
9th November 2016 Asst. Prof. Emre Ugur

Introduction to Computing for Economics and
Management

Lecture 8: Loops Continued

Asst. Prof. Emre Ugur 29th November 2016

Previous lecture: looping

 The most frequently used looping construct is
for(x in vec) {expression}

 The for-loop iterates through all elements of the vector vec

 For each element of the vector vec there will be one
iteration of the loop and expression is executed

 At each iteration, the variable x takes the value of the current
element of vec
 First iteration: x = vec[1]
 Second iteration: x = vec[2]
 …

Asst. Prof. Emre Ugur 39th November 2016

Previous lecture: print variable when iterating

 Let’s print out the value of variable x when iterating through
the vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Asst. Prof. Emre Ugur 49th November 2016

Previous lecture: compute length of a vector

 Write our own function for computing the length of a vector

function to compute length of vector vec
vec.length <- function(vec)
{
 # initialize counter
 counter <- 0

 # iterate through vec and increase counter
 for(x in vec) {counter <- counter + 1}

 # return counter
 return(counter)
}

Asst. Prof. Emre Ugur 59th November 2016

Previous lecture: compute Euclidean norm of a vector

compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
 # initialize norm
 norm <- 0

 # compute sum of squared vector elements
 for(x in vec) {norm <- norm + x^2}

 # sqrt of sum
 norm <- sqrt(norm)

 return(norm)
}

Asst. Prof. Emre Ugur 69th November 2016

Previous lecture: square elements of a vector

 We can change the elements of the input vector and return a
new vector, e.g. square the elements of a vector

square elements of vector vec
square.vec <- function(vec)
{
 # initialize output vector vec.res
 vec.res <- vector()

 # fill vec.res with squared elements of vec
 for(x in vec) {vec.res <- c(vec.res, x^2)}

 return(vec.res)
}

Asst. Prof. Emre Ugur 79th November 2016

Previous lecture: read data from file

 We read text data from a file into a vector
> word.vec <- scan("text.txt", "")
Read 15 items

> word.vec
 [1] "a" "text" "consists" "of"
 [5] "a" "word" "and" "another"
 [9] "word" "and" "so" "on"
[13] "and" "so" "forth"

Asst. Prof. Emre Ugur 89th November 2016

Previous lecture: if-else

 In order to implement the sorting feature, we need a control
flow construct with the following functionality:

 Check the value of the variable sort.by.freq

 In case the condition sort.by.freq = TRUE is satisfied, sort by word
frequency else sort alphabetically

 A control flow construct which provide this functionality is the
so called if-else statement
if (condition) {expression1} else {expression2}

 Depending on whether condition is true, the result is
expression1 or else expression2

Asst. Prof. Emre Ugur 99th November 2016

Previous lecture: if-else

> x <- 2
> y <- if(x == 2) x else x+1
> y
[1] 2

> x <- 3
> y <- if(x == 2) x else x+1
> y
[1] 4

> x <- 3
> y <- if(x == 2){z<-5; x} else {x+1}
> y
[1] 4
> z

Asst. Prof. Emre Ugur 109th November 2016

Previous lecture: Plotting word frequencies

From the resulting list of word positions returned by findwords
we can easily calculate the word frequencies using sapply

> word.list <- findwords("text.txt",
sort.by.freq=T)
Read 15 items

> word.freq <- sapply(word.list, length)

> word.freq
 and a word so text
 3 2 2 2 1
consists of another on forth
 1 1 1 1 1

Asst. Prof. Emre Ugur 119th November 2016

Previous lecture: plotting word frequencies

 We create a barplot of the word frequencies
> barplot(word.freq, las=2)

an
d a

w
or

d so

te
xt

co
ns

is
ts of

an
ot

he
r

on

fo
rt

h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Asst. Prof. Emre Ugur 129th November 2016

Previous lecture: word frequency in Wikipedia

> word.list <- findwords("R_wikipedia.txt",
sort.by.freq=T)
Read 3395 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:10], las=2)

Asst. Prof. Emre Ugur 139th November 2016

Previous lecture: word frequency in Wikipedia

Asst. Prof. Emre Ugur 149th November 2016

Program today

 Nested loops

 Alternative loop constructs
 While
 Repeat

 Loop control
 Break
 Next

Asst. Prof. Emre Ugur 159th November 2016

Nested loops

 So far we’ve used simple loops

 In nested loops, an inner loop is placed inside of another
outer loop

 At each iteration of the outer loop, the inner loop is
processed

Asst. Prof. Emre Ugur 169th November 2016

Nested loops

 Let’s print the values of i and j form the outer and inner
loop respectively
for(i in 1:2)
{
 for(j in 1:3)
 {
 print(paste("outer", i, "inner", j))
 }
}
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"
[1] "outer ? inner ?"

