
Assistant Professor Dr. Bert ARNRICH 113th April 201616th November 2016 Assist. Prof. Emre Ugur

Introduction to Computing for Economics and
Management

Lecture 8: Graphics

Acknowledgement

 These slides are adapted from
Bert Arnrich's R lecture.

Assist. Prof. Emre Ugur 316th November 2016

Previous lectures

 In previous lectures we already used graphics
 Scatter plot of person’s height and weight
 Adding a line to a plot
 Barplot of word frequencies
 Plot of random numbers

 We first recapitulate the previous plots

 Next we learn more about graphics

Assist. Prof. Emre Ugur 416th November 2016

Recap: data import

So far, we have entered our data into R
> person.height <- c(Can=1.70, Cem=1.75,
Hande=1.62)

 In practice, data is usually stored in data bases or files and
we import it from there

 We prepare a file which contains our data and import the file
content into R

Assist. Prof. Emre Ugur 516th November 2016

Recap: data file

 As a first step we create a new text file using RStudio or an
alternative text editor like Notepad++

Assist. Prof. Emre Ugur 616th November 2016

Recap: data file

 Next, we fill the text file with our data:
 In the first line we write the file header
 In the remaining lines we write our data entries
 We separate each entry by a comma

Assist. Prof. Emre Ugur 716th November 2016

Recap: data file

 Finally we save the file

Assist. Prof. Emre Ugur 816th November 2016

Recap: data import with read.table

The function read.table is the most convenient way to read
in a rectangular grid of data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "", quote = "\"'",
 dec = ".", row.names, col.names,
 as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA, nrows = -1,
 skip = 0, check.names = TRUE,
 fill = !blank.lines.skip,
 strip.white = FALSE, blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "", encoding = "unknown", text)

Assist. Prof. Emre Ugur 916th November 2016

Recap: arguments of read.table

file

 Name of the file which the data are to be read from

 Each row of the table appears as one line of the file

 If it does not contain an absolute path, the file name is relative
to the current working directory

 Can also be a complete URL

Assist. Prof. Emre Ugur 1016th November 2016

Recap: arguments of read.table

header

 Logical value indicating whether the file contains the names of
the variables as its first line

 If header information is available in the file, it will be used for
variable names

Assist. Prof. Emre Ugur 1116th November 2016

Recap: arguments of read.table

sep

 Field separator character

 Values on each line of the file are separated by this character

 Default value sep = "" means that the separator is ‘white
space’: one or more spaces, tabs, newlines or carriage
returns

Assist. Prof. Emre Ugur 1216th November 2016

Recap: working directory

Before the actual import, we need to check the current working
directory to make sure which path to use when importing the
data file

> getwd()
[1] "C:/Users/Bert/Documents"

 We change working directory to the path where our data file is
located in order to simplify data import

Assist. Prof. Emre Ugur 1316th November 2016

Recap: change working directory in RStudio

 In the files tab we select the “…” item and browse to the folder
in which we have stored the text file

Assist. Prof. Emre Ugur 1416th November 2016

Recap: change working directory in RStudio

 In the menu “More”, we select “Set As Working Directory”

Assist. Prof. Emre Ugur 1516th November 2016

Recap: data import

Now, we import the data into the data frame person.data by
using the function read.table

> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

> person.data
 Name Height Weight
1 Can 1.70 65
2 Cem 1.75 66
3 Hande 1.62 61
4 Lale 1.76 64
5 Arda 1.78 63
6 Bilgin 1.77 84
7 Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
10 Haluk 1.71 81

Assist. Prof. Emre Ugur 1616th November 2016

Recap: data modifications

We add a new column BMI like we did before
> person.data$BMI <- person.data$Weight /
person.data$Height^2

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49135
2 Cem 1.75 66 21.55102
3 Hande 1.62 61 23.24341
4 Lale 1.76 64 20.66116
5 Arda 1.78 63 19.88385
6 Bilgin 1.77 84 26.81222
7 Cem 1.69 75 26.25958
8 Ozlem 1.75 65 21.22449
9 Ali 1.73 75 25.05931
10 Haluk 1.71 81 27.70083

Assist. Prof. Emre Ugur 1716th November 2016

Recap: data modifications

We can change the values of a column by reassigning the
column with the new values, e.g. rounding BMI
> person.data$BMI <- round(person.data$BMI, 2)

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 61 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
10 Haluk 1.71 81 27.70

Assist. Prof. Emre Ugur 1816th November 2016

Recap: data modifications

 When creating new columns, we can make use of functions to
compute the values of a new column

