Introduction to Computing for Economics and
Management

Lecture 8: Loops Continued

o
g - @ o PN o©
™~ o =]
g -] e e o S, oo e ® %o ap @ ©
oo =] o =] oo o o o o° O o 009
o Ocop o0 o@ O ° 00 ° o ° o o o 3‘*
E' °°3°o °sL 2 Oocg%o °%° oo %o 4 2o °o°3?
E %o‘go‘$ o 00 =] ° om o O © 0§0_00, 080 oq.oooo
2 o | Jeatle SER8ofNY o3Yfue, o “BS por Taet 20 0 5o
R I N A N e A IR ooy
8 ook S SRa K i S
o ® o
o | FTeRrsy ST S NI B R AT P Bade G
]]]]]]
0 200 400 600 800 1000
index

9% November 2016 Asst. Prof. Emre Ugur

Previous lecture: looping

The most frequently used looping construct is
for(x 1n vec) {expression}

The for-loop iterates through all elements of the vector vec

For each element of the vector vec there will be one
iteration of the loop and expression is executed

At each iteration, the variable x takes the value of the current
element of vec

First iteration: x = vec|[1]

Second iteration: x = vec[2]

9% November 2016 Asst. Prof. Emre Ugur 2

Previous lecture: print variable when iterating

Let’s print out the value of variable x when iterating through
the vector vec

> vec <- c(1l:5)

> vec
[1] 1 2 3 4 5

> for(x 1n vec) {print (x)}

R = P
U W NP

9% November 2016 Asst. Prof. Emre Ugur 3

Previous lecture: compute length of a vector

* Write our own function for computing the length of a vector

function to compute length of vector vec
vec.length <- function (vec)

{

initialize counter
counter <- 0

iterate through vec and increase counter
for(x in wvec) {counter <- counter + 1}

return counter
return (counter)

9% November 2016 Asst. Prof. Emre Ugur

ué}c‘\um%"wz»
Previous lecture: compute Euclidean norm of a vector @

1863

compute Euclidean norm of a vector vec

Fuclid.norm <- function (vec)

{

initialize norm

norm <-— 0

compute sum of squared vector elements

for(x in vec) {norm <- norm + x"2}

sgrt of sum

norm <- sgrt(norm)

return (norm)

9% November 2016 Asst. Prof. Emre Ugur 5

Previous lecture: square elements of a vector

We can change the elements of the input vector and return a
new vector, e.g. square the elements of a vector

square elements of vector vec
square.vec <- function (vec)

{

initialize output vector vec.res
vec.res <- vector ()

fill vec.res with squared elements of vec
for(x 1in vec) {vec.res <- c(vec.res, x"2)}

return (vec.res)

9% November 2016 Asst. Prof. Emre Ugur 6

Previous lecture: read data from file

We read text data from a file into a vector

> word.vec <- scan("text.txt", "")
Read 15 items

> word.vec

(1] "a" "text" "consists" "of"
[5] "a" "word" "and" "another"
[9] "word" "and" "so" "on"

[13] "and" "so" "forth"

9% November 2016 Asst. Prof. Emre Ugur 7

Previous lecture: if-else

In order to implement the sorting feature, we need a control
flow construct with the following functionality:

Check the value of the variable sort.by. freqg

In case the condition sort.by.freq = TRUE is satisfied, sort by word
frequency else sort alphabetically

A control flow construct which provide this functionality is the
so called if-else statement

1f (condition) {expressionl} else {expression?}

Depending on whether condition is true, the result is

expressionl or else expression?
9% November 2016 Asst. Prof. Emre Ugur 8

Previous lecture: if-else

> x <= 2

>y <- 1f(x == 2) x else x+1
>y

[1] 2

> x <= 3

>y <- 1f(x == 2) x else x+1
>y

(1] 4

> x <= 3

> vy <- 1f(x == 2){z<-5; x} else {x+1}
>y

(1] 4

> Z

9% November 2016 Asst. Prof. Emre Ugur 9

Previous lecture: Plotting word frequencies

From the resulting list of word positions returned by findwords
we can easily calculate the word frequencies using sapply

> word.list <- findwords ("text.txt",
sort.by.freqg=T)
Read 15 items

> word.freqg <- sapply(word.list, length)

> word. freqg

and a word SO text

3 2 2 2 1
consists of another on forth
1 1 1 1 1

9% November 2016 Asst. Prof. Emre Ugur 10

Previous lecture: plotting word frequencies

We create a barplot of the word frequencies
> barplot (word.freq, las=2)

