

> AddOne <- function(x) {x+1}

Function 
name

Function 
inputs

Instructions that take the 
inputs and use them to 
compute other values.

The last computed value 
is returned by default. 
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Writing our own function 

 Let’s write another more sophisticated function that adds a 
user-specified value to its first input

> AddValue <- function(x, Addend=1) {x+Addend}

In addition to the first 
input x we specify a 
second input Addend 
with default value 1.
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Using our own function with apply()

 First we apply AddValue to the rows of z
> z
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

> apply(z,1,AddValue)
     [,1] [,2] [,3]
[1,]    2    3    4
[2,]    5    6    7
[3,]    8    9   10

Resulting vector when adding 1 to the first row
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Lists

 Lists can combine objects of different types

 We create a list to represent the data from Joe
> joe <- list("Joe", 55000, T)

 An entire employee database might then be a list of lists
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Creating lists

 Let’s check our new list joe
> joe
[[1]]
[1] "Joe"

[[2]]
[1] 55000

[[3]]
[1] TRUE

 We observe that the three components name, salary and 
membership are indexed by [[1]], [[2]], and [[3]]
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Creating lists

 We better provide name tags for our components when 
creating a list
> joe <- list(name="Joe", salary=55000, 
staff=T)

> joe
$name
[1] "Joe"

$salary
[1] 55000

$staff
[1] TRUE
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List indexing

 We can access list components in several different ways – 
each of them is useful in different contexts 

> joe$salary
[1] 55000

> joe[["salary"]]
[1] 55000

> joe[[2]]
[1] 55000
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Adding list elements

 New components can be added after a list is created

 We can add new components in different ways

> joe <- list(name="Joe", salary=55000, 
staff=T)

> joe$age <- 39

> joe[[5]] <- 1976

> joe[6:7] <- c(TRUE, TRUE)
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Deleting list elements

 We can delete a list component by setting it to NULL

> joe$salary <- NULL

> joe$staff <- NULL

 After deleting, the indices of subsequent elements 
automatically move up
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Vectors as list components

 Beside storing atomic entries like Joe or 55000 in a list, we 
can have vectors as list components

> my.list <- list(vec1 = c(1,2), vec2 = 
c(3,4), vec3 = 5:7)

> my.list
$vec1
[1] 1 2

$vec2
[1] 3 4

$vec3
[1] 5 6 7 
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Word list

 Let’s consider this sentence as our text example:
a text consists of a word and another word 
and so on and so forth

 For each word we need to obtain the location in the text:
 a 1 5 
 text  2 
 consists  3 
 of  4 
 word  6 9 
 and  7 10 13 
 another  8 
 so  11 14 
 on  12 
 forth  15
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Word list

 Let’s assume that we iterate through our text in a word by 
word manner: a, text, consists, of, a, ... 

 Let’s further assume that the current word in our iteration is 
always stored in the variable word

 Let’s further assume that we have a counter i which is 
increased by 1 for every word: the counter tells the current 
position in the text
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Word list

 Let’s start with initializing our word list
> word.list <- list()

 Our first word a is stored in the variable word
word <- "a"

 Since it is our first word, our counter i has the value 1
> i <- 1

 Now we add our current word a to our word list
> word.list[[word]] <- c(word.list[[word]], i)
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Word list

 Let’s check our word list after the first iteration
> word.list
$a
[1] 1

 We interpret this intermediate result as word a has position 1

 We go on with a few other words
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Word list

 When we check word.list again we obtain
> word.list
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4
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Accessing list components

 If the components in a list do have tags, we can obtain them 
via names()

> names(joe)
[1] "name"   "salary" "staff" 

> names(word.list)
[1] "a"        "text"     "consists" "of" 
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Sort word list alphabetically 

 We can write all three steps in one line
> word.list[sort(names(word.list))]
$a
[1] 1 5

$consists
[1] 3

$of
[1] 4

$text
[1] 2
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Accessing list values