 Let’s recapitulate the ifelse() function

ifelse(test, yes, no) returns a vector which is created
from selected elements from the vectors yes and no: yes[i]
is selected if test[i] is true and no[i] is selected if
test[i] is false

> ifelse(person.height > 1.7, "tall", "small")
 Can Cem Hande
"small" "tall" "small"

Assist. Prof. Emre Ugur 1916th November 2016

Recap: data modifications

Let’s use ifelse() to create a new column which indicates
whether BMI is above 22.5

> person.data$above22.5 <- ifelse(person.data$BMI>22.5, T ,F)
> person.data
 Name Height Weight BMI above22.5
1 Can 1.70 65 22.49 FALSE
2 Cem 1.75 66 21.55 FALSE
3 Hande 1.62 61 23.24 TRUE
4 Lale 1.76 64 20.66 FALSE
5 Arda 1.78 63 19.88 FALSE
6 Bilgin 1.77 84 26.81 TRUE
7 Cem 1.69 75 26.26 TRUE
8 Ozlem 1.75 65 21.22 FALSE
9 Ali 1.73 75 25.06 TRUE
10 Haluk 1.71 81 27.70 TRUE

Assist. Prof. Emre Ugur 2016th November 2016

Recap: scatter plot of person height and weight

 Beside numeric summary statistics, we use graphics for data
exploration is plotting

 R provides us many powerful tools for plotting

We create a simple scatter plot by plotting height on the x-axis
and weight on the y-axis
> plot(person.data$Height, person.data$Weight)

Assist. Prof. Emre Ugur 2116th November 2016

1.65 1.70 1.75

65
70

75
80

person.data$Height

pe
rs

on
.d

at
a$

W
e

ig
h

t
Recap: scatter plot of person height and weight

Assist. Prof. Emre Ugur 2216th November 2016

Recap: scatter plot of person height and weight

 From the previous plot we observe that the values of Height
are plotted versus the corresponding values of Weight

 Similar to other functions, we can provide additional
parameters to the plot function

With pch=2 we change the point type (from circles to triangles)
and beside that we provide axis labels
> plot(person.data$Height, person.data$Weight,
pch=2, xlab="Height", ylab="Weight")

Assist. Prof. Emre Ugur 2316th November 2016

1.65 1.70 1.75

65
70

75
80

Height

W
ei

gh
t

Recap: scatter plot of person height and weight

Assist. Prof. Emre Ugur 2416th November 2016

Recap: scatter plot of person height and weight

From the summery statistic of Height we learn the minimum
and maximum numbers
> summary(person.data$Height)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.620 1.702 1.740 1.726 1.758 1.780

We draw the line from the minimum height (1.62) to the
maximum height (1.78) using 22.5 x Height^2 for the y values
of the line
> lines(c(1.62, 1.78), 22.5*c(1.62, 1.78)^2)

Assist. Prof. Emre Ugur 2516th November 2016

1.65 1.70 1.75

65
70

75
80

Height

W
ei

gh
t

Recap: scatter plot of person height and weight

 Data points above the line represents persons having a BMI
above 22.5

Assist. Prof. Emre Ugur 2616th November 2016

Recap: word list

 Web search and other types of textual data mining are of
great interest

 Let’s assume we have a collection of text documents

 Whenever we search for some term, we would like to retrieve
those documents in which our search term appears most
often

 Our first goal is to determine which words are in a text and at
which location in the text each word occurs

Assist. Prof. Emre Ugur 2716th November 2016

Recap: word list

Let’s consider this sentence as our text example:
 a text consists of a word and another word
and so on and so forth

 For each word we need to obtain the location in the text:
 a 1 5
 text 2
 consists 3
 of 4
 word 6 9
 and 7 10 13
 another 8
 so 11 14
 on 12
 forth 15

Assist. Prof. Emre Ugur 2816th November 2016

Recap: function findwords

finds locations of each word in file
findwords <- function(file, sort.by.freq = F)
{
 # fill word.vec from data in file
 word.vec <- scan(file, "")

 # initialize word list
 word.list <- list()

 # iterate through word vector
 for(i in 1:length(word.vec))
 {
 # store current word in variable word
 word <- word.vec[i]
 # add current word to word.list
 word.list[[word]] <- c(word.list[[word]], i)
 }
 # sort by word frequency or else sort alphabetically
 if(sort.by.freq) {return(word.list[order(sapply(word.list, length),
decreasing = T)])} else {return(word.list[sort(names(word.list))])}
}

