
Assistant Professor Dr. Bert ARNRICH 16th April 20162nd November 2016 Assist. Prof. Emre Ugur

Introduction to Computing for Economics and
Management

Lecture 7: Loops Continued

Assist. Prof. Emre Ugur 22nd November 2016

Previous lecture: looping

The most frequently used looping construct is
 for(x in vec) {expression}

 The for-loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one iteration
of the loop and expression is executed

 At each iteration, the variable x takes the value of the current
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …

Assist. Prof. Emre Ugur 32nd November 2016

Previous lecture: print variable when iterating

Let’s print out the value of variable x when iterating through the
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Assist. Prof. Emre Ugur 42nd November 2016

Previous lecture: print variable when iterating

 The for-loops works with other modes beside numeric as well

Example: like before we print the value of the variable when
iterating through a vector of strings

> word.vector <- c("a", "text", "consists",
"of")

> for(word in word.vector) {print (word)}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 52nd November 2016

Previous lecture: print variable when iterating

As an alternative we can create a new vector which ranges from
1 until the length of the vector, iterate through this vector and
access the original vector via indexing

> vector.indices <- 1:length(word.vector)

> vector.indices
[1] 1 2 3 4

> for(i in vector.indices) {print(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 62nd November 2016

Previous lecture: print variable when iterating

We can write the alternative way in one line

> for(i in 1:length(word.vector)) {print
(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 72nd November 2016

Previous lecture: compute length of a vector

Write our own function for computing the length of a vector

function to compute length of vector vec
vec.length <- function(vec)
{
 # initialize counter
 counter <- 0

 # iterate through vec and increase counter
 for(x in vec) {counter <- counter + 1}

 # return counter
 return(counter)
}

Assist. Prof. Emre Ugur 82nd November 2016

Previous lecture: compute Euclidean norm of a
vector
compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
 # initialize norm
 norm <- 0

 # compute sum of squared vector elements
 for(x in vec) {norm <- norm + x^2}

 # sqrt of sum
 norm <- sqrt(norm)

 return(norm)
}

Assist. Prof. Emre Ugur 92nd November 2016

Previous lecture: p-norm of a vector

compute p-norm of a vector vec
p.norm <- function(vec, p=2)
{
 # initialize norm
 norm <- 0

 # compute sum of exponentiated vector elements
 for(x in vec) {norm <- norm + x^p}

 # p radical of sum
 norm <- (norm)^(1/p)

 return(norm)
}

Assist. Prof. Emre Ugur 102nd November 2016

Program today

 Loops cont'd
 Read data from file
 New data type: factor

 Nested loops

 Alternative loop constructs
 While
 Repeat

 Loop control
 Break
 Next

Square elements of a vector

We can change the elements of the input vector and return a
new vector, e.g. square the elements of a vector

square elements of vector vec
square.vec <- function(vec)
{
 # initialize output vector vec.res
 vec.res <- vector()

 # fill vec.res with squared elements of vec
 ????

 return(????)
}

Square elements of a vector

We can change the elements of the input vector and return a
new vector, e.g. square the elements of a vector

square elements of vector vec
square.vec <- function(vec)
{
 # initialize output vector vec.res
 vec.res <- vector()

 # fill vec.res with squared elements of vec
 for(x in vec) {vec.res <- c(vec.res, x^2)}

 return(vec.res)
}

Square elements of a vector

We test our function

> square.vec(c(1,2,3))
[1] 1 4 9

> square.vec(7:10)
[1] 49 64 81 100

> (7:10)^2
[1] 49 64 81 100

Variable access in functions

● Cannot access the variables of functions from outside
> f <- function(x){
 print (paste("x:",x));
 x<-x+1
 z<-x+1;
 print (paste("z:",z));
 }

> x <- 10;
> f(x)
[1] ??
[1] ??
> x
[1] ??
> z
[1] ??