 We can obtain list values by using unlist()
> unlist(joe)
   name  salary   staff 
  "Joe" "55000"  "TRUE" 

> unlist(word.list)
      a1       a2     text consists       of 
       1        5        2        3        4 

 We observe that in the first case we retrieve a vector of 
character strings and in the second case a numeric vector

 The reason for the different result modes is that list 
components are coerced to a common mode during unlist
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Applying functions to lists

 apply() executes a user-specified function on each of the 
rows or each of the columns of a matrix, e.g. 
apply(z,1,mean) compute the row means of matrix z

 The function lapply() works like the apply() function: the 
specified function is applied on each component of a list and 
another list is returned

 lapply(l, f, fargs)
 l is the list
 f is the function 
 fargs is an optional set of arguments for function f
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Applying functions to lists

 Example: count number of words from our word.list

> lapply(word.list, length)
$a
[1] 2

$text
[1] 1

$consists
[1] 1

$of
[1] 1
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Applying functions to lists

 sapply() works like lapply() but instead of a list it 
returns a vector or a matrix

 Previous example with sapply()

> sapply(word.list, length)
       a     text consists       of 
       2        1        1        1 
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Sort word list by word frequency

 We can write all three steps in one line
> word.list[order(sapply(word.list, length))]
$text
[1] 2

$consists
[1] 3

$of
[1] 4

$a
[1] 1 5
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Data frame

 A data frame is like a matrix, with a two-dimensional rows-
and columns structure

 Each column may have a different mode, e.g. one column 
may consist of numbers, and another column might have 
character strings or Boolean entries 

 On a technical level, a data frame is a list: each component 
of that list consists of equal-length vectors



Assistant Professor Dr. Emre UGUR 5919Th October 2016

Creating data frames

 One way to create a data frame is to combine available 
equal-length vectors

> person <- data.frame(height=person.height, 
weight=person.weight, member=person.member, 
initial=c("C", "C", "H"))

> person
      height weight member initial
Can     1.70     65   TRUE       C
Cem     1.75     66   TRUE       C
Hande   1.62     61  FALSE       H

 We observe that the columns retain their original mode and 
that the vector element names are used to label the rows of the 
data frame 
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Accessing data frames

 Since a data frame is technically a list, we can access it via 
component index values or component names
> person[[1]]
[1] 1.70 1.75 1.62

> person[["height"]]
[1] 1.70 1.75 1.62

> person$height
[1] 1.70 1.75 1.62
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Accessing data frames

 We can access it in a matrix-like fashion as well, e.g. view 
column 1
> person[,1]
[1] 1.70 1.75 1.62

 Element in third row, second column
> person[3,2]
[1] 61
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Data frame indexing 

 Since data frames can be accessed in a matrix-like fashion, 
we can select rows and columns in a matrix-like way

 First and second row
> person[c(1,2),]
    height weight member
Can   1.70     65   TRUE
Cem   1.75     66   TRUE

 Third column of first and second row
> person[c(1,2),3]
[1] TRUE TRUE



Assistant Professor Dr. Emre UGUR 6319Th October 2016

Data frame indexing

 Like for matrices, we can use negative indices to exclude 
rows or columns
> person[-3,]
    height weight member
Can   1.70     65   TRUE
Cem   1.75     66   TRUE

> person[,-3]
      height weight
Can     1.70     65
Cem     1.75     66
Hande   1.62     61
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Data frame filtering 

 Similar to data vector and matrix filtering, the concept behind 
is to apply a Boolean evaluation function 

 Example: retrieve all observations for which person height is 
at least 1.7

> person[person$height >= 1.7,]
    height weight member
Can   1.70     65   TRUE
Cem   1.75     66   TRUE
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Data frame modifications 

 Like for matrices, we can use rbind() and cbind() to 
add new rows or columns to a data frame

 Usually, we add a new row in form of a list
> person <- rbind(person, Lale=list(1.76, 64, 
T))