Assist. Prof. Emre Ugur 2916th November 2016

Recap: word frequency in Wikipedia

 Since the for loop allows us to iterate through large texts, let’s
apply our function to Wikipedia

 We select the Wikipedia article about the R programming
language

 We apply findwords and we create a barplot of the 10 most
frequent words

Assist. Prof. Emre Ugur 3016th November 2016

Recap: word frequency in Wikipedia

> word.list <- findwords("R_wikipedia.txt",
sort.by.freq=T)
Read 3395 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:10], las=2)

Assist. Prof. Emre Ugur 3116th November 2016

Recap: word frequency in Wikipedia

Assist. Prof. Emre Ugur 3216th November 2016

Recap: random numbers with the while loop

 We often use the while-loop when the number of iterations is
not known beforehand

 For example, we want to generate 1000 positive random
numbers

 We use the rnorm function which generates normal
distributed random numbers with mean 0

Let’s start with generating 1000 normal distributed random
numbers and plotting them
> plot(rnorm(1000))

Assist. Prof. Emre Ugur 3316th November 2016

Recap: random numbers with the while loop

Assist. Prof. Emre Ugur 3416th November 2016

Recap: random numbers with the while loop

generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
 i <- 1
 rnd.vec <- vector()
 while(TRUE)
 {
 # generate a single random number
 rnd.number <- rnorm(1)
 # if random number is positive add it to vector rnd.vec
 if(rnd.number > 0)
 {
 rnd.vec <- c(rnd.vec, rnd.number)
 i <- i + 1
 }
 # return rnd.vec after n positive random number
 if(i > n) {return(rnd.vec)}
 }
}

Assist. Prof. Emre Ugur 3516th November 2016

Recap: random numbers with the while loop

 In the function we use return to exit the loop since we need
the vector as result

Let’s test our function by plotting
> plot(positive.rnd.numbers(1000))

Assist. Prof. Emre Ugur 3616th November 2016

Recap: random numbers with the while loop

Assist. Prof. Emre Ugur 3716th November 2016

Today

 Scatter plot
 Histogram
 Figure array
 Example: Analysis of the lecture with these

Assist. Prof. Emre Ugur 3816th November 2016

Scatter plots of data frames

 Let’s come back to our person height and weight example

 So far we created a simple scatter plot by plotting height on
the x-axis and weight on the y-axis

 Often we have more than two dimensions and we would like
to observe pairwise correlations between them

In our example we have 3 numeric and one Boolean dimension

Assist. Prof. Emre Ugur 3916th November 2016

Scatter plots of data frames

> person.data
 Name Height Weight BMI above22.5
1 Can 1.70 65 22.49 FALSE
2 Cem 1.75 66 21.55 FALSE
3 Hande 1.62 61 23.24 TRUE
4 Lale 1.76 64 20.66 FALSE
5 Arda 1.78 63 19.88 FALSE
6 Bilgin 1.77 84 26.81 TRUE
7 Cem 1.69 75 26.26 TRUE
8 Ozlem 1.75 65 21.22 FALSE
9 Ali 1.73 75 25.06 TRUE
10 Haluk 1.71 81 27.70 TRUE

Assist. Prof. Emre Ugur 4016th November 2016

Scatter plots of data frames

 We can plot each dimension of a data frame against each
other by providing the data frame as argument to the plot()
function

In our example, we plot the numeric and Boolean columns 2, 3,
4 and 5
> plot(person.data[,2:5])

Assist. Prof. Emre Ugur 4116th November 2016

Scatter plots of data frames

Assist. Prof. Emre Ugur 4216th November 2016

Scatter plots of data frames

 In the previous plot we can observe how the numeric
dimensions Height, Weight, and BMI are related to each
other

 In order to better observe the relation between the Boolean
group variable above22.5 we use a color coding

 We can specify a color coding with the argument col

We use ifelse to specify color red for above22.5=TRUE and
color green otherwise

> plot(person.data[,2:5],
col=ifelse(person.data$above22.5, "red", "green"))

Assist. Prof. Emre Ugur 4316th November 2016

Scatter plots of data frames

Assist. Prof. Emre Ugur 4416th November 2016

Scatter plots of data frames

help(“plot”)
plot(x, y, ...)
Arguments
...
Many methods will accept the following arguments:
type

"p" for points,
"l" for lines,
"b" for both,
"c" for the lines part alone of "b",
"o" for both ‘overplotted’,
"h" for ‘histogram’ like (or ‘high-density’) vertical
lines,
"s" for stair steps,
"S" for other steps, see ‘Details’ below,
"n" for no plotting.

