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Previous lectures

 In previous lectures we already used graphics
 Scatter plot of person’s height and weight
 Adding a line to a plot
 Barplot of word frequencies
 Plot of random numbers

 We first recapitulate the previous plots

 Next we learn more about graphics 
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Recap: data import

So far, we have entered our data into R
> person.height <- c(Can=1.70, Cem=1.75, 
Hande=1.62)

 In practice, data is usually stored in data bases or files and 
we import it from there

 We prepare a file which contains our data and import the file 
content into R
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Recap: data file

 As a first step we create a new text file using RStudio or an 
alternative text editor like Notepad++
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Recap: data file

 Next, we fill the text file with our data:
 In the first line we write the file header
 In the remaining lines we write our data entries
 We separate each entry by a comma
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Recap: data file

 Finally we save the file  
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Recap: data import with read.table

The function read.table is the most convenient way to read 
in a rectangular grid of data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "", quote = "\"'",
           dec = ".", row.names, col.names,
           as.is = !stringsAsFactors,
           na.strings = "NA", colClasses = NA, nrows = -1,
           skip = 0, check.names = TRUE, 
           fill = !blank.lines.skip,
           strip.white = FALSE, blank.lines.skip = TRUE,
           comment.char = "#",
           allowEscapes = FALSE, flush = FALSE,
           stringsAsFactors = default.stringsAsFactors(),
           fileEncoding = "", encoding = "unknown", text)
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Recap: arguments of read.table 

file 

 Name of the file which the data are to be read from

 Each row of the table appears as one line of the file 

 If it does not contain an absolute path, the file name is relative 
to the current working directory

 Can also be a complete URL
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Recap: arguments of read.table 

header 

 Logical value indicating whether the file contains the names of 
the variables as its first line

 If header information is available in the file, it will be used for 
variable names
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Recap: arguments of read.table 

sep 

 Field separator character 

 Values on each line of the file are separated by this character

 Default value sep = "" means that the separator is ‘white 
space’: one or more spaces, tabs, newlines or carriage 
returns
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Recap: working directory

Before the actual import, we need to check the current working 
directory to make sure which path to use when importing the 
data file

> getwd()
[1] "C:/Users/Bert/Documents"

 We change working directory to the path where our data file is 
located in order to simplify data import
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Recap: change working directory in RStudio

 In the files tab we select the “…” item and browse to the folder 
in which we have stored the text file
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Recap: change working directory in RStudio

 In the menu “More”, we select “Set As Working Directory”
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Recap: data import

Now, we import the data into the data frame person.data by 
using the function read.table 

> person.data <- read.table(header=TRUE, 
"height_weight_data.txt", sep=",")

> person.data
     Name Height Weight
1     Can   1.70     65
2     Cem   1.75     66
3   Hande   1.62     61
4    Lale   1.76     64
5    Arda   1.78     63
6  Bilgin   1.77     84
7     Cem   1.69     75
8   Ozlem   1.75     65
9     Ali   1.73     75
10  Haluk   1.71     81
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Recap: data modifications 

We add a new column BMI like we did before
> person.data$BMI <- person.data$Weight / 
person.data$Height^2

> person.data
     Name Height Weight      BMI
1     Can   1.70     65 22.49135
2     Cem   1.75     66 21.55102
3   Hande   1.62     61 23.24341
4    Lale   1.76     64 20.66116
5    Arda   1.78     63 19.88385
6  Bilgin   1.77     84 26.81222
7     Cem   1.69     75 26.25958
8   Ozlem   1.75     65 21.22449
9     Ali   1.73     75 25.05931
10  Haluk   1.71     81 27.70083
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Recap: data modifications 

We can change the values of a column by reassigning the 
column with the new values, e.g. rounding BMI
> person.data$BMI <- round(person.data$BMI, 2)

> person.data
     Name Height Weight   BMI
1     Can   1.70     65 22.49
2     Cem   1.75     66 21.55
3   Hande   1.62     61 23.24
4    Lale   1.76     64 20.66
5    Arda   1.78     63 19.88
6  Bilgin   1.77     84 26.81
7     Cem   1.69     75 26.26
8   Ozlem   1.75     65 21.22
9     Ali   1.73     75 25.06
10  Haluk   1.71     81 27.70
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Recap: data modifications 

 When creating new columns, we can make use of functions to 
compute the values of a new column

 Let’s recapitulate the ifelse() function 

ifelse(test, yes, no) returns a vector which is created 
from selected elements from the vectors yes and no: yes[i] 
is selected if test[i] is true and no[i] is selected if 
test[i] is false

> ifelse(person.height > 1.7, "tall", "small")
    Can     Cem   Hande 
"small"  "tall" "small"
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Recap: data modifications 

Let’s use ifelse() to create a new column which indicates 
whether BMI is above 22.5