Function findwords

Now we are ready to program our word list function
finds locations of each word in word.vec
findwords <- function(word.vec)
{
 # initialize word list
 word.list <- list()

 # iterate through word vector
 for(i in 1:length(word.vec))
 {
 # store current word in variable word
 word <- word.vec[i]
 # add current word to word.list
 word.list[[word]] <- c(word.list[[word]], i)
 }
 return(word.list)
}
> findwords(c("a", "text", "consists", "of", "a"))

Function findwords

We test our function

> findwords(c("a", "text", "consists", "of", "a"))
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4

Read data from file

 The only drawback for now is that we still have to provide a
vector of words

 It would be much more convenient if the function would read
the text from a file

 We can use the scan() function which read data from a file
into a vector

Read data from file

 As a first step we create a new text file using RStudio or an
alternative text editor like Notepad++

Read data from file

 Next, we write our text into the new file

Read data from file

 Finally we save the file

Working directory

Before the actual import, we need to check the current working
directory to make sure which path to use when importing the
data file

> getwd()
[1] "/home/c7031082/R"

 We change working directory to the path where our data file is
located in order to simplify data import

Change working directory in R

Change working directory in RStudio

 In the files tab we select the “…” item and browse to the folder
in which we have stored the text file

Change working directory in RStudio

 In the menu “More”, we select “Set As Working Directory”

Read data from file

We read text data from a file into a vector
> word.vec <- scan("text.txt", "")
Read 15 items

> word.vec
 [1] "a" "text" "consists" "of"
 [5] "a" "word" "and" "another"
 [9] "word" "and" "so" "on"
[13] "and" "so" "forth"

 The second argument is a short form of what="" to indicate
that we intend to import text data

 Similar like in read.table() the separator between items is
‘white space’ by default: one or more spaces, tabs, newlines or
carriage returns

Function findwords

Now, we can use the imported word vector
> findwords(word.vec)
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4

$word
[1] 6 9

...

Function findwords

 As a next step, we can enhance our function findwords by
adding the text file import functionality

 In this way we don’t need to import the text into a vector
beforehand

 Instead of a word vector, the enhanced function needs a file
name as input

Function findwords

finds locations of each word in file
findwords <- function(file)
{
 # fill word.vec from data in file
 word.vec <- scan(file, "")

 # initialize word list
 word.list <- list()

 # iterate through word vector
 for(i in 1:length(word.vec))
 {
 # store current word in variable word
 word <- word.vec[i]
 # add current word to word.list
 word.list[[word]] <- c(word.list[[word]], i)
 }
 return(word.list)
}

Function findwords

We test our enhanced function
> findwords("text.txt")
$a
[1] 1 5

$text
[1] 2

$consists
[1] 3

$of
[1] 4

$word
[1] 6 9

...

Sort word list by word frequency

 Now we are ready to obtain the word frequencies from any
text

 The output of our function can be improved

 So far, we report words in the order how the words appeared
in the text

 It would be more convenient to sort the result alphabetically or
by word frequency

Sort word list by word frequency

 In a previous lecture we have already learned how to sort our
word list by word frequency

● First, we determine the word frequency
> word.freq <- sapply(word.list, length)

 Next, we compute the order of the word frequency
> word.freq.order <- order(word.freq)

● Finally, we use the obtained order of the word frequency for
sorting our word list

> word.list[word.freq.order]

Sort word list by word frequency

● We can write all three steps in one line
> word.list[order(sapply(word.list, length))]

● We can revert the sorting order by specifying the argument
decreasing = T in the order function

> word.list[order(sapply(word.list, length),
decreasing = T)]

Sort word list alphabetically

 In a previous lecture we have already learned how to sort our
word list alphabetically

● First, we obtain the words from word.list using names()
> words <- names(word.list)

 Second, we sort the words alphabetically
> words.sorted <- sort(words)

 Finally, we sort word.list using words.sorted
> word.list[words.sorted]

 We can write all three steps in one line
> word.list[sort(names(word.list))]

