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Previous lectures

 Vectors
 Matrices
 Lists
 Data Frames
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Data import

So far, we have entered our data into R
> person.height <- c(Can=1.70, 
Cem=1.75, Hande=1.62)

 In practice, data is usually stored in data 
bases or files and we import it from there

 In the following slides, we will prepare a file 
which contains our data and import the file 
content into R

Name, Height, Weight
Can, 1.7, 65
Cem, 1.75, 66
Hande, 1.62, 61
Lale, 1.76, 64
Arda, 1.78, 63
Bilgin, 1.77,84
Cem, 1.69, 75
Ozlem, 1.75, 65
Ali, 1.73, 75
Haluk, 1.71, 81

textfile
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Data file

 As a first step we create a new text file using RStudio or an 
alternative text editor like Notepad++



Assist. Prof. Emre Ugur 626th October 2016

Data file

 In the files tab we select the “…” item and browse to the folder 
in which we have stored the text file
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Data file

 In the menu “More”, we select “Set As Working Directory”
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Data import with read.table

The function read.table is the most convenient way to read in a rectangular grid of 
data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "", quote = "\"'",
           dec = ".", row.names, col.names,
           as.is = !stringsAsFactors,
           na.strings = "NA", colClasses = NA, nrows = -1,
           skip = 0, check.names = TRUE, 
           fill = !blank.lines.skip,
           strip.white = FALSE, blank.lines.skip = TRUE,
           comment.char = "#",
           allowEscapes = FALSE, flush = FALSE,
           stringsAsFactors = default.stringsAsFactors(),
           fileEncoding = "", encoding = "unknown", text)
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Arguments of read.table 

file 

 Name of the file which the data are to be read from

 Each row of the table appears as one line of the file 

 If it does not contain an absolute path, the file name is relative 
to the current working directory

 Can also be a complete URL
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Arguments of read.table 

header 

 Logical value indicating whether the file 
contains the names of the variables as its 
first line

 If header information is available in the file, 
it will be used for variable names

Name, Height, Weight
Can, 1.7, 65
Cem, 1.75, 66
Hande, 1.62, 61
Lale, 1.76, 64
Arda, 1.78, 63
Bilgin, 1.77,84
Cem, 1.69, 75
Ozlem, 1.75, 65
Ali, 1.73, 75
Haluk, 1.71, 81
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Arguments of read.table 

sep 

 Field separator character 

 Values on each line of the file are separated 
by this character

 Default value sep = "" means that the 
separator is ‘white space’: one or more 
spaces, tabs, newlines or carriage returns

Name, Height, Weight
Can, 1.7, 65
Cem, 1.75, 66
Hande, 1.62, 61
Lale, 1.76, 64
Arda, 1.78, 63
Bilgin, 1.77,84
Cem, 1.69, 75
Ozlem, 1.75, 65
Ali, 1.73, 75
Haluk, 1.71, 81
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Working directory

Before the actual import, we need to check the current working 
directory to make sure which path to use when importing the 
data file

> getwd()
[1] "/home/c7031082/R"

 We change working directory to the path where our data file is 
located in order to simplify data import
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Change working directory in R
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Change working directory in RStudio

 In the files tab we select the “…” item and browse to the folder 
in which we have stored the text file
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Change working directory in RStudio

 In the menu “More”, we select “Set As Working Directory”
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Data import

Now, we import the data into the data frame person.data by 
using the function read.table 

> person.data <- read.table(header=TRUE, 
"height_weight_data.txt", sep=",")

> person.data
     Name Height Weight
1     Can   1.70     65
2     Cem   1.75     66
3   Hande   1.62     61
4    Lale   1.76     64
5    Arda   1.78     63
6  Bilgin   1.77     84
7     Cem   1.69     75
8   Ozlem   1.75     65
9     Ali   1.73     75
10  Haluk   1.71     81

What is the mode/type of person.data?
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Data modifications 

We add a new column BMI like we did before
> person.data$BMI <- person.data$Weight / 
person.data$Height^2

> person.data
     Name Height Weight      BMI
1     Can   1.70     65 22.49135
2     Cem   1.75     66 21.55102
3   Hande   1.62     61 23.24341
4    Lale   1.76     64 20.66116
5    Arda   1.78     63 19.88385
6  Bilgin   1.77     84 26.81222
7     Cem   1.69     75 26.25958
8   Ozlem   1.75     65 21.22449
9     Ali   1.73     75 25.05931
10  Haluk   1.71     81 27.70083
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Data modifications 

