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Lecture 8: Loops Continued
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Previous lecture: looping

 The most frequently used looping construct is 
for(x in vec) {expression}

 The for-loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one 
iteration of the loop and expression is executed

 At each iteration, the variable x takes the value of the current 
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …
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Previous lecture: print variable when iterating

 Let’s print out the value of variable x when iterating through 
the vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
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Previous lecture: compute length of a vector

 Write our own function for computing the length of a vector

## function to compute length of vector vec
vec.length <- function(vec) 
{
  # initialize counter
  counter <- 0

  # iterate through vec and increase counter
  for(x in vec) {counter <- counter + 1}

  # return counter
  return(counter)
}
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Previous lecture: compute Euclidean norm of a vector

## compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
  # initialize norm
  norm <- 0
  
  # compute sum of squared vector elements
  for(x in vec) {norm <- norm + x^2}
  
  # sqrt of sum
  norm <- sqrt(norm)
  
  return(norm)
}
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Previous lecture: square elements of a vector

 We can change the elements of the input vector and return a 
new vector, e.g. square the elements of a vector

## square elements of vector vec
square.vec <- function(vec)
{
  # initialize output vector vec.res
  vec.res <- vector()

  # fill vec.res with squared elements of vec
  for(x in vec) {vec.res <- c(vec.res, x^2)}

  return(vec.res)
}
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Previous lecture: read data from file

 We read text data from a file into a vector
> word.vec <- scan("text.txt", "")
Read 15 items

> word.vec
 [1] "a"        "text"     "consists" "of"      
 [5] "a"        "word"     "and"      "another" 
 [9] "word"     "and"      "so"       "on"      
[13] "and"      "so"       "forth" 
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Previous lecture: if-else

 In order to implement the sorting feature, we need a control 
flow construct with the following functionality:

 Check the value of the variable sort.by.freq

 In case the condition sort.by.freq = TRUE is satisfied, sort by word 
frequency else sort alphabetically 

 A control flow construct which provide this functionality is the 
so called if-else statement 
if (condition) {expression1} else {expression2}

 Depending on whether condition is true, the result is 
expression1 or else expression2
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Previous lecture: if-else

> x <- 2
> y <- if(x == 2) x else x+1
> y
[1] 2

> x <- 3
> y <- if(x == 2) x else x+1
> y
[1] 4

> x <- 3
> y <- if(x == 2){z<-5; x} else {x+1}
> y
[1] 4
> z
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Previous lecture: Plotting word frequencies

From the resulting list of word positions returned by findwords 
we can easily calculate the word frequencies using sapply 

> word.list <- findwords("text.txt", 
sort.by.freq=T)
Read 15 items

> word.freq <- sapply(word.list, length)

> word.freq
     and        a     word       so     text 
       3        2        2        2        1 
consists       of  another       on    forth 
       1        1        1        1        1 
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Previous lecture: plotting word frequencies

 We create a barplot of the word frequencies
> barplot(word.freq, las=2) 
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Previous lecture: word frequency in Wikipedia

> word.list <- findwords("R_wikipedia.txt", 
sort.by.freq=T)
Read 3395 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:10], las=2)
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Previous lecture: word frequency in Wikipedia
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Program today

 Nested loops

 Alternative loop constructs
 While
 Repeat 

 Loop control
 Break
 Next 
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Nested loops

 So far we’ve used simple loops

 In nested loops, an inner loop is placed inside of another 
outer loop

 At each iteration of the outer loop, the inner loop is 
processed 
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Nested loops

 Let’s print the values of i and j form the outer and inner 
loop respectively 
for(i in 1:2)
{
  for(j in 1:3)
  {
    print(paste("outer", i, "inner", j))
  }
}
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
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Nested loops

 Let’s print the values of i and j form the outer and inner 
loop respectively 
for(i in 1:2)
{
  for(j in 1:3)
  {
    print(paste("outer", i, "inner", j))
  }
}
[1] "outer 1 inner 1"
[1] "outer 1 inner 2"
[1] "outer 1 inner 3"
[1] "outer 2 inner 1"
[1] "outer 2 inner 2"
[1] "outer 2 inner 3"
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Nested loops