> person.data$above22.5 <- ifelse(person.data$BMI>22.5, T ,F)
> person.data
     Name Height Weight   BMI above22.5
1     Can   1.70     65 22.49     FALSE
2     Cem   1.75     66 21.55     FALSE
3   Hande   1.62     61 23.24      TRUE
4    Lale   1.76     64 20.66     FALSE
5    Arda   1.78     63 19.88     FALSE
6  Bilgin   1.77     84 26.81      TRUE
7     Cem   1.69     75 26.26      TRUE
8   Ozlem   1.75     65 21.22     FALSE
9     Ali   1.73     75 25.06      TRUE
10  Haluk   1.71     81 27.70      TRUE
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Recap: scatter plot of person height and weight

 Beside numeric summary statistics, we use graphics for data 
exploration is plotting

 R provides us many powerful tools for plotting

We create a simple scatter plot by plotting height on the x-axis 
and weight on the y-axis
> plot(person.data$Height, person.data$Weight)
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Recap: scatter plot of person height and weight



Assist. Prof. Emre Ugur 2216th November 2016

Recap: scatter plot of person height and weight

 From the previous plot we observe that the values of Height 
are plotted versus the corresponding values of Weight

 Similar to other functions, we can provide additional 
parameters to the plot function

With pch=2 we change the point type (from circles to triangles) 
and beside that we provide axis labels
> plot(person.data$Height, person.data$Weight, 
pch=2, xlab="Height", ylab="Weight")
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Recap: scatter plot of person height and weight
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Recap: scatter plot of person height and weight

From the summery statistic of Height we learn the minimum 
and maximum numbers
> summary(person.data$Height)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.620   1.702   1.740   1.726   1.758   1.780 

We draw the line from the minimum height (1.62) to the 
maximum height (1.78) using 22.5 x Height^2 for the y values 
of the line
> lines(c(1.62, 1.78), 22.5*c(1.62, 1.78)^2)
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Recap: scatter plot of person height and weight

 Data points above the line represents persons having a BMI 
above 22.5
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Recap: word list

 Web search and other types of textual data mining are of 
great interest

 Let’s assume we have a collection of text documents

 Whenever we search for some term, we would like to retrieve 
those documents in which our search term appears most 
often

 Our first goal is to determine which words are in a text and at 
which location in the text each word occurs 
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Recap: word list

Let’s consider this sentence as our text example:
 a text consists of a word and another word 
and so on and so forth

 For each word we need to obtain the location in the text:
 a 1 5 
 text  2 
 consists  3 
 of  4 
 word  6 9 
 and  7 10 13 
 another  8 
 so  11 14 
 on  12 
 forth  15
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Recap: function findwords

## finds locations of each word in file
findwords <- function(file, sort.by.freq = F)
{
  # fill word.vec from data in file
  word.vec <- scan(file, "")
  
  # initialize word list
  word.list <- list()
  
  # iterate through word vector
  for(i in 1:length(word.vec))
  {
    # store current word in variable word
    word <- word.vec[i]
    # add current word to word.list
    word.list[[word]] <- c(word.list[[word]], i)
  }
  # sort by word frequency or else sort alphabetically 
  if(sort.by.freq) {return(word.list[order(sapply(word.list, length), 
decreasing = T)])} else {return(word.list[sort(names(word.list))])}
}
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Recap: word frequency in Wikipedia

 Since the for loop allows us to iterate through large texts, let’s 
apply our function to Wikipedia

 We select the Wikipedia article about the R programming 
language

 We apply findwords and we create a barplot of the 10 most 
frequent words
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Recap: word frequency in Wikipedia

> word.list <- findwords("R_wikipedia.txt", 
sort.by.freq=T)
Read 3395 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:10], las=2)
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Recap: word frequency in Wikipedia
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Recap: random numbers with the while loop

 We often use the while-loop when the number of iterations is 
not known beforehand 

 For example, we want to generate 1000 positive random 
numbers

 We use the rnorm function which generates normal 
distributed random numbers with mean 0

Let’s start with generating 1000 normal distributed random 
numbers and plotting them
> plot(rnorm(1000))
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Recap: random numbers with the while loop
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Recap: random numbers with the while loop

### generate n positive random numbers
positive.rnd.numbers <- function(n=1000)
{
  i <- 1
  rnd.vec <- vector()
  while(TRUE)
  {
    # generate a single random number
    rnd.number <- rnorm(1)
    # if random number is positive add it to vector rnd.vec
    if(rnd.number > 0) 
    {
      rnd.vec <- c(rnd.vec, rnd.number)
      i <- i + 1
    }
    # return rnd.vec after n positive random number
    if(i > n) {return(rnd.vec)}
  }
}
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Recap: random numbers with the while loop

 In the function we use return to exit the loop since we need 
the vector as result