3.0

2.5

2.0

1.5

1.0

0.5

0.0 -

and
word

SO

text
consists
of
another

9% November 2016 Asst. Prof. Emre Ugur

on

forth

11

Previous lecture: word frequency in Wikipedia

> word.list <- findwords ("R wikipedia.txt",
sort.by.freg=T)

Read 3395 1tems
> word.freq <- sapply(word.list, length)

> barplot (word.freqg[l:10], las=2)

9% November 2016 Asst. Prof. Emre Ugur 12

Previous lecture: word frequency in Wikipedia

60 —

40 —

R
and
of
the
for
is

a

in

Retrieved

9% November 2016 Asst. Prof. Emre Ugur 13

Program today

Nested loops

* Alternative loop constructs
While
Repeat

* Loop control
Break
Next

9% November 2016 Asst. Prof. Emre Ugur 14

Nested loops

* So far we've used simple loops

“ In nested loops, an inner loop is placed inside of another
outer loop

“ At each iteration of the outer loop, the inner loop is
processed

9% November 2016 Asst. Prof. Emre Ugur 15

Nested loops

Let’s print the values of 1 and j form the outer and inner
loop respectively
for(i in 1:2)

{

for(j in 1:3)

{

print (paste ("outer", i, "inner", 7J))

}
}
(1] "outer ? inner 2"
(1] "outer ? inner 2"
(1] "outer ? inner 2"
(1] "outer ? inner 2"
(1] "outer ? inner 2"
(1] "outer ? inner 2"

9% November 2016 Asst. Prof. Emre Ugur 16

Nested loops

* Let’s print the values of i and j form the outer and inner
loop respectively
for(i in 1:2)
{
for(j i1n 1:3)
{

print (paste ("outer", 1, "inner", 7J))

(1] "outer 1 inner 1"
(1] "outer 1 inner 2"
(1] "outer 1 inner 3"
(1] "outer 2 inner 1"
(1] "outer 2 inner 2"
(1] "outer 2 inner 3"

9% November 2016 Asst. Prof. Emre Ugur 17

Nested loops

We can use the outer counter i in the inner loop for adapting

the number of iterations in the inner loop
string <- ""
for(i in 1:5)
{

for(j in 1:1)

{

string <- paste(string, 7)

}

print (string)

string <= ""

9% November 2016 Asst. Prof. Emre Ugur 18

Nested loops

We can use the outer counter i in the inner loop for adapting

the number of iterations in the inner loop
string <= ""
for(i in 1:5)
{

for(j in 1:1)

{

string <- paste(string, 7J)

}

print (string)

string <- ""

_r
LA 1 2"
"12 3"
"1 2 3 4"
"12 345"

[T e T s B e I i e o
R R R R

9% November 2016 Asst. Prof. Emre Ugur 19

While loop

A frequently used looping construct is
while (condition) {expression}

* As long as the condition is satisfied, the expression is
executed

" Example:
> 1 <=1
> while (1<5) {1 <- 1+1}
> 1
(1] 5

* In the example we observe that the while loop is executed 4
times

9% November 2016 Asst. Prof. Emre Ugur 20

While loop

Be aware that you can easily end up with a endless loop,
e.g.

> 1 <=1

> while (1<5) {1 <- 1-1}

The condition above is always true and thus the loop will not
terminate

In a while-loop we always have to take care how to end the
loop

9% November 2016 Asst. Prof. Emre Ugur 21

While loop

load

Endless loops are a simple way to generate computational

File Options View

Processes | Performance | App history | Startup

Users

Details

Services

34% 57% 6% 0%
Name Status CPU Memory Disk Metwork
| RStudio R Session 32,0% 45,5 MB 0 MB/s oMb "
> A VLC media player 2.1.5 (32 bit) 1,5% 28,0 MB 0 MB/s 0,1 Mb
< WMI Provider Host 0,7% 44 MB 0 MB/s 0 Mb
® | Windows Driver Foundation - User-.. 0,3% 09 MB 0 ME/s 0 Mb
[Task Manager 0,2% 99 MB 0 MB/s 0 Mb
b o0 Service Host: Local System (Networ... 0,2% 624 MB 0 MBE/s 0 Mb

9t November 2016

Asst. Prof. Emre Ugur

22

While loop

* In case of a long processing time, RStudio shows a stop
symbol for terminating process

Console @

Type 'demo()' for some demos, 'help()' for on-line help, or A
"help.start()' for an HTML browser interface to help.
Type 'q()" to quit R.