We can use the outer counter i in the inner loop for adapting 
the number of iterations in the inner loop
string <- ""
for(i in 1:5)
{
  for(j in 1:i)
  {
    string <- paste(string, j)
  }
  print(string)
  string <- ""
}
[1] "?"
[1] "?"
[1] "?"
[1] "?"
[1] "?"
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Nested loops

We can use the outer counter i in the inner loop for adapting 
the number of iterations in the inner loop
string <- ""
for(i in 1:5)
{
  for(j in 1:i)
  {
    string <- paste(string, j)
  }
  print(string)
  string <- ""
}
[1] " 1"
[1] " 1 2"
[1] " 1 2 3"
[1] " 1 2 3 4"
[1] " 1 2 3 4 5"
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While loop

 A frequently used looping construct is
while(condition) {expression}

 As long as the condition is satisfied, the expression is 
executed

 Example:
> i <- 1
> while(i<5) {i <- i+1}
> i
[1] 5

 In the example we observe that the while loop is executed 4 
times
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While loop

 Be aware that you can easily end up with a endless loop, 
e.g.
> i <- 1
> while(i<5) {i <- i-1}

 The condition above is always true and thus the loop will not 
terminate

 In a while-loop we always have to take care how to end the 
loop
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While loop

 Endless loops are a simple way to generate computational 
load
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While loop

 In case of a long processing time, RStudio shows a stop 
symbol for terminating process
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While vs. for loop

 In the previous lecture we’ve learned several 
implementations in which we used the for-loop
 Print vector elements
 Compute length of a vector
 Compute Euclidian norm of a vector

 In the next slides, we will learn how to implement these 
functions with while-loops

 We will compare both implementations
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Print vector elements when looping

 We iterate through vector vec and print vector’s elements
vec <- c(7:11)
i <- 1
while(i <= length(vec)) 
{
  print (vec[i])
  i <- i+1
}
[1] ?
[1] ?
[1] ?
[1] ?
[1] ?
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Print vector elements when looping

 We iterate through vector vec and print vector’s elements
vec <- c(7:11)
i <- 1
while(i <= length(vec)) 
{
  print (vec[i])
  i <- i+1
}
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
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Print vector elements when looping

Since we operate with the index i anyway we can print it 
together with the vector element using the paste() function
vec <- c(7:11)
i <- 1
while(i <= length(vec)) 
{
  print (paste("Element", i, "is", vec[i]))
  i <- i+1
}
[1] "Element ? is ?"
[1] "Element ? is ?"
[1] "Element ? is ?"
[1] "Element ? is ?"
[1] "Element ? is ?"
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Print vector elements when looping

Since we operate with the index i anyway we can print it 
together with the vector element using the paste() function
vec <- c(7:11)
i <- 1
while(i <= length(vec)) 
{
  print (paste("Element", i, "is", vec[i]))
  i <- i+1
}
[1] "Element 1 is 7"
[1] "Element 2 is 8"
[1] "Element 3 is 9"
[1] "Element 4 is 10"
[1] "Element 5 is 11"
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Compute length of a vector

 If we decrease the while condition by 1 we can use the 
resulting value of i as vector length

vec <- c(7:11)
i <- 1
while(i <= length(vec)-1) 
{
  i <- i+1
}
i
[1] ?

 It is not a very useful implementation since we use length 
anyway in the while condition
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Compute Euclidean norm of a vector

## compute Euclidean norm of a vector vec
Euclid.norm2 <- function(vec)
{
  # initialize norm
  norm <- 0
  
  # compute sum of squared vector elements
  i <- 1
  while(i <= length(vec))  # what is the for equivalent?
  {
    norm <- norm + vec[i]^2
    i <- i + 1
  }
  
  # sqrt of sum
  norm <- sqrt(norm)
  
  return(norm)
}
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While vs. for loop

 We can check whether the new function for computing the 
Euclidean norm delivers the same results like the one from 
previous lecture where we used the for-loop

> Euclid.norm(c(1, 2, 3))
[1] 3.741657
> Euclid.norm2(c(1, 2, 3))
[1] 3.741657

> Euclid.norm(c(sqrt(1), sqrt(3)))
[1] 2
> Euclid.norm2(c(sqrt(1), sqrt(3)))
[1] 2



