
Assistant Professor Dr. Bert ARNRICH 14th May 201630th November 2016 Assist. Prof. Emre Ugur

Introduction to Computing for Economics and
Management

Lecture 10: Input and Output

Assist. Prof. Emre Ugur 230th November 2016

Previous lectures

 In previous lectures we already used several input and output
operations, e.g.
 Import data from a file into a data frame using read.table()
 Read a text from a file using scan()
 Get user input from command line to play a quiz using readline()
 Graphics: scatter plot, bar plot, histogram, figure arrays, boxplot,

stripcharts, pie charts

 We will first recapitulate how we previously used the input and
output operations

 Next, we learn more about input and output operations

Assist. Prof. Emre Ugur 330th November 2016

Recap: data import with read.table

The function read.table is the most convenient way to read
in a rectangular grid of data from a text file

> help(read.table)
read.table(file, header = FALSE, sep = "",
quote = "\"'",
 dec = ".", row.names, col.names,
 as.is = !stringsAsFactors,
 na.strings = "NA", colClasses = NA,
nrows = -1,
 skip = 0, check.names = TRUE,
 fill = !blank.lines.skip,
 strip.white = FALSE,
blank.lines.skip = TRUE,
 comment.char = "#",
 allowEscapes = FALSE, flush = FALSE,
 stringsAsFactors =
default.stringsAsFactors(),
 fileEncoding = "", encoding =
"unknown", text)

Assist. Prof. Emre Ugur 430th November 2016

Recap: arguments of read.table

file

 Name of the file which the data are to be read from

 Each row of the table appears as one line of the file

 If it does not contain an absolute path, the file name is relative
to the current working directory

 Can also be a complete URL

Assist. Prof. Emre Ugur 530th November 2016

Recap: arguments of read.table

header

 Logical value indicating whether the file contains the names of
the variables as its first line

 If header information is available in the file, it will be used for
variable names

Assist. Prof. Emre Ugur 630th November 2016

Recap: arguments of read.table

sep

 Field separator character

 Values on each line of the file are separated by this character

 Default value sep = "" means that the separator is ‘white
space’: one or more spaces, tabs, newlines or carriage
returns

Assist. Prof. Emre Ugur 730th November 2016

Recap: data file

 We fill the text file with our data:
 In the first line we write the file header
 In the remaining lines we write our data entries
 We separate each entry by a comma

Assist. Prof. Emre Ugur 830th November 2016

Recap: working directory

Before the actual import, we need to check the current working
directory to make sure which path to use when importing the
data file

> getwd()
 [1] "C:/Users/Bert/Documents"

 We change working directory to the path where our data file is
located in order to simplify data import

Assist. Prof. Emre Ugur 930th November 2016

Recap: change working directory in R

Assist. Prof. Emre Ugur 1030th November 2016

Recap: change working directory in RStudio

 In the files tab we select the “…” item and browse to the folder
in which we have stored the text file

Assist. Prof. Emre Ugur 1130th November 2016

Recap: change working directory in RStudio

 In the menu “More”, we select “Set As Working Directory”

Assist. Prof. Emre Ugur 1230th November 2016

Recap: data import

Now, we import the data into the data frame person.data by
using the function read.table

> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

> person.data
 Name Height Weight
1 Can 1.70 65
2 Cem 1.75 66
3 Hande 1.62 61
4 Lale 1.76 64
5 Arda 1.78 63
6 Bilgin 1.77 84
7 Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
 10 Haluk 1.71 81

Assist. Prof. Emre Ugur 1330th November 2016

Recap: word list

 Our goal is to determine at which location in the text each
word occurs

Let’s consider this sentence as our text example:
 a text consists of a word and another word
and so on and so forth

 For each word we need to obtain the location in the text:
 a 1 5
 text 2
 consists 3
 of 4
 word 6 9
 and 7 10 13
 another 8
 so 11 14
 on 12
 forth 15

Assist. Prof. Emre Ugur 1430th November 2016

Recap: import text data from file

 First, we write our text into a file

 In the following we import the text data to determine at which
location in the text each word occurs

Assist. Prof. Emre Ugur 1530th November 2016

Recap: import text data from file

We read text data from a file into a vector
> word.vec <- scan("text.txt", what="")
Read 15 items

> word.vec
 [1] "a" "text" "consists" "of"
 [5] "a" "word" "and" "another"
 [9] "word" "and" "so" "on"
 [13] "and" "so" "forth"

 The second argument is a short form of what="" to indicate
that we intend to import text data