[Workspace loaded from ~/.RData]

= help(while)
Error: unexpected ')' in "help(while)"

= 1 <=1

= while(i<5) {i <- 141}
>

[1] >

> 1 <— 5

= while(i<5) {i <- 141}
>

[1] 5

= 1 <=1

= while(i<5) {1 <- 1-1}

9% November 2016 Asst. Prof. Emre Ugur 23

While vs. for loop

In the previous lecture we’ve learned several
implementations in which we used the for-loop
Print vector elements
Compute length of a vector
Compute Euclidian norm of a vector

* In the next slides, we will learn how to implement these
functions with while-loops

* We will compare both implementations

9% November 2016 Asst. Prof. Emre Ugur 24

Print vector elements when looping

We iterate through vector vec and print vector’'s elements
vec <- c(7:11)
1 <=1
while (1 <= length (vec))
{
print (vec[1i])
i <- i+1

R = P
V0 0 0)

9% November 2016 Asst. Prof. Emre Ugur 25

Print vector elements when looping

We iterate through vector vec and print vector’'s elements
vec <- c(7:11)
1 <=1
while (1 <= length (vec))
{
print (vec[1i])
i <- i+1

R = P
R = © 0 -
)

9% November 2016 Asst. Prof. Emre Ugur 26

Print vector elements when looping

Since we operate with the index i anyway we can print it
together with the vector element using the paste () function
vec <- c(7:11)
1 <-1
while (1 <= length (vec))
{

print (paste("Element", 1, "1s", vec[1]))

1 <- 141

(1] "Element ? is 2"
(1] "Element ? is 2"
(1] "Element ? is 2"
(1] "Element ? is 2"
(1] "Element ? is 2"

9% November 2016 Asst. Prof. Emre Ugur 27

Print vector elements when looping

Since we operate with the index i anyway we can print it
together with the vector element using the paste () function
vec <- c(7:11)
1 <-1
while (1 <= length (vec))
{

print (paste("Element", 1, "1s", vec[1]))

1 <- 141

(1] "Element 1 is 7"
(1] "Element 2 is 8"
(1] "Element 3 is 9"
(1] "Element 4 is 10"
(1] "Element 5 is 11"

9% November 2016 Asst. Prof. Emre Ugur 28

Compute length of a vector

* If we decrease the while condition by 1 we can use the
resulting value of i as vector length

vec <- c(7:11)
1 <=1
while (1 <= length (vec)-1)

{
1 <- i+1

[1] 7

“ Itis not a very useful implementation since we use length
anyway in the while condition

9% November 2016 Asst. Prof. Emre Ugur 29

Compute Euclidean norm of a vector

compute Euclidean norm of a vector vec
Fuclid.norm?2 <- function (vec)
{

initialize norm

norm <- 0

compute sum of squared vector elements

i <=1

while (i <= length(vec)) # what is the for equivalent?
{

norm <- norm + vec[i]"2
i <=1+ 1

sqrt of sum

norm <- sgrt (norm)

return (norm)

9% November 2016 Asst. Prof. Emre Ugur 30

While vs. for loop

We can check whether the new function for computing the
Euclidean norm delivers the same results like the one from
previous lecture where we used the for-loop

> Fuclid.norm(c (1, 2, 3))
(1] 3.7410657
> Fuclid.norm2 (c (1, 2, 3))
(1] 3.741657

> Euclid.norm(c(sgrt(l), sgrt(3)))
(1] 2
> Euclid.norm2 (c(sgrt(l), sgrt(3)))
(1] 2

9% November 2016 Asst. Prof. Emre Ugur 31

While vs. for loop

We can compare both implementations in terms of running
time

* We use the function system. t ime to measure CPU (and
other) times that an expression used

In order to see a real difference between both

implementations, we compute the norm of a vector having
10 million dimensions

9% November 2016 Asst. Prof. Emre Ugur 32

While vs. for loop

> system.time (Euclid.norm(c(1:10000000)))
user system elapsed
4.87 0.03 4.92

> system.time (Euclid.norm2 (c(1:10000000)))
user system elapsed
12.38 0.03 12.41

* We observe that CPU time (called user time) is almost 3

times higher for the second implementation which uses the
while-loop

9% November 2016 Asst. Prof. Emre Ugur 33

While vs. for loop

The CPU time for the while-loop is higher because we have
to perform additional operations at each iteration

