
Assistant Professor Dr. Bert ARNRICH 130th March 201626th October 2016 Assist. Prof. Emre Ugur

Introduction to Computing for Economics and
Management

Lecture 6: Data Import & Loops

Acknowledgement

 These slides are adapted from
Bert Arnrich's R lecture.

Assist. Prof. Emre Ugur 326th October 2016

Previous lectures

 Vectors
 Matrices
 Lists
 Data Frames

Assist. Prof. Emre Ugur 426th October 2016

Data import

So far, we have entered our data into R
> person.height <- c(Can=1.70,
Cem=1.75, Hande=1.62)

 In practice, data is usually stored in data
bases or files and we import it from there

 In the following slides, we will prepare a file
which contains our data and import the file
content into R

Name, Height, Weight
Can, 1.7, 65
Cem, 1.75, 66
Hande, 1.62, 61
Lale, 1.76, 64
Arda, 1.78, 63
Bilgin, 1.77,84
Cem, 1.69, 75
Ozlem, 1.75, 65
Ali, 1.73, 75
Haluk, 1.71, 81

textfile

Assist. Prof. Emre Ugur 526th October 2016

Data file

 As a first step we create a new text file using RStudio or an
alternative text editor like Notepad++

Assist. Prof. Emre Ugur 626th October 2016

Data file

 In the files tab we select the “…” item and browse to the folder
in which we have stored the text file

Assist. Prof. Emre Ugur 726th October 2016

Data file

 In the menu “More”, we select “Set As Working Directory”

Assist. Prof. Emre Ugur 826th October 2016

Data import with read.table

The function read.table is the most convenient way to read in a rectangular grid of
data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "", quote = "\"'",
 dec = ".", row.names, col.names,
 as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA, nrows = -1,
 skip = 0, check.names = TRUE,
 fill = !blank.lines.skip,
 strip.white = FALSE, blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "", encoding = "unknown", text)

Assist. Prof. Emre Ugur 926th October 2016

Arguments of read.table

file

 Name of the file which the data are to be read from

 Each row of the table appears as one line of the file

 If it does not contain an absolute path, the file name is relative
to the current working directory

 Can also be a complete URL

Assist. Prof. Emre Ugur 1026th October 2016

Arguments of read.table

header

 Logical value indicating whether the file
contains the names of the variables as its
first line

 If header information is available in the file,
it will be used for variable names

Name, Height, Weight
Can, 1.7, 65
Cem, 1.75, 66
Hande, 1.62, 61
Lale, 1.76, 64
Arda, 1.78, 63
Bilgin, 1.77,84
Cem, 1.69, 75
Ozlem, 1.75, 65
Ali, 1.73, 75
Haluk, 1.71, 81

Assist. Prof. Emre Ugur 1126th October 2016

Arguments of read.table

sep

 Field separator character

 Values on each line of the file are separated
by this character

 Default value sep = "" means that the
separator is ‘white space’: one or more
spaces, tabs, newlines or carriage returns

Name, Height, Weight
Can, 1.7, 65
Cem, 1.75, 66
Hande, 1.62, 61
Lale, 1.76, 64
Arda, 1.78, 63
Bilgin, 1.77,84
Cem, 1.69, 75
Ozlem, 1.75, 65
Ali, 1.73, 75
Haluk, 1.71, 81

Assist. Prof. Emre Ugur 1226th October 2016

Working directory

Before the actual import, we need to check the current working
directory to make sure which path to use when importing the
data file

> getwd()
[1] "/home/c7031082/R"

 We change working directory to the path where our data file is
located in order to simplify data import

Assist. Prof. Emre Ugur 1326th October 2016

Change working directory in R

Assist. Prof. Emre Ugur 1426th October 2016

Change working directory in RStudio

 In the files tab we select the “…” item and browse to the folder
in which we have stored the text file

Assist. Prof. Emre Ugur 1526th October 2016

Change working directory in RStudio

 In the menu “More”, we select “Set As Working Directory”

Assist. Prof. Emre Ugur 1626th October 2016

Data import

Now, we import the data into the data frame person.data by
using the function read.table

> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

> person.data
 Name Height Weight
1 Can 1.70 65
2 Cem 1.75 66
3 Hande 1.62 61
4 Lale 1.76 64
5 Arda 1.78 63
6 Bilgin 1.77 84
7 Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
10 Haluk 1.71 81

What is the mode/type of person.data?