Asst. Prof. Emre Ugur 179th November 2016

Nested loops

 Let’s print the values of i and j form the outer and inner
loop respectively
for(i in 1:2)
{
 for(j in 1:3)
 {
 print(paste("outer", i, "inner", j))
 }
}
[1] "outer 1 inner 1"
[1] "outer 1 inner 2"
[1] "outer 1 inner 3"
[1] "outer 2 inner 1"
[1] "outer 2 inner 2"
[1] "outer 2 inner 3"

Asst. Prof. Emre Ugur 189th November 2016

Nested loops

We can use the outer counter i in the inner loop for adapting
the number of iterations in the inner loop
string <- ""
for(i in 1:5)
{
 for(j in 1:i)
 {
 string <- paste(string, j)
 }
 print(string)
 string <- ""
}
[1] "?"
[1] "?"
[1] "?"
[1] "?"
[1] "?"

Asst. Prof. Emre Ugur 199th November 2016

Nested loops

We can use the outer counter i in the inner loop for adapting
the number of iterations in the inner loop
string <- ""
for(i in 1:5)
{
 for(j in 1:i)
 {
 string <- paste(string, j)
 }
 print(string)
 string <- ""
}
[1] " 1"
[1] " 1 2"
[1] " 1 2 3"
[1] " 1 2 3 4"
[1] " 1 2 3 4 5"

Asst. Prof. Emre Ugur 209th November 2016

While loop

 A frequently used looping construct is
while(condition) {expression}

 As long as the condition is satisfied, the expression is
executed

 Example:
> i <- 1
> while(i<5) {i <- i+1}
> i
[1] 5

 In the example we observe that the while loop is executed 4
times

Asst. Prof. Emre Ugur 219th November 2016

While loop

 Be aware that you can easily end up with a endless loop,
e.g.
> i <- 1
> while(i<5) {i <- i-1}

 The condition above is always true and thus the loop will not
terminate

 In a while-loop we always have to take care how to end the
loop

Asst. Prof. Emre Ugur 229th November 2016

While loop

 Endless loops are a simple way to generate computational
load

Asst. Prof. Emre Ugur 239th November 2016

While loop

 In case of a long processing time, RStudio shows a stop
symbol for terminating process

Asst. Prof. Emre Ugur 249th November 2016

While vs. for loop

 In the previous lecture we’ve learned several
implementations in which we used the for-loop
 Print vector elements
 Compute length of a vector
 Compute Euclidian norm of a vector

 In the next slides, we will learn how to implement these
functions with while-loops

 We will compare both implementations

Asst. Prof. Emre Ugur 259th November 2016

Print vector elements when looping

 We iterate through vector vec and print vector’s elements
vec <- c(7:11)
i <- 1
while(i <= length(vec))
{
 print (vec[i])
 i <- i+1
}
[1] ?
[1] ?
[1] ?
[1] ?
[1] ?

Asst. Prof. Emre Ugur 269th November 2016

Print vector elements when looping

 We iterate through vector vec and print vector’s elements
vec <- c(7:11)
i <- 1
while(i <= length(vec))
{
 print (vec[i])
 i <- i+1
}
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11

Asst. Prof. Emre Ugur 279th November 2016

Print vector elements when looping

Since we operate with the index i anyway we can print it
together with the vector element using the paste() function
vec <- c(7:11)
i <- 1
while(i <= length(vec))
{
 print (paste("Element", i, "is", vec[i]))
 i <- i+1
}
[1] "Element ? is ?"
[1] "Element ? is ?"
[1] "Element ? is ?"
[1] "Element ? is ?"
[1] "Element ? is ?"