We have to check whether i is less than vector length

We have to increase i by one

compute sum of squared vector elements

1 <=1
whiledi <= length(vecﬂ)
{

<— m + vec|[1]"2
li <- i + 1 I

}
compute sum of squared vector elements

for(x in vec) {norm <- norm + x"2}

9% November 2016 Asst. Prof. Emre Ugur 34

Break

An alternative way to terminate a while-loop is break
1 <-1
while (1 < 10)
{
1 <- 1 +1
break

[1] 7

The break command causes a termination of the loop after
the first iteration although the while-condition is still true

9% November 2016 Asst. Prof. Emre Ugur 35

Break

We can control when to exit the while-loop by using break
In combination with an i f statement

1 <=1
while (TRUE)
{
1 <- 1 + 1
1f(1 >= 10) {break}

9% November 2016 Asst. Prof. Emre Ugur 36

Quiz with the while loop

We often use the while-loop when the number of iterations is
not known beforehand

For example, we want to implement a quiz: we ask the same
guestion again and again until we get the right answer

quiz <- function ()
{
answer <- 0
while (answer != 155)
{
answer <- readline ("How many students are registered for
this course? ")
answer <- as.numeric (answer)
}

print ("Congratulations, 155 is the right number.")

}

9% November 2016 Asst. Prof. Emre Ugur 37

Quiz with the while loop

> quiz ()

How
How
How

How

many
many
many

many

students
students
students
students

are

are

are

are

registered for
registered for
registered for
registered for

this
this
this
this

course®?
course?
course®?

course®?

* We better provide some help for solving the quiz ...

9th November 2016

Asst. Prof. Emre Ugur

50
100
200

38

Quiz with the while loop

quiz <- function ()
{
answer <- 0
while (answer != 1505)

{

answer <- readline ("How many students are registered for
this course? ")

answer <- as.numeric (answer)

1if (answer < 155) {print("No, more students.")}
if (answer > 155) {print("No, less students.")}
}

print ("Congratulations, 155 is the right number.")

9% November 2016 Asst. Prof. Emre Ugur 39

Quiz with the while loop

> quiz ()

How many students are registered
(1] "No, more students."

How many students are registered
(1] "No, more students."

How many students are regilstered

[1] "No, less students."

How many students are registered

[1] "Congratulations, 155 1s the

for this course?

for this course?

for this course?

for this course?

right number."

9% November 2016 Asst. Prof. Emre Ugur

100

200

155

40

Random numbers with the while loop

* Another example in which we don’t know the number of
iterations beforehand is when we want to generate 1000
positive random numbers

* We use the rnorm function which generates normal
distributed random numbers with mean O

Let’s start with generating 1000 normal distributed random
numbers and plotting them
> plot (rnorm(1000))

9% November 2016 Asst. Prof. Emre Ugur 41

Random numbers with the while loop

- o ©
o . 0o, © © o .
T @ OG o o ° o ’ o ° e T § %9 50
o © s P o “ E et $oo o Q%o% ¥ oo 04 O, o0
@ 92 ¢op B g)@ oW @ S0 %@‘? &0 .;%,IB o "2 0% 4009 “
— T 7] o o ¢ o %9 O e @0 8 @ o o & o o B B0
(= 8@% =) o 8¢ Ro &g P g ofy © o & %@@G@Gﬂ
= o %m‘ 0% 0.8 &0 Fo B o Bos 2 Pra
= el o = D, an G% o 2o %82 %@ o &
T o SR g w0, BT o mteged o g, o
= o S B og DF, o s 8‘3‘3’@@0 B oy 0 &0 Q ©
o &)8 O@%) s o @(ﬁ w = I OD':' ot .:.':' C'O C'm OO(%%
c _ o © oo Cpg-:a? &% pof S g0 o 628 0o, © o %G
" o @@@D C%G%GGG & o @GC@ 0 5%59 O%%% 83(%@ = %@O QC?%O
%0 o g ° o o¥T o o, 0% @ . O) o
o e ® o 00 &7 © 5 ° o%o C'Q o® © &b@@ %oc) -:::-OG'D G%'Do o
C o 4 °° ° o o © ° o oo G;} ©e ©
o
° o
| I | I I |
0 200 400 600 800 1000

Index

9% November 2016 Asst. Prof. Emre Ugur 42

Random numbers with the while loop

From the previous plot we observe that the generated
random numbers are distributed around 0 as expected

* Let's check how many positive random numbers we get
> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])