We can change the values of a column by reassigning the 
column with the new values, e.g. rounding BMI
> person.data$BMI <- round(person.data$BMI, 2)

> person.data
     Name Height Weight   BMI
1     Can   1.70     65 22.49
2     Cem   1.75     66 21.55
3   Hande   1.62     61 23.24
4    Lale   1.76     64 20.66
5    Arda   1.78     63 19.88
6  Bilgin   1.77     84 26.81
7     Cem   1.69     75 26.26
8   Ozlem   1.75     65 21.22
9     Ali   1.73     75 25.06
10  Haluk   1.71     81 27.70
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Data modifications 

 When creating new columns, we can make use of functions to 
compute the values of a new column

 Let’s recapitulate the ifelse() function 

ifelse(test, yes, no) returns a vector which is created 
from selected elements from the vectors yes and no: yes[i] 
is selected if test[i] is true and no[i] is selected if 
test[i] is false

> ifelse(person.height > 1.7, "tall", "small")
    Can     Cem   Hande 
"small"  "tall" "small"
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Data frame modifications 

Let’s use ifelse() to create a new column which indicates 
whether BMI is above 22.5

> person.data$above22.5 <- ifelse(person.data$BMI>22.5, T 
,F)
> person.data
     Name Height Weight   BMI above22.5
1     Can   1.70     65 22.49     FALSE
2     Cem   1.75     66 21.55     FALSE
3   Hande   1.62     61 23.24      TRUE
4    Lale   1.76     64 20.66     FALSE
5    Arda   1.78     63 19.88     FALSE
6  Bilgin   1.77     84 26.81      TRUE
7     Cem   1.69     75 26.26      TRUE
8   Ozlem   1.75     65 21.22     FALSE
9     Ali   1.73     75 25.06      TRUE
10  Haluk   1.71     81 27.70      TRUE



Assist. Prof. Emre Ugur 2126th October 2016

Data frame summary

summary() provides a summary statistic of a data frame
> summary(person.data)
      Name       Height          Weight     
 Cem    :2   Min.   :1.620   Min.   :61.00  
 Ali    :1   1st Qu.:1.702   1st Qu.:64.25  
 Arda   :1   Median :1.740   Median :65.50  
 Bilgin :1   Mean   :1.726   Mean   :69.90  
 Can    :1   3rd Qu.:1.758   3rd Qu.:75.00  
 Haluk  :1   Max.   :1.780   Max.   :84.00  
 (Other):3                                  
      BMI        above22.5      
 Min.   :19.88   Mode :logical  
 1st Qu.:21.30   FALSE:5        
 Median :22.86   TRUE :5        
 Mean   :23.49   NA's :0        
 3rd Qu.:25.96                  
 Max.   :27.70 
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Data frame summary

From the output of summary() we observe that the format of 
the summary statistic depends on the column mode

 For numeric modes like height we retrieve minimum, 1st quartile (25% 
quantile), median, mean, 3rd quartile (75% quantile), maximum

 For Boolean mode we retrieve number of True, False and missing 
values denoted with NA

 For character mode we retrieve the number of entries for each string
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Scatter Plot

 Beside numeric summary statistics, a convenient way for data 
exploration is plotting

 R provides us many powerful tools for plotting

 We will learn more about plotting later

For now, we create a simple scatter plot by plotting height on the 
x-axis and weight on the y-axis
> plot(person.data$Height, person.data$Weight)
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Scatter Plot
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Scatter Plot

 From the previous plot we observe that the values of Height 
are plotted versus the corresponding values of Weight

 Similar to other functions, we can provide additional 
parameters to the plot function

With pch=2 we change the point type (from circles to triangles) 
and beside that we provide axis labels
> plot(person.data$Height, person.data$Weight, 
pch=2, xlab="Height", ylab="Weight")
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Scatter Plot
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Scatter Plot

 Previously we used ifelse() to create a column which 
indicates whether BMI is above 22.5 or not

 In a graphical point of view, we can draw a line which 
represents whether BMI is above 22.5 or not

 Since Weight = BMI x Height^2 we can draw a line 22.5 x 
Height^2

 For drawing the line we need two height values which we take 
from the summary statistic
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Scatter Plot

From the summery statistic of Height we learn the minimum 
and maximum numbers
> summary(person.data$Height)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.620   1.702   1.740   1.726   1.758   1.780 