Asst. Prof. Emre Ugur 329th November 2016

While vs. for loop

 We can compare both implementations in terms of running 
time

 We use the function system.time to measure CPU (and 
other) times that an expression used

 In order to see a real difference between both 
implementations, we compute the norm of a vector having 
10 million dimensions
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While vs. for loop

> system.time(Euclid.norm(c(1:10000000)))
   user  system elapsed 
   4.87    0.03    4.92 

> system.time(Euclid.norm2(c(1:10000000)))
   user  system elapsed 
  12.38    0.03   12.41 

 We observe that CPU time (called user time) is almost 3 
times higher for the second implementation which uses the 
while-loop
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While vs. for loop

 The CPU time for the while-loop is higher because we have 
to perform additional operations at each iteration
 We have to check whether i is less than vector length
 We have to increase i by one

# compute sum of squared vector elements
i <- 1
  while(i <= length(vec)) 
  {
    norm <- norm + vec[i]^2
    i <- i + 1
  }

# compute sum of squared vector elements
for(x in vec) {norm <- norm + x^2}
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Break

 An alternative way to terminate a while-loop is break
i <- 1
while(i < 10)
{
  i <- i + 1
  break
}
i
[1] ?

 The break command causes a termination of the loop after 
the first iteration although the while-condition is still true
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Break

 We can control when to exit the while-loop by using break 
in combination with an if statement

i <- 1
while(TRUE)
  {
    i <- i + 1
    if(i >= 10) {break}
  }
i
[1] ?
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Quiz with the while loop

 We often use the while-loop when the number of iterations is 
not known beforehand 

 For example, we want to implement a quiz: we ask the same 
question again and again until we get the right answer

quiz <- function()
{
  answer <- 0
  while(answer != 155)
  {
    answer <- readline("How many students are registered for 
this course? ")
    answer <- as.numeric(answer)
  }
  print("Congratulations, 155 is the right number.")
}
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Quiz with the while loop

> quiz()
How many students are registered for this course? 50
How many students are registered for this course? 100
How many students are registered for this course? 200
How many students are registered for this course?

 We better provide some help for solving the quiz …
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Quiz with the while loop

quiz <- function()
{
  answer <- 0
  while(answer != 155)
  {
    answer <- readline("How many students are registered for 
this course? ")
    answer <- as.numeric(answer)
  
    if(answer < 155) {print("No, more students.")}
    if(answer > 155) {print("No, less students.")}
  }
  print("Congratulations, 155 is the right number.")
}
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Quiz with the while loop

> quiz()
How many students are registered for this course? 50
[1] "No, more students."
How many students are registered for this course? 100
[1] "No, more students."
How many students are registered for this course? 200
[1] "No, less students."
...
How many students are registered for this course? 155
[1] "Congratulations, 155 is the right number."
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Random numbers with the while loop

 Another example in which we don’t know the number of 
iterations beforehand is when we want to generate 1000 
positive random numbers

 We use the rnorm function which generates normal 
distributed random numbers with mean 0

 Let’s start with generating 1000 normal distributed random 
numbers and plotting them
> plot(rnorm(1000))
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Random numbers with the while loop
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Random numbers with the while loop

 From the previous plot we observe that the generated 
random numbers are distributed around 0 as expected

 Let’s check how many positive random numbers we get
> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 506

> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 518

> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 493
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Random numbers with the while loop

 Let’s use the for-loop to estimate how many positive random 
number we get on average when generating 1000 random 
numbers with mean 0

rnd.numbers.above0 <- function(iterations=1000)
{
  nr.above0 <- vector()
  for(i in 1:iterations)
  {
    # generate 1000 normal distributed random numbers
    rnd.vec <- rnorm(1000)
    
    # save number of positive random numbers
    nr.above0 <- c(nr.above0, length(rnd.vec[rnd.vec>0]))
  }
  return(mean(nr.above0))
}
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Random numbers with the while loop

 We call rnd.numbers.above0 several times
> rnd.numbers.above0()
[1] 499.858
> rnd.numbers.above0()
[1] 499.137
> rnd.numbers.above0()
[1] 500.514

 We observe that mean number of random numbers above 0 
is around 500 as expected 

 We could generate 2000 random numbers in order to have 
around 1000 positive numbers but it usually does not give us 
exactly 1000 positive numbers
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Random numbers with the while loop