> person
      height weight member
Can     1.70     65   TRUE
Cem     1.75     66   TRUE
Hande   1.62     61   TRUE
Lale    1.76     64   TRUE
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Data frame modifications 

 We use cbind() for adding a new column

> person <- cbind(person, initial=c("C", "C", 
"H", "L"))

> person
      height weight member initial
Can     1.70     65   TRUE       C
Cem     1.75     66   TRUE       C
Hande   1.62     61   TRUE       H
Lale    1.76     64   TRUE       L
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Data frame modifications 

 As an alternative to cbind() we can use the $ notation

> person$BMI <- person$weight / 
person$height^2

> person
      height weight member initial      BMI
Can     1.70     65   TRUE       C 22.49135
Cem     1.75     66   TRUE       C 21.55102
Hande   1.62     61   TRUE       H 23.24341
Lale    1.76     64   TRUE       L 20.66116
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Data import with read.table

The function read.table is the most convenient way to read 
in a rectangular grid of data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "", quote = "\"'",
           dec = ".", row.names, col.names,
           as.is = !stringsAsFactors,
           na.strings = "NA", colClasses = NA, nrows = -1,
           skip = 0, check.names = TRUE, 
           fill = !blank.lines.skip,
           strip.white = FALSE, blank.lines.skip = TRUE,
           comment.char = "#",
           allowEscapes = FALSE, flush = FALSE,
           stringsAsFactors = default.stringsAsFactors(),
           fileEncoding = "", encoding = "unknown", text)
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Data import

 Now, we import the data into the data frame person.data 
by using the function read.table 

> person.data <- read.table(header=TRUE, 
"height_weight_data.txt", sep=",")

> person.data
     Name Height Weight
1     Can   1.70     65
2     Cem   1.75     66
3   Hande   1.62     61
4    Lale   1.76     64
5    Arda   1.78     63
6  Bilgin   1.77     84
7     Cem   1.69     75
8   Ozlem   1.75     65
9     Ali   1.73     75
10  Haluk   1.71     81
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Data modifications 

 We add a new column BMI like we did before
> person.data$BMI <- person.data$Weight / 
person.data$Height^2

> person.data
     Name Height Weight      BMI
1     Can   1.70     65 22.49135
2     Cem   1.75     66 21.55102
3   Hande   1.62     61 23.24341
4    Lale   1.76     64 20.66116
5    Arda   1.78     63 19.88385
6  Bilgin   1.77     84 26.81222
7     Cem   1.69     75 26.25958
8   Ozlem   1.75     65 21.22449
9     Ali   1.73     75 25.05931
10  Haluk   1.71     81 27.70083
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Data modifications 

 We can change the values of a column by reassigning the 
column with the new values, e.g. rounding BMI
> person.data$BMI <- round(person.data$BMI, 2)

> person.data
     Name Height Weight   BMI
1     Can   1.70     65 22.49
2     Cem   1.75     66 21.55
3   Hande   1.62     61 23.24
4    Lale   1.76     64 20.66
5    Arda   1.78     63 19.88
6  Bilgin   1.77     84 26.81
7     Cem   1.69     75 26.26
8   Ozlem   1.75     65 21.22
9     Ali   1.73     75 25.06
10  Haluk   1.71     81 27.70
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Data modifications 

 When creating new columns, we can make use of functions 
to compute the values of a new column

 Let’s recapitulate the ifelse() function 

 ifelse(test, yes, no) returns a vector which is 
created from selected elements from the vectors yes and 
no: yes[i] is selected if test[i] is true and no[i] is 
selected if test[i] is false

> ifelse(person.height > 1.7, "tall", 
"small")
    Can     Cem   Hande 
"small"  "tall" "small"
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Data frame modifications 

Let’s use ifelse() to create a new column which indicates 
whether BMI is above 22.5