Let’s test our function by plotting
> plot(positive.rnd.numbers(1000))
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Recap: random numbers with the while loop



Assist. Prof. Emre Ugur 3716th November 2016

Today

 Scatter plot
 Histogram
 Figure array
 Example: Analysis of the lecture with these
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Scatter plots of data frames

 Let’s come back to our person height and weight example

 So far we created a simple scatter plot by plotting height on 
the x-axis and weight on the y-axis

 Often we have more than two dimensions and we would like 
to observe pairwise correlations between them

In our example we have 3 numeric and one Boolean dimension
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Scatter plots of data frames

> person.data
     Name Height Weight   BMI above22.5
1     Can   1.70     65 22.49     FALSE
2     Cem   1.75     66 21.55     FALSE
3   Hande   1.62     61 23.24      TRUE
4    Lale   1.76     64 20.66     FALSE
5    Arda   1.78     63 19.88     FALSE
6  Bilgin   1.77     84 26.81      TRUE
7     Cem   1.69     75 26.26      TRUE
8   Ozlem   1.75     65 21.22     FALSE
9     Ali   1.73     75 25.06      TRUE
10  Haluk   1.71     81 27.70      TRUE
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Scatter plots of data frames

 We can plot each dimension of a data frame against each 
other by providing the data frame as argument to the plot() 
function

In our example, we plot the numeric and Boolean columns 2, 3, 
4 and 5
> plot(person.data[,2:5])
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Scatter plots of data frames
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Scatter plots of data frames

 In the previous plot we can observe how the numeric 
dimensions Height, Weight, and BMI are related to each 
other

 In order to better observe the relation between the Boolean 
group variable above22.5 we use a color coding 

 We can specify a color coding with the argument col

We use ifelse to specify color red for above22.5=TRUE and 
color green otherwise

> plot(person.data[,2:5], 
col=ifelse(person.data$above22.5, "red", "green"))
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Scatter plots of data frames
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Scatter plots of data frames

help(“plot”)
plot(x, y, ...)
Arguments
... 
Many methods will accept the following arguments:
type

"p" for points,
"l" for lines,
"b" for both,
"c" for the lines part alone of "b",
"o" for both ‘overplotted’,
"h" for ‘histogram’ like (or ‘high-density’) vertical 
lines,
"s" for stair steps,
"S" for other steps, see ‘Details’ below,
"n" for no plotting.
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Scatter plots of data frames

help(“plot”)
plot(x, y, ...)
Arguments
...

main
an overall title for the plot: see title.
sub
a sub title for the plot: see title.
xlab
a title for the x axis: see title.
ylab
a title for the y axis: see title.
asp
the y/x aspect ratio, see plot.window.
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Histogram

 Previously we have seen two types of plotting
 Plot raw data like person’s height/weight or random numbers
 Plot number of observations in the word list barplot

 A histogram is similar to a barplot since we visualize how 
many observations fall within specified divisions called “bins”

 In the word list barplot the bins were given by the words itself

 In a histogram we usually have to create the bins



Assist. Prof. Emre Ugur 4716th November 2016

Histogram

 Let’s create a histogram of normal distributed random 
numbers with mean 0

 In R we simply call the hist function

hist creates the bins automatically, counts the number of 
observations that fall within the bins and plots the result
> rnorm1000 <- rnorm(1000)
> hist(rnorm1000)
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Histogram
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Histogram

 In the previous plot we observe that bins of width 0.5 were 
automatically created

 Important to note that the number of bins influences the 
appearance of a histogram

We can modify how the bins are created by providing a vector 
breaks

 Let’s try broader and smaller bins
> hist(rnorm1000, breaks=seq(-4, 4, 1))
> hist(rnorm1000, breaks=seq(-4, 4, 0.25))
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Histogram



Assist. Prof. Emre Ugur 5116th November 2016

Histogram
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Histogram

 Let’s now create a histogram of positive random numbers

We use our function positive.rnd.numbers from previous 
lecture to create positive random numbers
> hist(positive.rnd.numbers())
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Histogram 
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Figure array

 Sometimes we need to place several figures in the same plot

 For example, we would like to have the plot of the normal 
distributed random numbers and the corresponding histogram 
in one plot

 We use par to specify how several figures will be drawn in 
an number of rows by number of columns array 
 par(mfrow=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by rows
 par(mfcol=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by columns
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Figure array

We place the plot of the normal distributed random numbers 
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
> par(mfrow=c(1,1))

 The last line resets mfrow to its default value
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Figure array

We place the plot of the normal distributed random numbers 
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> 
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Figure array

We place the plot of the normal distributed random numbers 
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
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Figure array
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Figure array

We place the plot of the normal distributed random numbers 
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
> par(mfrow=c(1,1))

 The last line resets mfrow to its default value
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Figure array

In a 2x2 figure array we plot normal distributed random 
numbers, positive random numbers and their corresponding 
histograms