Assist. Prof. Emre Ugur 1726th October 2016

Data modifications

We add a new column BMI like we did before
> person.data$BMI <- person.data$Weight /
person.data$Height^2

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49135
2 Cem 1.75 66 21.55102
3 Hande 1.62 61 23.24341
4 Lale 1.76 64 20.66116
5 Arda 1.78 63 19.88385
6 Bilgin 1.77 84 26.81222
7 Cem 1.69 75 26.25958
8 Ozlem 1.75 65 21.22449
9 Ali 1.73 75 25.05931
10 Haluk 1.71 81 27.70083

Assist. Prof. Emre Ugur 1826th October 2016

Data modifications

We can change the values of a column by reassigning the
column with the new values, e.g. rounding BMI
> person.data$BMI <- round(person.data$BMI, 2)

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 61 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
10 Haluk 1.71 81 27.70

Assist. Prof. Emre Ugur 1926th October 2016

Data modifications

 When creating new columns, we can make use of functions to
compute the values of a new column

 Let’s recapitulate the ifelse() function

ifelse(test, yes, no) returns a vector which is created
from selected elements from the vectors yes and no: yes[i]
is selected if test[i] is true and no[i] is selected if
test[i] is false

> ifelse(person.height > 1.7, "tall", "small")
 Can Cem Hande
"small" "tall" "small"

Assist. Prof. Emre Ugur 2026th October 2016

Data frame modifications

Let’s use ifelse() to create a new column which indicates
whether BMI is above 22.5

> person.data$above22.5 <- ifelse(person.data$BMI>22.5, T
,F)
> person.data
 Name Height Weight BMI above22.5
1 Can 1.70 65 22.49 FALSE
2 Cem 1.75 66 21.55 FALSE
3 Hande 1.62 61 23.24 TRUE
4 Lale 1.76 64 20.66 FALSE
5 Arda 1.78 63 19.88 FALSE
6 Bilgin 1.77 84 26.81 TRUE
7 Cem 1.69 75 26.26 TRUE
8 Ozlem 1.75 65 21.22 FALSE
9 Ali 1.73 75 25.06 TRUE
10 Haluk 1.71 81 27.70 TRUE

Assist. Prof. Emre Ugur 2126th October 2016

Data frame summary

summary() provides a summary statistic of a data frame
> summary(person.data)
 Name Height Weight
 Cem :2 Min. :1.620 Min. :61.00
 Ali :1 1st Qu.:1.702 1st Qu.:64.25
 Arda :1 Median :1.740 Median :65.50
 Bilgin :1 Mean :1.726 Mean :69.90
 Can :1 3rd Qu.:1.758 3rd Qu.:75.00
 Haluk :1 Max. :1.780 Max. :84.00
 (Other):3
 BMI above22.5
 Min. :19.88 Mode :logical
 1st Qu.:21.30 FALSE:5
 Median :22.86 TRUE :5
 Mean :23.49 NA's :0
 3rd Qu.:25.96
 Max. :27.70

Assist. Prof. Emre Ugur 2226th October 2016

Data frame summary

From the output of summary() we observe that the format of
the summary statistic depends on the column mode

 For numeric modes like height we retrieve minimum, 1st quartile (25%
quantile), median, mean, 3rd quartile (75% quantile), maximum

 For Boolean mode we retrieve number of True, False and missing
values denoted with NA

 For character mode we retrieve the number of entries for each string

Assist. Prof. Emre Ugur 2326th October 2016

Scatter Plot

 Beside numeric summary statistics, a convenient way for data
exploration is plotting

 R provides us many powerful tools for plotting

 We will learn more about plotting later

For now, we create a simple scatter plot by plotting height on the
x-axis and weight on the y-axis
> plot(person.data$Height, person.data$Weight)

Assist. Prof. Emre Ugur 2426th October 2016

Scatter Plot

1.65 1.70 1.75

65
70

75
80

person.data$Height

pe
rs

on
.d

at
a$

W
ei

gh
t

Assist. Prof. Emre Ugur 2526th October 2016

Scatter Plot

 From the previous plot we observe that the values of Height
are plotted versus the corresponding values of Weight