Assist. Prof. Emre Ugur 4516th November 2016

Scatter plots of data frames

help(“plot”)
plot(x, y, ...)
Arguments
...

main
an overall title for the plot: see title.
sub
a sub title for the plot: see title.
xlab
a title for the x axis: see title.
ylab
a title for the y axis: see title.
asp
the y/x aspect ratio, see plot.window.

Assist. Prof. Emre Ugur 4616th November 2016

Histogram

 Previously we have seen two types of plotting
 Plot raw data like person’s height/weight or random numbers
 Plot number of observations in the word list barplot

 A histogram is similar to a barplot since we visualize how
many observations fall within specified divisions called “bins”

 In the word list barplot the bins were given by the words itself

 In a histogram we usually have to create the bins

Assist. Prof. Emre Ugur 4716th November 2016

Histogram

 Let’s create a histogram of normal distributed random
numbers with mean 0

 In R we simply call the hist function

hist creates the bins automatically, counts the number of
observations that fall within the bins and plots the result
> rnorm1000 <- rnorm(1000)
> hist(rnorm1000)

Assist. Prof. Emre Ugur 4816th November 2016

Histogram

Assist. Prof. Emre Ugur 4916th November 2016

Histogram

 In the previous plot we observe that bins of width 0.5 were
automatically created

 Important to note that the number of bins influences the
appearance of a histogram

We can modify how the bins are created by providing a vector
breaks

 Let’s try broader and smaller bins
> hist(rnorm1000, breaks=seq(-4, 4, 1))
> hist(rnorm1000, breaks=seq(-4, 4, 0.25))

Assist. Prof. Emre Ugur 5016th November 2016

Histogram

Assist. Prof. Emre Ugur 5116th November 2016

Histogram

Assist. Prof. Emre Ugur 5216th November 2016

Histogram

 Let’s now create a histogram of positive random numbers

We use our function positive.rnd.numbers from previous
lecture to create positive random numbers
> hist(positive.rnd.numbers())

Assist. Prof. Emre Ugur 5316th November 2016

Histogram

Assist. Prof. Emre Ugur 5416th November 2016

Figure array

 Sometimes we need to place several figures in the same plot

 For example, we would like to have the plot of the normal
distributed random numbers and the corresponding histogram
in one plot

 We use par to specify how several figures will be drawn in
an number of rows by number of columns array
 par(mfrow=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by rows
 par(mfcol=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by columns

Assist. Prof. Emre Ugur 5516th November 2016

Figure array

We place the plot of the normal distributed random numbers
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
> par(mfrow=c(1,1))

 The last line resets mfrow to its default value

Assist. Prof. Emre Ugur 5616th November 2016

Figure array

We place the plot of the normal distributed random numbers
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
>

Assist. Prof. Emre Ugur 5716th November 2016

Figure array

We place the plot of the normal distributed random numbers
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)

Assist. Prof. Emre Ugur 5816th November 2016

Figure array

Assist. Prof. Emre Ugur 5916th November 2016

Figure array

We place the plot of the normal distributed random numbers
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
> par(mfrow=c(1,1))

 The last line resets mfrow to its default value

Assist. Prof. Emre Ugur 6016th November 2016

Figure array

In a 2x2 figure array we plot normal distributed random
numbers, positive random numbers and their corresponding
histograms

> rnorm1000 <- rnorm(1000)
> pos.rnorm1000 <- positive.rnd.numbers(1000)
> par(mfrow=c(2,2))
> plot(rnorm1000)
> hist(rnorm1000)
> plot(pos.rnorm1000)
> hist(pos.rnorm1000)
> par(mfrow=c(1,1))

Assist. Prof. Emre Ugur 6116th November 2016

Figure array

Assist. Prof. Emre Ugur 6216th November 2016

Figure array

 In the previous plot we might have difficulties to compare both
distributions because axis limits and bins are chosen
automatically

In order to avoid confusion, we better enforce identical axis
limits and bins for both groups
> par(mfrow=c(2,2))
> plot(rnorm1000, ylim=c(-4,4))
> hist(rnorm1000, breaks=seq(-4,4,1))
> plot(pos.rnorm1000, ylim=c(-4,4))
> hist(pos.rnorm1000, breaks=seq(-4,4,1))
> par(mfrow=c(1,1))

Assist. Prof. Emre Ugur 6316th November 2016

Figure array

Assist. Prof. Emre Ugur 6416th November 2016

Figure array

We place the scatter plot of person’s weight and height beside
a histogram of their BMI