> person.data$above22.5 <- ifelse(person.data$BMI>22.5, T ,F)
> person.data
     Name Height Weight   BMI above22.5
1     Can   1.70     65 22.49     FALSE
2     Cem   1.75     66 21.55     FALSE
3   Hande   1.62     61 23.24      TRUE
4    Lale   1.76     64 20.66     FALSE
5    Arda   1.78     63 19.88     FALSE
6  Bilgin   1.77     84 26.81      TRUE
7     Cem   1.69     75 26.26      TRUE
8   Ozlem   1.75     65 21.22     FALSE
9     Ali   1.73     75 25.06      TRUE
10  Haluk   1.71     81 27.70      TRUE
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Scatter Plot

 Beside numeric summary statistics, a convenient way for data 
exploration is plotting

 R provides us many powerful tools for plotting

 We will learn more about plotting later

 For now, we create a simple scatter plot by plotting height on 
the x-axis and weight on the y-axis
> plot(person.data$Height, person.data$Weight)
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Merging data frames

 We merge the two data frames using the merge() function
> merge(person.data, person.data2)
   Name Height Weight   BMI above22.5 Initial Member
1   Can   1.70     65 22.49     FALSE       C      T
2   Cem   1.69     75 26.26      TRUE       C      T
3   Cem   1.75     66 21.55     FALSE       C      T
4 Hande   1.62     61 23.24      TRUE       H      F



Assistant Professor Dr. Emre UGUR 7719Th October 2016

Short Summary Vectors

 Integer mode
> person.weight <- c(65, 66, 61)

 Numeric (floating-point number)
> person.height <- c(1.70, 1.75, 1.62)

 Character (string)
> person.name <- c("Can", "Cem", "Hande")

 Logical (Boolean)
> person.female <- c(FALSE, FALSE, TRUE)

 Complex
> complex.numbers <- c(1+2i, -1+0i)
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Short Summary Vectors

 Assign names to the elements of a data vector
> person.height <- c(Can=1.70, Cem=1.75, 
Hande=1.62) 

 Indexing
> person.height[c(T,F,T)]
  Can Hande 
 1.70  1.62

> person.height[c(1,3)]
  Can Hande 
 1.70  1.62

> person.height[-1]
  Cem Hande 
 1.75  1.62
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Short Summary Vectors

 Filtering
> person.height[person.height > 1.65]
 Can  Cem 
1.72 1.75

 Recycling
> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

 Vector operations
> person.weight / person.height^2
     Can      Cem    Hande 
21.97134 21.55102 23.24341
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Short Summary Matrices

 Creation
> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

 Matrix operations
 Transposition t(y)
 Element by element product y * y
 Matrix multiplication y %*% y
 Matrix scalar multiplication 3 * y
 Matrix addition y + y

 Indexing, e.g. select first and second row
> z[c(1,2),]
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Short Summary Matrices

 Assign new values to submatrices
> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

 Filtering, e.g. obtain those rows of matrix z having elements 
in the second column which are at least equal to 5
> z[z[,2] >= 5,]
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Short Summary Lists

 Creation
> joe <- list(name="Joe", salary=55000, 
staff=T)

 Indexing
> joe$salary
> joe[["salary"]]
> joe[[2]]

 Vectors as list components
> my.list <- list(vec1 = c(1,2), vec2 = 
c(3,4), vec3 = 5:7)
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Short Summary Data frames

 Creation
> person <- data.frame(height=person.height, 
weight=person.weight)

 Indexing
> person[[1]]
> person[["height"]]
> person$height
> person[c(1,2),]
> person[-3,]

 Filtering
> person[person$height >= 1.7,]
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Short Summary Data frames

 Data import
> person.data <- read.table(header=TRUE, 
"height_weight_data.txt", sep=",")

 Data modifications
> person.data$BMI <- person.data$Weight / 
person.data$Height^2

 Summary
> summary(person.data)

 Merging
> merge(person.data, person.data2)
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