 Similar to other functions, we can provide additional
parameters to the plot function

With pch=2 we change the point type (from circles to triangles)
and beside that we provide axis labels
> plot(person.data$Height, person.data$Weight,
pch=2, xlab="Height", ylab="Weight")

Assist. Prof. Emre Ugur 2626th October 2016

Scatter Plot

1.65 1.70 1.75

65
70

75
80

Height

W
ei

gh
t

Assist. Prof. Emre Ugur 2726th October 2016

Scatter Plot

 Previously we used ifelse() to create a column which
indicates whether BMI is above 22.5 or not

 In a graphical point of view, we can draw a line which
represents whether BMI is above 22.5 or not

 Since Weight = BMI x Height^2 we can draw a line 22.5 x
Height^2

 For drawing the line we need two height values which we take
from the summary statistic

Assist. Prof. Emre Ugur 2826th October 2016

Scatter Plot

From the summery statistic of Height we learn the minimum
and maximum numbers
> summary(person.data$Height)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.620 1.702 1.740 1.726 1.758 1.780

We draw the line from the minimum height (1.62) to the
maximum height (1.78) using 22.5 x Height^2 for the y values
of the line
> lines(c(1.62, 1.78), 22.5*c(1.62, 1.78)^2)

Assist. Prof. Emre Ugur 2926th October 2016

1.65 1.70 1.75

65
70

75
80

Height

W
ei

gh
t

 Data points above the line represents persons having a BMI
above 22.5

Scatter Plot

Assist. Prof. Emre Ugur 3026th October 2016

Some analysis with midterm results

scores <- read.table("scores.txt",header=TRUE)
plot(c(1:97),scores$Score)
plot(c(1:97),sort(scores$Score))
hist(scores$Score)
scores.cut <- cut(scores$Score,breaks=5)
scores.table <- table(scores.cut)
pie (scores.table)

Assist. Prof. Emre Ugur 3126th October 2016

Merging data frames

 Data from an entity (e.g. a person) is often stored in multiple
data sets

 One frequent operation is to join data sets: combine data sets
according to the values of a common variable

 Example: two data sets contain different kind of data about
some persons can be joined according to person’s name or
person’s ID number

 In R, two data frames can be joined using the merge()
function

Assist. Prof. Emre Ugur 3226th October 2016

Merging data frames

 In a first step, we create an additional data set which contains
the initial and member information of some persons

Assist. Prof. Emre Ugur 3326th October 2016

Merging data frames

We import the second data set using read.table

> person.data2 <- read.table(header=TRUE,
"person_data2.txt", sep=",")

> person.data2
 Name Initial Member
1 Can C T
2 Cem C T
3 Hande H F

Assist. Prof. Emre Ugur 3426th October 2016

Merging data frames

We merge the two data frames using the merge() function
> merge(person.data, person.data2)
 Name Height Weight BMI above22.5 Initial Member
1 Can 1.70 65 22.49 FALSE C T
2 Cem 1.69 75 26.26 TRUE C T
3 Cem 1.75 66 21.55 FALSE C T
4 Hande 1.62 61 23.24 TRUE H F

 We know that both data frames have the variable Name in
common and we observe that the rows with identical name
values were joined

 Problem: the name Cem appears twice in person.data and
thus it is joined twice with person.data2

Assist. Prof. Emre Ugur 3526th October 2016

Merging data frames

We better use unique IDs for each person
> person.data <- cbind(ID=c(1:10), person.data)

> person.data2 <- cbind(ID=c(1:3), person.data2)

 We specify with by which column is used for merging

> merge(person.data, person.data2, by="ID")
 ID Name.x Height Weight BMI above22.5 Name.y Initial
Member
1 1 Can 1.70 65 22.49 FALSE Can C
T
2 2 Cem 1.75 66 21.55 FALSE Cem C
T
3 3 Hande 1.62 61 23.24 TRUE Hande H
F

Assist. Prof. Emre Ugur 3626th October 2016

Homework

1.Create a text file which consist of body height and weight
from 10 of your friends

2.Import the text file into R

3.Add a new BMI column

4.Create a scatter plot of your data

5.Create a second text file which consists of age and home city
of your friends

6.Import the second file and merge it with the first one

Assist. Prof. Emre Ugur 3726th October 2016

Vectors

Integer mode
> person.weight <- c(65, 66, 61)