> par(mfrow=c(1,2))
> plot(person.data$Height, person.data$Weight, pch=2)
> lines(c(1.62, 1.78), 22.5*c(1.62, 1.78)^2)
> hist(person.data$BMI, breaks=seq(18.5, 28.5, 2))
> par(mfrow=c(1,1))

Assist. Prof. Emre Ugur 6516th November 2016

Figure array

Assist. Prof. Emre Ugur 6616th November 2016

Figure array exercise: mid-semester analysis of
grades

save google doc as csv file
grades <- read.table("grades.csv",sep=",",header=T)
grades <- grades[1:length(grades$id)-1,]
summary(grades)
plot(grades[,c(6,7,10)],col=ifelse(grades$Attendance>80,
"red","green"))

Assist. Prof. Emre Ugur 6716th November 2016

Figure array exercise: mid-semester analysis of
grades

Assist. Prof. Emre Ugur 6816th November 2016

Figure array exercise: mid-semester analysis of
grades

Check out the grades for people with attandane > X%
par(mfrow=c(1,1))
plot.new()
par(mfrow=c(2,2))
plot(grades$Q4.20.,col=ifelse(grades$Attendance.last>=50
,"red","green"),main='last-attendance>50%')
plot(grades$Q4.20.,col=ifelse(grades$Attendance>=50,"red
","green"),main='all-attendance>50%')
plot(grades$Q.Avg.,col=ifelse(grades$Attendance.last>=70
,"red","green"),main='last-attendance>70%')
plot(grades$Q.Avg.,col=ifelse(grades$Attendance>=70,"red
","green"),main='all-attendance>70%')

Assist. Prof. Emre Ugur 6916th November 2016

Figure array exercise: mid-semester analysis of
grades

Assist. Prof. Emre Ugur 7016th November 2016

Figure array exercise: mid-semester analysis of
grades

for each attendance level, plot mean grade of quiz and
midterm
par(mfrow=c(1,2))
for (column in c(6:7)){
 indices <- c()
 means<-c()
 for (x in seq(0,100,10)){
 m = mean(grades[grades$Attendance>=x,column])
 means <- c(means,m)
 indices <- c(indices,x)
 }
 plot(indices,means,main=colnames(grades)[column],
 xlab="% of attendance")
}

Assist. Prof. Emre Ugur 7116th November 2016

Figure array exercise: mid-semester analysis of
grades

Assist. Prof. Emre Ugur 7216th November 2016

Figure array exercise: mid-semester analysis of
grades

for each attendance level, plot mean grade of quiz and
midterm
par(mfrow=c(1,2))
for (column in c(1:length(grades))){
 cNames=colnames(grades)
 if (cNames[column]=="Q.Avg." || # or
 cNames[column]=="Midterm..100."){
 means<-c()
 indices <- c()
 for (x in seq(0,100,10)){
 m = mean(grades[grades$Attendance>=x,column])
 means <- c(means,m)
 indices <- c(indices,x)
 }
 plot(indices,means,main=colnames(grades)
 [column],xlab="% of attendance")
 }
}

Assist. Prof. Emre Ugur 7316th November 2016

Figure array exercise: mid-semester analysis of
grades

Assist. Prof. Emre Ugur 7416th November 2016

Figure array exercise: mid-semester analysis of
grades

for each grade level (0%, 20%, etc), plot attendance
plot.new()
par(mfrow=c(1,2))
for (column in c(6:7)){ #cols for quiz and midterm
 means<-c()
 indices <- c()
 for (x in seq(0,100,20)){ #grade levels
 m = mean(grades$Attendance[grades[,column]>=x],
 na.rm=TRUE)
 means <- c(means,m)
 indices <- c(indices,x)
 }
 plot(indices,means,main=colnames(grades)[column],
 xlab=colnames(grades[column]),ylab='attendance %')
}

Assist. Prof. Emre Ugur 7516th November 2016

Figure array exercise: mid-semester analysis of
grades

Assist. Prof. Emre Ugur 7616th November 2016

Homework

1.In previous homework, you have collected body height and
weight from 10 of your friends. Now, please get the data
collections from 2 other students of this course. Create a data
frame which consists of your data collection and the data
collections from the two other students.

2.Create a scatter plot of the data frame.

3.Plot histograms of body height, body weight and BMI.

4. Create a figure array and place a scatter plot of weight and
height beside a histogram of the BMI.

5. Repeat the final analysis yourself.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 76