[1] 5060

> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 518

> rnd.vec <- rnorm(1000)
> length(rnd.vec[rnd.vec>0])
[1] 493

9% November 2016 Asst. Prof. Emre Ugur 43

Random numbers with the while loop

Let’s use the for-loop to estimate how many positive random
number we get on average when generating 1000 random
numbers with mean O

rnd.numbers.abovel <- function (iterations=1000)
{
nr.above0 <- wvector /()
for(i in l:iterations)
{
generate 1000 normal distributed random numbers
rnd.vec <- rnorm(1000)

save number of positive random numbers
nr.aboveO0 <- c(nr.above(O, length(rnd.vec[rnd.vec>0]))

}

return (mean (nr.above0))

9t November 2016 Asst. Prof. Emre Ugur 44

Random numbers with the while loop

We call rnd.numbers.above0 several times
> rnd.numbers.abovel ()

[1] 499.858

> rnd.numbers.abovel ()

(1] 499.137

> rnd.numbers.abovel ()

(1] 500.514

" We observe that mean number of random numbers above 0
Is around 500 as expected

* We could generate 2000 random numbers in order to have
around 1000 positive numbers but it usually does not give us
exactly 1000 positive numbers

9% November 2016 Asst. Prof. Emre Ugur 45

Random numbers with the while loop

In order to generate a particular amount of positive random
numbers we better follow a different strategy

* We generate random numbers one at a time and
immediately check whether the current number is above 0

* In case we got a positive number we add it to a vector
* We proceed until we have reached our desired number

* Since we don’'t know beforehand how many iterations we
need, we use the while-loop in combination with break and
1f

9% November 2016 Asst. Prof. Emre Ugur 46

Random numbers with the while loop

1 <=1
rnd.vec <- vector ()
while (TRUE)
{
generate a single random number
rnd.number <- rnorm(1l)
1f random number 1is positive add it to vector rnd.vec
1f (rnd.number > 0)
{
rnd.vec <- c(rnd.vec, rnd.number)
1 <-1 + 1
}
exit after 10 positive random number
1f(1 >= 10) {break}

9% November 2016 Asst. Prof. Emre Ugur 47

Random numbers with the while loop

We test our implementation

> rnd.vec

(1] 1.1025410 0.4441786 0.7766904 1.7748363
. 7230330 0.4275433 0.9531675 0.3045710
(9] 1.6230163

Ul
=

> rnd.vec

(1] 0.3344614 0.7984514 1.4530143 1.0746171
(5] 1.4693036 1.5364879 0.2782448 0.1011667
(9] 1.2492443

“ As a next step, we transfer our implementation into a
function and add a parameter to control the amount of
positive random numbers

9% November 2016 Asst. Prof. Emre Ugur 48

Random numbers with the while loop

generate n positive random numbers
positive.rnd.numbers <- function (n=1000)

{
i<-1
rnd.vec <- vector ()
while (TRUE)
{
generate a single random number
rnd.number <- rnorm (1)
if random number is positive add it to vector rnd.vec
1f (rnd.number > 0)
{
rnd.vec <- c(rnd.vec, rnd.number)
i<-1 +1
}
return rnd.vec after n positive random number

if(1i > n) {return(rnd.vec)}

9% November 2016 Asst. Prof. Emre Ugur 49

Random numbers with the while loop

In the function we use return to exit the loop since we
need the vector as result

* Let’s test our function by plotting
> plot(positive.rnd.numbers (1000))

9% November 2016 Asst. Prof. Emre Ugur 50

Random numbers with the while loop

o
o o)
- o o)
o . . 8 o)
g | o o o o 9 o © o
L ™ e o O
% o] ? GG@ 5 - %,:F' %O °
o 9 _ o o o o o “ o ° %% o
o ™ o o oo o an @ &
5 oo ° o g Q.:.O 0 g0 ©° ©o0ef @ o @o © 2% g o
o o0 o
'g E] © 0 CB = © e % = OGGOQ .:.O © ~ oo 20 o o %}
c O o0 £ Coo 8o & O o ° 4 oo 0B
= 2 g O % W 0 o o 2 © o 0080 00, 8o “9%° o
E [an] =) (% @DO g‘é%@@% OOO E%F:‘S Q%ﬁ% %oﬂm%ﬂ OOOQ o 8 DO gci:%gog ooo o W o o
= —_]] o & o o
B %, &0, upd o° To0 B me o @ 9o 958 %Y g0 £808,08%% ©
o %0 Q0% ol oD R O oM 06, L% % Co
¢ 5 & 03&)@ o P %c% 0%0050 OC%)D‘?% @8’ F o o & @S%ép o
o | Do, 2 @ﬁ%’ .:.c§ G@:’ s 20, G%)C'G 3 G & oo
o G%@o Q%ﬁg%ﬂ o5 2 (9%3 %8%§ oo 0D D‘:'S'G:éqgﬁ g:'l%lﬂ:t?@% 5 %O
s i)
g — -:% P dg} CP' C.‘-O oo I:::”:::I-:Z:- O S e o Bﬁ oo%)c:. g}% CEE@DD o C%) =
| | I | I