We draw the line from the minimum height (1.62) to the 
maximum height (1.78) using 22.5 x Height^2 for the y values 
of the line
> lines(c(1.62, 1.78), 22.5*c(1.62, 1.78)^2)
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 Data points above the line represents persons having a BMI 
above 22.5

Scatter Plot
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Some analysis with midterm results

scores <- read.table("scores.txt",header=TRUE)
plot(c(1:97),scores$Score)
plot(c(1:97),sort(scores$Score))
hist(scores$Score)
scores.cut <- cut(scores$Score,breaks=5)
scores.table <- table(scores.cut)
pie (scores.table)
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Merging data frames

 Data from an entity (e.g. a person) is often stored in multiple 
data sets

 One frequent operation is to join data sets: combine data sets 
according to the values of a common variable

 Example: two data sets contain different kind of data about 
some persons can be joined according to person’s name or 
person’s ID number

 In R, two data frames can be joined using the merge() 
function
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Merging data frames

 In a first step, we create an additional data set which contains 
the initial and member information of some persons
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Merging data frames

We import the second data set using read.table

> person.data2 <- read.table(header=TRUE, 
"person_data2.txt", sep=",")

> person.data2
   Name Initial Member
1   Can       C      T
2   Cem       C      T
3 Hande       H      F
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Merging data frames

We merge the two data frames using the merge() function
> merge(person.data, person.data2)
   Name Height Weight   BMI above22.5 Initial Member
1   Can   1.70     65 22.49     FALSE       C      T
2   Cem   1.69     75 26.26      TRUE       C      T
3   Cem   1.75     66 21.55     FALSE       C      T
4 Hande   1.62     61 23.24      TRUE       H      F

 We know that both data frames have the variable Name in 
common and we observe that the rows with identical name 
values were joined

 Problem: the name Cem appears twice in person.data and 
thus it is joined twice with person.data2
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Merging data frames

We better use unique IDs for each person
> person.data <- cbind(ID=c(1:10), person.data)

> person.data2 <- cbind(ID=c(1:3), person.data2)

 We specify with by which column is used for merging

> merge(person.data, person.data2, by="ID")
  ID Name.x Height Weight   BMI above22.5 Name.y Initial 
Member
1  1    Can   1.70     65 22.49     FALSE    Can   C      
T
2  2    Cem   1.75     66 21.55     FALSE    Cem    C      
T
3  3  Hande   1.62     61 23.24      TRUE  Hande   H      
F
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Homework

1.Create a text file which consist of body height and weight 
from 10 of your friends 

2.Import the text file into R

3.Add a new BMI column 

4.Create a scatter plot of your data 

5.Create a second text file which consists of age and home city 
of your friends

6.Import the second file and merge it with the first one



Assist. Prof. Emre Ugur 3726th October 2016

Vectors

Integer mode
> person.weight <- c(65, 66, 61)

 Numeric (floating-point number)
> person.height <- c(1.70, 1.75, 1.62)

 Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- c(FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+2i, -1+0i)
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Vectors

Filtering
> person.height[person.height > 1.65]
 Can  Cem 
1.72 1.75

Recycling
> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Vector operations
> person.weight / person.height^2
     Can      Cem    Hande 
21.97134 21.55102 23.24341
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Matrices

Creation
> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

 Matrix operations
 Transposition t(y)
 Element by element product y * y
 Matrix multiplication y %*% y
 Matrix scalar multiplication 3 * y
 Matrix addition y + y

Indexing, e.g. select first and second row
> z[c(1,2),]
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Matrices

Assign new values to submatrices
> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

 Filtering, e.g. obtain those rows of matrix z having elements 
in the second column which are at least equal to 5

> z[z[,2] >= 5,]
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Lists

Creation
> joe <- list(name="Joe", salary=55000, staff=T)

 Indexing
> joe$salary
> joe[["salary"]]
> joe[[2]]

Vectors as list components
> my.list <- list(vec1 = c(1,2), vec2 = c(3,4), 
vec3 = 5:7)
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Data frames

Creation
> person <- data.frame(height=person.height, 
weight=person.weight)

Indexing
> person[[1]]
> person[["height"]]
> person$height
> person[c(1,2),]
> person[-3,]

 Filtering
> person[person$height >= 1.7,]
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Data frames

Data import
> person.data <- read.table(header=TRUE, 
"height_weight_data.txt", sep=",")

 Data modifications
> person.data$BMI <- person.data$Weight / 
person.data$Height^2

 Summary
> summary(person.data)

 Merging
> merge(person.data, person.data2)
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Program today

 In a previous lecture, the word list example showed us that 
iterating through a set of elements is an important operation