 In order to generate a particular amount of positive random 
numbers we better follow a different strategy

 We generate random numbers one at a time and 
immediately check whether the current number is above 0

 In case we got a positive number we add it to a vector

 We proceed until we have reached our desired number

 Since we don’t know beforehand how many iterations we 
need, we use the while-loop in combination with break and 
if
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Random numbers with the while loop

i <- 1
rnd.vec <- vector()
while(TRUE)
{
  # generate a single random number
  rnd.number <- rnorm(1)
  # if random number is positive add it to vector rnd.vec
  if(rnd.number > 0) 
  {
    rnd.vec <- c(rnd.vec, rnd.number)
    i <- i + 1
  }
  # exit after 10 positive random number
  if(i >= 10) {break}
}
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Random numbers with the while loop

 We test our implementation
> rnd.vec
[1] 1.1025410 0.4441786 0.7766904 1.7748363
[5] 1.7230330 0.4275433 0.9531675 0.3045710
[9] 1.6230163

> rnd.vec
[1] 0.3344614 0.7984514 1.4530143 1.0746171
[5] 1.4693036 1.5364879 0.2782448 0.1011667
[9] 1.2492443

 As a next step, we transfer our implementation into a 
function and add a parameter to control the amount of 
positive random numbers
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Random numbers with the while loop

### generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
  i <- 1
  rnd.vec <- vector()
  while(TRUE)
  {
    # generate a single random number
    rnd.number <- rnorm(1)
    # if random number is positive add it to vector rnd.vec
    if(rnd.number > 0) 
    {
      rnd.vec <- c(rnd.vec, rnd.number)
      i <- i + 1
    }
    # return rnd.vec after n positive random number
    if(i > n) {return(rnd.vec)}
  }
}
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Random numbers with the while loop

 In the function we use return to exit the loop since we 
need the vector as result

 Let’s test our function by plotting
> plot(positive.rnd.numbers(1000))
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Random numbers with the while loop



Asst. Prof. Emre Ugur 529th November 2016

Repeat loop

 Another looping construct is
repeat {expression}

 Expression is executed until the loop is terminated with 
break

 In comparison to the while-loop there is no longer a condition 
test

 We can use it whenever we don’t have a condition to test
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Repeat loop

 Example in which we use repeat instead of while(TRUE)

i <- 1
repeat
  {
    i <- i + 1
    if(i >= 10) {break}
  }
i
[1] ?
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Random numbers with the repeat loop

### generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
  i <- 1
  rnd.vec <- vector()
  repeat
  {
    # generate a single random number
    rnd.number <- rnorm(1)
    # if random number is positive add it to vector rnd.vec
    if(rnd.number > 0) 
    {
      rnd.vec <- c(rnd.vec, rnd.number)
      i <- i + 1
    }
    # return rnd.vec after n positive random number
    if(i > n) {return(rnd.vec)}
  }
}
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Next

 Another useful statement is next, which skips the remainder 
of the current iteration of the loop and proceed directly to the 
next iteration

 We can use a next statement in while-loops, repeat-loops 
and for-loops as well

for(i in 1:3)
{
  print("a")
  next
  print("b")
}
[1] "?"
[1] "?"
[1] "?"
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Random numbers with the repeat loop and next

 A next statement is useful in our previous function for 
generating positive random numbers

 We check whether the current random number is negative

 In case of a negative random number we proceed with the 
next iteration, otherwise we go on and add the current 
number to our vector
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Random numbers with the repeat loop and next

### generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
  i <- 1
  rnd.vec <- vector()
  repeat
  {
    # generate a single random number
    rnd.number <- rnorm(1)
    # if random number is negative proceed with next iteration
    if(rnd.number < 0) {next}
    
    rnd.vec <- c(rnd.vec, rnd.number)
    i <- i + 1
    
    # return rnd.vec after n positive random number
    if(i >= n) {return(rnd.vec)}
  }
}
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Homework

1. Write a function that uses the while-loop for iterating through 
a vector and compute the sum of vector’s elements

2. Replace the while-loop from the first task with a repeat-loop 

3. Implement a quiz with the repeat-loop.

4. Write a function that generates random numbers below 0 by 
using the repeat-loop.
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