 Numeric (floating-point number)
> person.height <- c(1.70, 1.75, 1.62)

 Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- c(FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+2i, -1+0i)

Assist. Prof. Emre Ugur 3826th October 2016

Vectors

Filtering
> person.height[person.height > 1.65]
 Can Cem
1.72 1.75

Recycling
> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Vector operations
> person.weight / person.height^2
 Can Cem Hande
21.97134 21.55102 23.24341

Assist. Prof. Emre Ugur 3926th October 2016

Matrices

Creation
> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

 Matrix operations
 Transposition t(y)
 Element by element product y * y
 Matrix multiplication y %*% y
 Matrix scalar multiplication 3 * y
 Matrix addition y + y

Indexing, e.g. select first and second row
> z[c(1,2),]

Assist. Prof. Emre Ugur 4026th October 2016

Matrices

Assign new values to submatrices
> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

 Filtering, e.g. obtain those rows of matrix z having elements
in the second column which are at least equal to 5

> z[z[,2] >= 5,]

Assist. Prof. Emre Ugur 4126th October 2016

Lists

Creation
> joe <- list(name="Joe", salary=55000, staff=T)

 Indexing
> joe$salary
> joe[["salary"]]
> joe[[2]]

Vectors as list components
> my.list <- list(vec1 = c(1,2), vec2 = c(3,4),
vec3 = 5:7)

Assist. Prof. Emre Ugur 4226th October 2016

Data frames

Creation
> person <- data.frame(height=person.height,
weight=person.weight)

Indexing
> person[[1]]
> person[["height"]]
> person$height
> person[c(1,2),]
> person[-3,]

 Filtering
> person[person$height >= 1.7,]

Assist. Prof. Emre Ugur 4326th October 2016

Data frames

Data import
> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

 Data modifications
> person.data$BMI <- person.data$Weight /
person.data$Height^2

 Summary
> summary(person.data)

 Merging
> merge(person.data, person.data2)

Assist. Prof. Emre Ugur 4426th October 2016

Program today

 In a previous lecture, the word list example showed us that
iterating through a set of elements is an important operation

 Today we will learn how we can program such iterations with
so called “for loops”

 We will start with a recap of the word list example and
continue with programming for loops

Assist. Prof. Emre Ugur 4526th October 2016

Looping

The most frequently used looping construct is
for(x in vec) {expression}

 The for loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one iteration
of the loop and expression is executed

 At each iteration, the variable x takes the value of the current
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …

Assist. Prof. Emre Ugur 4626th October 2016

Print variable when iterating

Let’s print out the value of variable x when iterating through the
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Assist. Prof. Emre Ugur 4726th October 2016

Recap: word list

 Web search and other types of textual data mining are of
great interest

 Let’s assume we have a collection of text documents

 Whenever we search for some term, we would like to retrieve
those documents in which our search term appears most
often

 Our first goal is to determine which words are in a text and
at which location in the text each word occurs

Assist. Prof. Emre Ugur 4826th October 2016

Recap: word list

Let’s consider this sentence as our text example:
 a text consists of a word and another word
and so on and so forth

 For each word we need to obtain the location in the text:
a 1 5
text 2
consists 3
of 4
word 6 9
and 7 10 13
another 8
so 11 14
on 12
forth 15

Assist. Prof. Emre Ugur 4926th October 2016

Recap: word list

 Let’s assume that we iterate through our text in a word by
word manner: a, text, consists, of, a, ...

 Let’s further assume that the current word in our iteration is
always stored in the variable word

 Let’s further assume that we have a counter i which is
increased by 1 for every word: the counter tells the current
position in the text

Assist. Prof. Emre Ugur 5026th October 2016

Recap: word list

Let’s start with initializing our word list
> word.list <- list()

Our first word a is stored in the variable word
word <- "a"

Since it is our first word, our counter i has the value 1
> i <- 1

Now we add our current word a to our word list
> word.list[[word]] <- c(word.list[[word]], i)

Assist. Prof. Emre Ugur 5126th October 2016

Example: word list

In the last step, when adding the current word to our word list
we used the two list characteristics
> word.list[[word]] <- c(word.list[[word]], i)