Asst. Prof. Emre Ugur 289th November 2016

Print vector elements when looping

Since we operate with the index i anyway we can print it
together with the vector element using the paste() function
vec <- c(7:11)
i <- 1
while(i <= length(vec))
{
 print (paste("Element", i, "is", vec[i]))
 i <- i+1
}
[1] "Element 1 is 7"
[1] "Element 2 is 8"
[1] "Element 3 is 9"
[1] "Element 4 is 10"
[1] "Element 5 is 11"

Asst. Prof. Emre Ugur 299th November 2016

Compute length of a vector

 If we decrease the while condition by 1 we can use the
resulting value of i as vector length

vec <- c(7:11)
i <- 1
while(i <= length(vec)-1)
{
 i <- i+1
}
i
[1] ?

 It is not a very useful implementation since we use length
anyway in the while condition

Asst. Prof. Emre Ugur 309th November 2016

Compute Euclidean norm of a vector

compute Euclidean norm of a vector vec
Euclid.norm2 <- function(vec)
{
 # initialize norm
 norm <- 0

 # compute sum of squared vector elements
 i <- 1
 while(i <= length(vec)) # what is the for equivalent?
 {
 norm <- norm + vec[i]^2
 i <- i + 1
 }

 # sqrt of sum
 norm <- sqrt(norm)

 return(norm)
}

Asst. Prof. Emre Ugur 319th November 2016

While vs. for loop

 We can check whether the new function for computing the
Euclidean norm delivers the same results like the one from
previous lecture where we used the for-loop

> Euclid.norm(c(1, 2, 3))
[1] 3.741657
> Euclid.norm2(c(1, 2, 3))
[1] 3.741657

> Euclid.norm(c(sqrt(1), sqrt(3)))
[1] 2
> Euclid.norm2(c(sqrt(1), sqrt(3)))
[1] 2

Asst. Prof. Emre Ugur 329th November 2016

While vs. for loop

 We can compare both implementations in terms of running
time

 We use the function system.time to measure CPU (and
other) times that an expression used

 In order to see a real difference between both
implementations, we compute the norm of a vector having
10 million dimensions

Asst. Prof. Emre Ugur 339th November 2016

While vs. for loop

> system.time(Euclid.norm(c(1:10000000)))
 user system elapsed
 4.87 0.03 4.92

> system.time(Euclid.norm2(c(1:10000000)))
 user system elapsed
 12.38 0.03 12.41

 We observe that CPU time (called user time) is almost 3
times higher for the second implementation which uses the
while-loop

Asst. Prof. Emre Ugur 349th November 2016

While vs. for loop

 The CPU time for the while-loop is higher because we have
to perform additional operations at each iteration
 We have to check whether i is less than vector length
 We have to increase i by one

compute sum of squared vector elements
i <- 1
 while(i <= length(vec))
 {
 norm <- norm + vec[i]^2
 i <- i + 1
 }

compute sum of squared vector elements
for(x in vec) {norm <- norm + x^2}

Asst. Prof. Emre Ugur 359th November 2016

Break

 An alternative way to terminate a while-loop is break
i <- 1
while(i < 10)
{
 i <- i + 1
 break
}
i
[1] ?

 The break command causes a termination of the loop after
the first iteration although the while-condition is still true

Asst. Prof. Emre Ugur 369th November 2016

Break

 We can control when to exit the while-loop by using break
in combination with an if statement

i <- 1
while(TRUE)
 {
 i <- i + 1
 if(i >= 10) {break}
 }
i
[1] ?

Asst. Prof. Emre Ugur 379th November 2016

Quiz with the while loop

 We often use the while-loop when the number of iterations is
not known beforehand

 For example, we want to implement a quiz: we ask the same
question again and again until we get the right answer

quiz <- function()
{
 answer <- 0
 while(answer != 155)
 {
 answer <- readline("How many students are registered for
this course? ")
 answer <- as.numeric(answer)
 }
 print("Congratulations, 155 is the right number.")
}

Asst. Prof. Emre Ugur 389th November 2016

Quiz with the while loop

> quiz()
How many students are registered for this course? 50
How many students are registered for this course? 100
How many students are registered for this course? 200
How many students are registered for this course?