> rnorm1000 <- rnorm(1000)
> pos.rnorm1000 <- positive.rnd.numbers(1000)
> par(mfrow=c(2,2))
> plot(rnorm1000)
> hist(rnorm1000)
> plot(pos.rnorm1000)
> hist(pos.rnorm1000)
> par(mfrow=c(1,1))
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Figure array
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Figure array

 In the previous plot we might have difficulties to compare both 
distributions because axis limits and bins are chosen 
automatically

In order to avoid confusion, we better enforce identical axis 
limits and bins for both groups
> par(mfrow=c(2,2))
> plot(rnorm1000, ylim=c(-4,4))
> hist(rnorm1000, breaks=seq(-4,4,1))
> plot(pos.rnorm1000, ylim=c(-4,4))
> hist(pos.rnorm1000, breaks=seq(-4,4,1))
> par(mfrow=c(1,1))
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Figure array
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Figure array

We place the scatter plot of person’s weight and height beside 
a histogram of their BMI

> par(mfrow=c(1,2))
> plot(person.data$Height, person.data$Weight, pch=2)
> lines(c(1.62, 1.78), 22.5*c(1.62, 1.78)^2)
> hist(person.data$BMI, breaks=seq(18.5, 28.5, 2))
> par(mfrow=c(1,1))
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Figure array
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Figure array exercise: mid-semester analysis of 
grades

# save google doc as csv file
grades <- read.table("grades.csv",sep=",",header=T)
grades <- grades[1:length(grades$id)-1,] 
summary(grades)
plot(grades[,c(6,7,10)],col=ifelse(grades$Attendance>80,
"red","green"))
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Figure array exercise: mid-semester analysis of 
grades
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Figure array exercise: mid-semester analysis of 
grades

# Check out the grades for people with attandane > X%
par(mfrow=c(1,1))
plot.new()
par(mfrow=c(2,2))
plot(grades$Q4.20.,col=ifelse(grades$Attendance.last>=50
,"red","green"),main='last-attendance>50%')
plot(grades$Q4.20.,col=ifelse(grades$Attendance>=50,"red
","green"),main='all-attendance>50%')
plot(grades$Q.Avg.,col=ifelse(grades$Attendance.last>=70
,"red","green"),main='last-attendance>70%')
plot(grades$Q.Avg.,col=ifelse(grades$Attendance>=70,"red
","green"),main='all-attendance>70%')
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Figure array exercise: mid-semester analysis of 
grades
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Figure array exercise: mid-semester analysis of 
grades

# for each attendance level, plot mean grade of quiz and 
# midterm
par(mfrow=c(1,2))
for (column in c(6:7)){
  indices <- c()
  means<-c()
  for (x in seq(0,100,10)){
    m = mean(grades[grades$Attendance>=x,column])
    means <- c(means,m)
    indices <- c(indices,x)
  }
  plot(indices,means,main=colnames(grades)[column], 
       xlab="% of attendance")
}
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Figure array exercise: mid-semester analysis of 
grades
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Figure array exercise: mid-semester analysis of 
grades

# for each attendance level, plot mean grade of quiz and 
# midterm
par(mfrow=c(1,2))
for (column in c(1:length(grades))){
  cNames=colnames(grades)
  if (cNames[column]=="Q.Avg." ||   # or
      cNames[column]=="Midterm..100." ){
    means<-c()
    indices <- c()
    for (x in seq(0,100,10)){
      m = mean(grades[grades$Attendance>=x,column])
      means <- c(means,m)
      indices <- c(indices,x)
    }
    plot(indices,means,main=colnames(grades)  
         [column],xlab="% of attendance")
  }
} 
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Figure array exercise: mid-semester analysis of 
grades
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Figure array exercise: mid-semester analysis of 
grades

# for each grade level (0%, 20%, etc), plot attendance 
plot.new()
par(mfrow=c(1,2))
for (column in c(6:7)){ #cols for quiz and midterm
  means<-c()
  indices <- c()
  for (x in seq(0,100,20)){ #grade levels
    m = mean(grades$Attendance[grades[,column]>=x], 
             na.rm=TRUE)
    means <- c(means,m)
    indices <- c(indices,x)
  }
  plot(indices,means,main=colnames(grades)[column], 
      xlab=colnames(grades[column]),ylab='attendance %')
}
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Figure array exercise: mid-semester analysis of 
grades
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Homework

1.In previous homework, you have collected body height and 
weight from 10 of your friends. Now, please get the data 
collections from 2 other students of this course. Create a data 
frame which consists of your data collection and the data 
collections from the two other students.

2.Create a scatter plot of the data frame.

3.Plot histograms of body height, body weight and BMI.

4. Create a figure array and place a scatter plot of weight and 
height beside a histogram of the BMI.

5. Repeat the final analysis yourself.
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