 Today we will learn how we can program such iterations with 
so called “for loops”

 We will start with a recap of the word list example and 
continue with programming for loops 
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Looping

The most frequently used looping construct is 
for(x in vec) {expression}

 The for loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one iteration 
of the loop and expression is executed

 At each iteration, the variable x takes the value of the current 
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …
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Print variable when iterating

Let’s print out the value of variable x when iterating through the 
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
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Recap: word list

 Web search and other types of textual data mining are of 
great interest

 Let’s assume we have a collection of text documents

 Whenever we search for some term, we would like to retrieve 
those documents in which our search term appears most 
often

 Our first goal is to determine which words are in a text and 
at which location in the text each word occurs 
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Recap: word list

Let’s consider this sentence as our text example:
 a text consists of a word and another word 
and so on and so forth

 For each word we need to obtain the location in the text:
a 1 5 
text  2 
consists  3 
of  4 
word  6 9 
and  7 10 13 
another  8 
so  11 14 
on  12 
forth  15
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Recap: word list

 Let’s assume that we iterate through our text in a word by 
word manner: a, text, consists, of, a, ... 

 Let’s further assume that the current word in our iteration is 
always stored in the variable word

 Let’s further assume that we have a counter i which is 
increased by 1 for every word: the counter tells the current 
position in the text
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Recap: word list

Let’s start with initializing our word list
> word.list <- list()

Our first word a is stored in the variable word
word <- "a"

Since it is our first word, our counter i has the value 1
> i <- 1

Now we add our current word a to our word list
> word.list[[word]] <- c(word.list[[word]], i)
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Example: word list

In the last step, when adding the current word to our word list 
we used the two list characteristics
> word.list[[word]] <- c(word.list[[word]], i)

 We can access list components with named tags
> joe[["salary"]]
[1] 55000

1.We can have vectors as list components

2.> my.list <- list(vec = c(1,2))

3.> my.list
4.$vec
5.[1] 1 2
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Example: word list

Let’s check our word list after the first iteration
> word.list
$a
[1] 1

 The value for list component “a” is 1 since it is the first time that 
“a” was added to the list 

 We interpret this intermediate result as word a has position 1
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Example: word list

We go on with the second word text
> word <- "text"
> i <- 2
> word.list[[word]] <- c(word.list[[word]], i)

Let’s check again our word list after the second iteration
> word.list
$a
[1] 1

$text
[1] 2

We observe that we now have a second list entry text with 
position value 2
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Example: word list

We proceed with the next 3 iterations
> word <- "consists"
> i <- 3
> word.list[[word]] <- c(word.list[[word]], i)

> word <- "of"
> i <- 4
> word.list[[word]] <- c(word.list[[word]], i)

> word <- "a"
> i <- 5
> word.list[[word]] <- c(word.list[[word]], i)
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Example: word list

We check our word list again
> word.list
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4
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Example: word list

 So far we have learned how to represent which words are in a 
text and at which location in the text each word occurs 

 We have iterated through our text in a word by word manner

 In practice, such iterations are automated with so called loops
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Looping

The most frequently used looping construct is 
for(x in vec) {expression}

 The for loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one iteration 
of the loop and expression is executed

 At each iteration, the variable x takes the value of the current 
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …
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Print variable when iterating

Let’s print out the value of variable x when iterating through the 
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
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Print variable when iterating

 The for loop works with other modes beside numeric as well

Example: like before we print the value of the variable when 
iterating through a vector of strings

> word.vector <- c("a", "text", "consists", 
"of")

> for(word in word.vector) {print (word)}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"
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Print variable when iterating

As an alternative we can create a new vector which ranges from 
1 until the length of the vector, iterate through this vector and 
access the original vector via indexing

> vector.indices <- 1:length(word.vector)

> vector.indices
[1] 1 2 3 4

> for(i in vector.indices) {print(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"
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Print variable when iterating

We can write the alternative way in one line

> for(i in 1:length(word.vector)) {print 
(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"
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Print variable when iterating

 The advantage of the alternative way is that we have access 
to the iteration number and the vector elements

Example: print index i together with the vector element by 
using the paste() function for concatenating strings

> for(i in 1:length(word.vector)) {print 
(paste("Element", i, "is", word.vector[i]))}
[1] "Element 1 is a"
[1] "Element 2 is text"
[1] "Element 3 is consists"
[1] "Element 4 is of"
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Compute length of a vector

 We can change the value of a variable during looping

For example, let’s write our own function for computing the length 
of a vector

> vec <- c(1:10)

> counter <- 0

> for(x in vec) {  ???? }

> counter
[1] 10
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Compute length of a vector

 We can change the value of a variable during looping

For example, let’s write our own function for computing the length 
of a vector

> vec <- c(1:10)

> counter <- 0

> for(x in vec) {counter <- counter + 1}

> counter
[1] 10
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Recap: writing our own function 

A simple function that adds 1 to its input and returns the result

> AddOne <- function(x) {x+1}

Function 
name

Function 
inputs

Instructions that take the 
inputs and use them to 
compute other values.