 We can access list components with named tags
> joe[["salary"]]
[1] 55000

1.We can have vectors as list components

2.> my.list <- list(vec = c(1,2))

3.> my.list
4.$vec
5.[1] 1 2

Assist. Prof. Emre Ugur 5226th October 2016

Example: word list

Let’s check our word list after the first iteration
> word.list
$a
[1] 1

 The value for list component “a” is 1 since it is the first time that
“a” was added to the list

 We interpret this intermediate result as word a has position 1

Assist. Prof. Emre Ugur 5326th October 2016

Example: word list

We go on with the second word text
> word <- "text"
> i <- 2
> word.list[[word]] <- c(word.list[[word]], i)

Let’s check again our word list after the second iteration
> word.list
$a
[1] 1

$text
[1] 2

We observe that we now have a second list entry text with
position value 2

Assist. Prof. Emre Ugur 5426th October 2016

Example: word list

We proceed with the next 3 iterations
> word <- "consists"
> i <- 3
> word.list[[word]] <- c(word.list[[word]], i)

> word <- "of"
> i <- 4
> word.list[[word]] <- c(word.list[[word]], i)

> word <- "a"
> i <- 5
> word.list[[word]] <- c(word.list[[word]], i)

Assist. Prof. Emre Ugur 5526th October 2016

Example: word list

We check our word list again
> word.list
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4

Assist. Prof. Emre Ugur 5626th October 2016

Example: word list

 So far we have learned how to represent which words are in a
text and at which location in the text each word occurs

 We have iterated through our text in a word by word manner

 In practice, such iterations are automated with so called loops

Assist. Prof. Emre Ugur 5726th October 2016

Looping

The most frequently used looping construct is
for(x in vec) {expression}

 The for loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one iteration
of the loop and expression is executed

 At each iteration, the variable x takes the value of the current
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …

Assist. Prof. Emre Ugur 5826th October 2016

Print variable when iterating

Let’s print out the value of variable x when iterating through the
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Assist. Prof. Emre Ugur 5926th October 2016

Print variable when iterating

 The for loop works with other modes beside numeric as well

Example: like before we print the value of the variable when
iterating through a vector of strings

> word.vector <- c("a", "text", "consists",
"of")

> for(word in word.vector) {print (word)}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 6026th October 2016

Print variable when iterating

As an alternative we can create a new vector which ranges from
1 until the length of the vector, iterate through this vector and
access the original vector via indexing

> vector.indices <- 1:length(word.vector)

> vector.indices
[1] 1 2 3 4

> for(i in vector.indices) {print(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 6126th October 2016

Print variable when iterating

We can write the alternative way in one line

> for(i in 1:length(word.vector)) {print
(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 6226th October 2016

Print variable when iterating

 The advantage of the alternative way is that we have access
to the iteration number and the vector elements

Example: print index i together with the vector element by
using the paste() function for concatenating strings

> for(i in 1:length(word.vector)) {print
(paste("Element", i, "is", word.vector[i]))}
[1] "Element 1 is a"
[1] "Element 2 is text"
[1] "Element 3 is consists"
[1] "Element 4 is of"

Assist. Prof. Emre Ugur 6326th October 2016

Compute length of a vector

 We can change the value of a variable during looping

For example, let’s write our own function for computing the length
of a vector

> vec <- c(1:10)

> counter <- 0

> for(x in vec) { ???? }

> counter
[1] 10

Assist. Prof. Emre Ugur 6426th October 2016

Compute length of a vector

 We can change the value of a variable during looping

For example, let’s write our own function for computing the length
of a vector

> vec <- c(1:10)

> counter <- 0

> for(x in vec) {counter <- counter + 1}

> counter
[1] 10

Assist. Prof. Emre Ugur 6526th October 2016

Recap: writing our own function

A simple function that adds 1 to its input and returns the result

> AddOne <- function(x) {x+1}

Function
name

Function
inputs

Instructions that take the
inputs and use them to
compute other values.

The last computed value
is returned by default.