 We better provide some help for solving the quiz …

Asst. Prof. Emre Ugur 399th November 2016

Quiz with the while loop

quiz <- function()
{
 answer <- 0
 while(answer != 155)
 {
 answer <- readline("How many students are registered for
this course? ")
 answer <- as.numeric(answer)

 if(answer < 155) {print("No, more students.")}
 if(answer > 155) {print("No, less students.")}
 }
 print("Congratulations, 155 is the right number.")
}

Asst. Prof. Emre Ugur 409th November 2016

Quiz with the while loop

> quiz()
How many students are registered for this course? 50
[1] "No, more students."
How many students are registered for this course? 100
[1] "No, more students."
How many students are registered for this course? 200
[1] "No, less students."
...
How many students are registered for this course? 155
[1] "Congratulations, 155 is the right number."

Asst. Prof. Emre Ugur 419th November 2016

Random numbers with the while loop

 Another example in which we don’t know the number of
iterations beforehand is when we want to generate 1000
positive random numbers

 We use the rnorm function which generates normal
distributed random numbers with mean 0

 Let’s start with generating 1000 normal distributed random
numbers and plotting them
> plot(rnorm(1000))

Asst. Prof. Emre Ugur 429th November 2016

Random numbers with the while loop

Asst. Prof. Emre Ugur 439th November 2016

Random numbers with the while loop

 From the previous plot we observe that the generated
random numbers are distributed around 0 as expected

 Let’s check how many positive random numbers we get
> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 506

> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 518

> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 493

Asst. Prof. Emre Ugur 449th November 2016

Random numbers with the while loop

 Let’s use the for-loop to estimate how many positive random
number we get on average when generating 1000 random
numbers with mean 0

rnd.numbers.above0 <- function(iterations=1000)
{
 nr.above0 <- vector()
 for(i in 1:iterations)
 {
 # generate 1000 normal distributed random numbers
 rnd.vec <- rnorm(1000)

 # save number of positive random numbers
 nr.above0 <- c(nr.above0, length(rnd.vec[rnd.vec>0]))
 }
 return(mean(nr.above0))
}

Asst. Prof. Emre Ugur 459th November 2016

Random numbers with the while loop

 We call rnd.numbers.above0 several times
> rnd.numbers.above0()
[1] 499.858
> rnd.numbers.above0()
[1] 499.137
> rnd.numbers.above0()
[1] 500.514

 We observe that mean number of random numbers above 0
is around 500 as expected

 We could generate 2000 random numbers in order to have
around 1000 positive numbers but it usually does not give us
exactly 1000 positive numbers

Asst. Prof. Emre Ugur 469th November 2016

Random numbers with the while loop

 In order to generate a particular amount of positive random
numbers we better follow a different strategy

 We generate random numbers one at a time and
immediately check whether the current number is above 0

 In case we got a positive number we add it to a vector

 We proceed until we have reached our desired number

 Since we don’t know beforehand how many iterations we
need, we use the while-loop in combination with break and
if

Asst. Prof. Emre Ugur 479th November 2016

Random numbers with the while loop

i <- 1
rnd.vec <- vector()
while(TRUE)
{
 # generate a single random number
 rnd.number <- rnorm(1)
 # if random number is positive add it to vector rnd.vec
 if(rnd.number > 0)
 {
 rnd.vec <- c(rnd.vec, rnd.number)
 i <- i + 1
 }
 # exit after 10 positive random number
 if(i >= 10) {break}
}

Asst. Prof. Emre Ugur 489th November 2016

Random numbers with the while loop

 We test our implementation
> rnd.vec
[1] 1.1025410 0.4441786 0.7766904 1.7748363
[5] 1.7230330 0.4275433 0.9531675 0.3045710
[9] 1.6230163

> rnd.vec
[1] 0.3344614 0.7984514 1.4530143 1.0746171
[5] 1.4693036 1.5364879 0.2782448 0.1011667
[9] 1.2492443

 As a next step, we transfer our implementation into a
function and add a parameter to control the amount of
positive random numbers

Asst. Prof. Emre Ugur 499th November 2016

Random numbers with the while loop

generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
 i <- 1
 rnd.vec <- vector()
 while(TRUE)
 {
 # generate a single random number
 rnd.number <- rnorm(1)
 # if random number is positive add it to vector rnd.vec
 if(rnd.number > 0)
 {
 rnd.vec <- c(rnd.vec, rnd.number)
 i <- i + 1
 }
 # return rnd.vec after n positive random number
 if(i > n) {return(rnd.vec)}
 }
}