The last computed value 
is returned by default. 
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Recap: writing our own function 

After defining our function, we can work with it

> AddOne <- function(x) {x+1}

> AddOne(1)
[1] 2

> AddOne(-5)
[1] -4

> AddOne(c(1,2,3))
[1] 2 3 4
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Recap: writing our own function 

A more sophisticated function that adds a user-specified value to 
its first input

> AddValue <- function(x, Addend=1) {x+Addend}

In addition to the first 
input x we specify a 
second input Addend 
with default value 1.
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Recap: writing our own function 

After defining our new function, we can work with it

> AddValue <- function(x, Addend=1) {x+Addend}

> AddValue(1)
[1] 2

> AddValue(1,2)
[1] 3

> AddValue(c(1:3),2)
[1] 3 4 5
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Compute length of a vector

Write our own function for computing the length of a vector

## function to compute length of vector vec
vec.length <- function(vec) 
{
  # initialize counter
  counter <- 0

  # iterate through vec and increase counter
  for(x in vec) {counter <- counter + 1}

  # return counter
  return(counter)
}
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Compute length of a vector

 In the previous function definition we’ve used # to comment 
our code

 It is a good practice to comment code in particular when 
sharing code

We test our function
> vec.length(c(1:10))
[1] ?

> vec.length(c("Hande", "Cem", "Can"))
[1] ?
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Compute length of a vector

 We can change the value of a variable during looping

For example, let’s write our own function for computing the length 
of a vector

> vec <- c(1:10)

> counter <- 0

> for(x in vec) {  ???? }

> counter
[1] 10



Assist. Prof. Emre Ugur 7226th October 2016

Compute norm of a vector

For a 3-dimensional vector, the 
Euclidean norm is defined as
  

 We will write two functions

(1) Compute the Euclidean norm of a 
n-dimensional vector 

(2) Compute p-norm of a n-
dimensional vector

  
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Compute Euclidean norm of a vector

## compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
  # initialize norm
  norm <- 0
  
  # compute sum of squared vector elements
  for(x in vec) {norm <- norm + x^2}
  
  # sqrt of sum
  norm <- sqrt(norm)
  
  return(norm)
}
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Compute Euclidean norm of a vector

We test our function

> Euclid.norm(c(1, 2, 3))
[1] 3.741657

> sqrt(1^2+2^2+3^2)
[1] 3.741657

> Euclid.norm(c(sqrt(1), sqrt(3)))
[1] 2
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p-norm of a vector

## compute p-norm of a vector vec
p.norm <- function(vec, p=2)
{
  # initialize norm
  norm <- 0
  
  # compute sum of  exponentiated vector elements
  for(x in vec) {norm <- norm + x^p}
  
  # p radical of sum
  norm <- (norm)^(1/p)
  
  return(norm)
}
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p-norm of a vector

We test our function

> p.norm(c(1, 2, 3), p=1)
[1] 6

> p.norm(c(1, 2, 3))
[1] 3.741657

> p.norm(c(1, 2, 3), p=3)
[1] 3.301927
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Some analysis with midterm results

scores <- read.table("scores.txt",header=TRUE)
plot(c(1:97),scores$Score)
plot(c(1:97),sort(scores$Score))
hist(scores$Score)
scores.cut <- cut(scores$Score,breaks=5)
scores.table <- table(scores.cut)
pie (scores.table)



Assist. Prof. Emre Ugur 7826th October 2016

Homework

1.Create a text file which consist of body height and weight 
from 10 of your friends 

2.Import the text file into R

3.Add a new BMI column 

4.Create a scatter plot of your data 

5.Create a second text file which consists of age and home city 
of your friends

6.Import the second file and merge it with the first one
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Homework

1.Write a function that iterates through a vector and computes 
the sum of vector’s elements

2.Write a function that iterates through all columns and rows of 
a matrix and computes the means of the columns and the 
rows
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