Assist. Prof. Emre Ugur 6626th October 2016

Recap: writing our own function

After defining our function, we can work with it

> AddOne <- function(x) {x+1}

> AddOne(1)
[1] 2

> AddOne(-5)
[1] -4

> AddOne(c(1,2,3))
[1] 2 3 4

Assist. Prof. Emre Ugur 6726th October 2016

Recap: writing our own function

A more sophisticated function that adds a user-specified value to
its first input

> AddValue <- function(x, Addend=1) {x+Addend}

In addition to the first
input x we specify a
second input Addend
with default value 1.

Assist. Prof. Emre Ugur 6826th October 2016

Recap: writing our own function

After defining our new function, we can work with it

> AddValue <- function(x, Addend=1) {x+Addend}

> AddValue(1)
[1] 2

> AddValue(1,2)
[1] 3

> AddValue(c(1:3),2)
[1] 3 4 5

Assist. Prof. Emre Ugur 6926th October 2016

Compute length of a vector

Write our own function for computing the length of a vector

function to compute length of vector vec
vec.length <- function(vec)
{
 # initialize counter
 counter <- 0

 # iterate through vec and increase counter
 for(x in vec) {counter <- counter + 1}

 # return counter
 return(counter)
}

Assist. Prof. Emre Ugur 7026th October 2016

Compute length of a vector

 In the previous function definition we’ve used # to comment
our code

 It is a good practice to comment code in particular when
sharing code

We test our function
> vec.length(c(1:10))
[1] ?

> vec.length(c("Hande", "Cem", "Can"))
[1] ?

Assist. Prof. Emre Ugur 7126th October 2016

Compute length of a vector

 We can change the value of a variable during looping

For example, let’s write our own function for computing the length
of a vector

> vec <- c(1:10)

> counter <- 0

> for(x in vec) { ???? }

> counter
[1] 10

Assist. Prof. Emre Ugur 7226th October 2016

Compute norm of a vector

For a 3-dimensional vector, the
Euclidean norm is defined as


 We will write two functions

(1) Compute the Euclidean norm of a
n-dimensional vector

(2) Compute p-norm of a n-
dimensional vector



Assist. Prof. Emre Ugur 7326th October 2016

Compute Euclidean norm of a vector

compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
 # initialize norm
 norm <- 0

 # compute sum of squared vector elements
 for(x in vec) {norm <- norm + x^2}

 # sqrt of sum
 norm <- sqrt(norm)

 return(norm)
}

Assist. Prof. Emre Ugur 7426th October 2016

Compute Euclidean norm of a vector

We test our function

> Euclid.norm(c(1, 2, 3))
[1] 3.741657

> sqrt(1^2+2^2+3^2)
[1] 3.741657

> Euclid.norm(c(sqrt(1), sqrt(3)))
[1] 2

Assist. Prof. Emre Ugur 7526th October 2016

p-norm of a vector

compute p-norm of a vector vec
p.norm <- function(vec, p=2)
{
 # initialize norm
 norm <- 0

 # compute sum of exponentiated vector elements
 for(x in vec) {norm <- norm + x^p}

 # p radical of sum
 norm <- (norm)^(1/p)

 return(norm)
}

Assist. Prof. Emre Ugur 7626th October 2016

p-norm of a vector

We test our function

> p.norm(c(1, 2, 3), p=1)
[1] 6

> p.norm(c(1, 2, 3))
[1] 3.741657

> p.norm(c(1, 2, 3), p=3)
[1] 3.301927

Assist. Prof. Emre Ugur 7726th October 2016

Some analysis with midterm results

scores <- read.table("scores.txt",header=TRUE)
plot(c(1:97),scores$Score)
plot(c(1:97),sort(scores$Score))
hist(scores$Score)
scores.cut <- cut(scores$Score,breaks=5)
scores.table <- table(scores.cut)
pie (scores.table)

Assist. Prof. Emre Ugur 7826th October 2016

Homework

1.Create a text file which consist of body height and weight
from 10 of your friends

2.Import the text file into R

3.Add a new BMI column

4.Create a scatter plot of your data

5.Create a second text file which consists of age and home city
of your friends

6.Import the second file and merge it with the first one

Assist. Prof. Emre Ugur 7926th October 2016

Homework

1.Write a function that iterates through a vector and computes
the sum of vector’s elements

2.Write a function that iterates through all columns and rows of
a matrix and computes the means of the columns and the
rows

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 78
	Slide 79