Function findwords

 We enhance our function findwords by sorting the word list
alphabetically per default

 We further enhance our function findwords by providing an
additional sort option sort.by.freq

 Default value of sort.by.freq = FALSE and thus word list is sorted
alphabetically by default

 In case sort.by.freq = TRUE we will sort the word list by word
frequency

if-else

 In order to implement the sorting feature, we need a control flow
construct with the following functionality:

 Check the value of the variable sort.by.freq

 In case the condition sort.by.freq = TRUE is satisfied, sort by word
frequency else sort alphabetically

 A control flow construct which provide this functionality is the
so called if-else statement

if (condition) {expression1} else {expression2}

 Depending on whether condition is true, the result is
expression1 or else expression2

if-else

> x <- 2
> y <- if(x == 2) x else x+1
> y
[1] 2

> x <- 3
> y <- if(x == 2) x else x+1
> y
[1] 4

> x <- 3
> y <- if(x == 2){z<-5; x} else {x+1}
> y
[1] 4
> z

if-else

 In our findwords function we need to check the value of the
variable sort.by.freq

In case the condition sort.by.freq = TRUE is satisfied, we sort
by word frequency else we sort alphabetically

if(sort.by.freq)
{
 # sort by word frequency
 return(word.list[order(sapply(word.list, length),
decreasing = T)])
}
else
{
 # sort alphabetically
 return(word.list[sort(names(word.list))])
}

Function findwords

finds locations of each word in file
findwords <- function(file, sort.by.freq = F)
{
 # fill word.vec from data in file
 word.vec <- scan(file, "")
 # initialize word list
 word.list <- list()

 # iterate through word vector
 for(i in 1:length(word.vec))
 {
 # store current word in variable word
 word <- word.vec[i]
 # add current word to word.list
 word.list[[word]] <- c(word.list[[word]], i)
 }
 # sort by word frequency or else sort alphabetically
 if(sort.by.freq)
 {return(word.list[order(sapply(word.list, length),
decreasing = T)])}
 else {return(word.list[sort(names(word.list))])}
}

Function findwords

> findwords("text.txt")
Read 15 items
$a
[1] 1 5

$and
[1] 7 10 13

$another
[1] 8

$consists
[1] 3

$forth
[1] 15
...

Function findwords

> findwords("text.txt", sort.by.freq=T)
Read 15 items
$and
[1] 7 10 13

$a
[1] 1 5

$word
[1] 6 9

$so
[1] 11 14

$text
[1] 2
...

Plotting word frequencies

From the resulting list of word positions returned by
findwords we can easily calculate the word frequencies using
sapply

> word.list <- findwords("text.txt",
sort.by.freq=T)
Read 15 items

> word.freq <- sapply(word.list, length)

> word.freq
 and a word so text
 3 2 2 2 1
consists of another on forth
 1 1 1 1 1

Plotting word frequencies

We create a barplot of the word frequencies
> barplot(word.freq, las=2)

an
d a

w
or

d so

te
xt

co
ns

is
ts of

an
ot

he
r

on

fo
rt

h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Word frequency in Wikipedia

 Since the for loop allows us to iterate through large texts, let’s
apply our function to Wikipedia

 We select the Wikipedia article about the R programming
language

 We copy the article in a text editor

 We apply findwords and we create a barplot of the 10 most
frequent words

Word frequency in Wikipedia

 We copy the Wikipedia article about R programming language
and save it as R_wikipedia.txt

Word frequency in Wikipedia

> word.list <- findwords("R_wikipedia.txt",
sort.by.freq=T)
Read 3395 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:10], las=2)

Word frequency in Wikipedia

Homework

1.Write a function that iterates through a vector and computes
the sum of vector’s elements

2.Write a function that iterates through all columns and rows of
a matrix and computes the means of the columns and the
rows

3.Create a barplot of the 10 most frequent used words in your
favorite Wikipedia article

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