Index

9% November 2016 Asst. Prof. Emre Ugur 51

Repeat loop

Another looping construct is
repeat {expression}

Expression is executed until the loop is terminated with
break

In comparison to the while-loop there is no longer a condition
test

We can use it whenever we don’t have a condition to test

9% November 2016 Asst. Prof. Emre Ugur 52

Repeat loop

Example in which we use repeat instead of while (TRUE)

1 <-1
repeat

{
1 <- 1 + 1
1f(1 >= 10) {break}

9% November 2016 Asst. Prof. Emre Ugur 53

Random numbers with the repeat loop

generate n positive random numbers
positive.rnd.numbers <- function (n=1000)
{

i <=1

rnd.vec <- vector ()

generate a single random number
rnd.number <- rnorm(1l)
if random number is positive add it to vector rnd.vec
if (rnd.number > 0)
{
rnd.vec <- c(rnd.vec, rnd.number)
i <=1+ 1
}
return rnd.vec after n positive random number

if (i > n) {return(rnd.vec) }

9% November 2016 Asst. Prof. Emre Ugur 54

Next

Another useful statement is next, which skips the remainder

of the current iteration of the loop and proceed directly to the
next iteration

We can use a next statement in while-loops, repeat-loops
and for-loops as well

for(i in 1:3)
{
print("a")
next
print ("b")

l] "?"
l] "?"
l] "?"

}
[
[
[

9% November 2016 Asst. Prof. Emre Ugur 55

Random numbers with the repeat loop and next

A next statement is useful in our previous function for
generating positive random numbers

* We check whether the current random number is negative

* In case of a negative random number we proceed with the
next iteration, otherwise we go on and add the current
number to our vector

9% November 2016 Asst. Prof. Emre Ugur 56

Random numbers with the repeat loop and next

generate n positive random numbers
positive.rnd.numbers <- function (n=1000)
{
i <=1
rnd.vec <- vector ()
repeat
{
generate a single random number
rnd.number <- rnorm(1l)
if random number is negative proceed with next iteration
[if(rnd.number < 0) {next}

rnd.vec <- c(rnd.vec, rnd.number)
i <- 1+ 1

return rnd.vec after n positive random number

if (i >= n) {return(rnd.vec) !}

9% November 2016 Asst. Prof. Emre Ugur 57

Homework

1. Write a function that uses the while-loop for iterating through
a vector and compute the sum of vector’s elements

2. Replace the while-loop from the first task with a repeat-loop
3. Implement a quiz with the repeat-loop.

4. Write a function that generates random numbers below 0 by
using the repeat-loop.

9% November 2016 Asst. Prof. Emre Ugur 58

	Slide 1
	Previous lecture: looping
	Previous lecture: print variable when iterating
	Previous lecture: compute length of a vector
	Previous lecture: compute Euclidean norm of a vector
	Previous lecture: square elements of a vector
	Previous lecture: read data from file
	Previous lecture: if-else
	Previous lecture: if-else
	Slide 10
	Previous lecture: plotting word frequencies
	Previous lecture: word frequency in Wikipedia
	Previous lecture: word frequency in Wikipedia
	Program today
	Nested loops
	Nested loops
	Slide 17
	Nested loops
	Slide 19
	While loop
	While loop
	While loop
	While loop
	While vs. for loop
	Print vector elements when looping
	Slide 26
	Print vector elements when looping
	Slide 28
	Compute length of a vector
	Compute Euclidean norm of a vector
	While vs. for loop
	While vs. for loop
	While vs. for loop
	While vs. for loop
	Break
	Break
	Quiz with the while loop
	Quiz with the while loop
	Quiz with the while loop
	Quiz with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Random numbers with the while loop
	Repeat loop
	Repeat loop
	Random numbers with the repeat loop
	Next
	Random numbers with the repeat loop and next
	Random numbers with the repeat loop and next
	Homework