Asst. Prof. Emre Ugur 509th November 2016

Random numbers with the while loop

 In the function we use return to exit the loop since we
need the vector as result

 Let’s test our function by plotting
> plot(positive.rnd.numbers(1000))

Asst. Prof. Emre Ugur 519th November 2016

Random numbers with the while loop

Asst. Prof. Emre Ugur 529th November 2016

Repeat loop

 Another looping construct is
repeat {expression}

 Expression is executed until the loop is terminated with
break

 In comparison to the while-loop there is no longer a condition
test

 We can use it whenever we don’t have a condition to test

Asst. Prof. Emre Ugur 539th November 2016

Repeat loop

 Example in which we use repeat instead of while(TRUE)

i <- 1
repeat
 {
 i <- i + 1
 if(i >= 10) {break}
 }
i
[1] ?

Asst. Prof. Emre Ugur 549th November 2016

Random numbers with the repeat loop

generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
 i <- 1
 rnd.vec <- vector()
 repeat
 {
 # generate a single random number
 rnd.number <- rnorm(1)
 # if random number is positive add it to vector rnd.vec
 if(rnd.number > 0)
 {
 rnd.vec <- c(rnd.vec, rnd.number)
 i <- i + 1
 }
 # return rnd.vec after n positive random number
 if(i > n) {return(rnd.vec)}
 }
}

Asst. Prof. Emre Ugur 559th November 2016

Next

 Another useful statement is next, which skips the remainder
of the current iteration of the loop and proceed directly to the
next iteration

 We can use a next statement in while-loops, repeat-loops
and for-loops as well

for(i in 1:3)
{
 print("a")
 next
 print("b")
}
[1] "?"
[1] "?"
[1] "?"

Asst. Prof. Emre Ugur 569th November 2016

Random numbers with the repeat loop and next

 A next statement is useful in our previous function for
generating positive random numbers

 We check whether the current random number is negative

 In case of a negative random number we proceed with the
next iteration, otherwise we go on and add the current
number to our vector

Asst. Prof. Emre Ugur 579th November 2016

Random numbers with the repeat loop and next

generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
 i <- 1
 rnd.vec <- vector()
 repeat
 {
 # generate a single random number
 rnd.number <- rnorm(1)
 # if random number is negative proceed with next iteration
 if(rnd.number < 0) {next}

 rnd.vec <- c(rnd.vec, rnd.number)
 i <- i + 1

 # return rnd.vec after n positive random number
 if(i >= n) {return(rnd.vec)}
 }
}

Asst. Prof. Emre Ugur 589th November 2016

Homework

1. Write a function that uses the while-loop for iterating through
a vector and compute the sum of vector’s elements

2. Replace the while-loop from the first task with a repeat-loop

3. Implement a quiz with the repeat-loop.

4. Write a function that generates random numbers below 0 by
using the repeat-loop.

	Slide 1
	Previous lecture: looping
	Previous lecture: print variable when iterating
	Previous lecture: compute length of a vector
	Previous lecture: compute Euclidean norm of a vector
	Previous lecture: square elements of a vector
	Previous lecture: read data from file
	Previous lecture: if-else
	Previous lecture: if-else
	Slide 10
	Previous lecture: plotting word frequencies
	Previous lecture: word frequency in Wikipedia
	Previous lecture: word frequency in Wikipedia
	Program today
	Nested loops
	Nested loops
	Slide 17
	Nested loops
	Slide 19
	While loop
	While loop
	While loop
	While loop
	While vs. for loop
	Print vector elements when looping
	Slide 26
	Print vector elements when looping
	Slide 28
	Compute length of a vector
	Compute Euclidean norm of a vector
	While vs. for loop
	While vs. for loop
	While vs. for loop
	While vs. for loop
	Break
	Break
	Quiz with the while loop
	Quiz with the while loop
	Quiz with the while loop
	Quiz with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Repeat loop
	Repeat loop
	Random numbers with the repeat loop
	Next
	Random numbers with the repeat loop and next
	Random numbers with the repeat loop and next
	Homework