 Similar like in read.table() the separator between items is
‘white space’ by default: one or more spaces, tabs, newlines or
carriage returns

Assist. Prof. Emre Ugur 1630th November 2016

Recap: function findwords

finds locations of each word in file
findwords <- function(file, sort.by.freq = F)
{
 # fill word.vec from data in file
 word.vec <- scan(file, "")

 # initialize word list
 word.list <- list()

 # iterate through word vector
 for(i in 1:length(word.vec))
 {
 # store current word in variable word
 word <- word.vec[i]
 # add current word to word.list
 word.list[[word]] <- c(word.list[[word]], i)
 }
 # sort by word frequency or else sort alphabetically
 if(sort.by.freq) {return(word.list[order(sapply(word.list, length),
decreasing = T)])} else {return(word.list[sort(names(word.list))])}
}

Assist. Prof. Emre Ugur 1730th November 2016

Recap: function findwords

> findwords("text.txt", sort.by.freq=T)
Read 15 items
$and
[1] 7 10 13

$a
[1] 1 5

$word
[1] 6 9

$so
[1] 11 14

$text
[1] 2
...

Assist. Prof. Emre Ugur 1830th November 2016

Recap: plotting word frequencies

From the resulting list of word positions returned by
findwords we can easily calculate the word frequencies using
sapply

> word.list <- findwords("text.txt",
sort.by.freq=T)
Read 15 items

> word.freq <- sapply(word.list, length)

> word.freq
 and a word so text
 3 2 2 2 1
consists of another on forth
 1 1 1 1 1

Assist. Prof. Emre Ugur 1930th November 2016

Recap: plotting word frequencies

We create a barplot of the word frequencies
 > barplot(word.freq, las=2)

an
d a

w
or

d so

te
xt

co
ns

is
ts of

an
ot

he
r

on

fo
rt

h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Assist. Prof. Emre Ugur 2030th November 2016

Recap: word frequency in Wikipedia

 Since the for loop allows us to iterate through large texts, let’s
apply our function to Wikipedia

 We select the Wikipedia article about the R programming
language

 We copy the article in a text editor

 We apply findwords and we create a barplot of the 10 most
frequent words

Assist. Prof. Emre Ugur 2130th November 2016

Recap: word frequency in Wikipedia

 We copy the Wikipedia article about R programming language
and save it as R_wikipedia.txt

Assist. Prof. Emre Ugur 2230th November 2016

Recap: word frequency in Wikipedia

> word.list <- findwords("R_wikipedia.txt",
sort.by.freq=T)
Read 3395 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:10], las=2)

Assist. Prof. Emre Ugur 2330th November 2016

Recap: word frequency in Wikipedia

Assist. Prof. Emre Ugur 2430th November 2016

Recap: quiz with the while loop

 We use readline to get user input from command line

We use the while loop to ask the same question again and again
until we get the right answer

quiz <- function()
{
 answer <- 0
 while(answer != 143)
 {
 answer <- readline("How many students are registered
for this course? ")
 answer <- as.numeric(answer)
 }
 print("Congratulations, 143 is the right number.")
 }

Assist. Prof. Emre Ugur 2530th November 2016

Recap: quiz with the while loop

> quiz()
How many students are registered for this course? 50
How many students are registered for this course? 100
How many students are registered for this course? 200
How many students are registered for this course?

 We better provide some help for solving the quiz …

Assist. Prof. Emre Ugur 2630th November 2016

Recap: quiz with the while loop

quiz <- function()
{
 answer <- 0
 while(answer != 143)
 {
 answer <- readline("How many students are registered for
this course? ")
 answer <- as.numeric(answer)

 if(answer < 143) {print("No, more students.")}
 if(answer > 143) {print("No, less students.")}
 }
 print("Congratulations, 143 is the right number.")
}

Assist. Prof. Emre Ugur 2730th November 2016

Recap: quiz with the while loop

> quiz()
How many students are registered for this course? 50
[1] "No, more students."
How many students are registered for this course? 100
[1] "No, more students."
How many students are registered for this course? 200
[1] "No, less students."
How many students are registered for this course? 143
[1] "Congratulations, 143 is the right number."

Assist. Prof. Emre Ugur 2830th November 2016

Program today

 Read data with the the scan() function

 Read data from the Internet

 Export Graphics

 Write data to files

Assist. Prof. Emre Ugur 2930th November 2016

Read data with scan

We already know the scan function from reading text data from
a file into a vector
 > word.vec <- scan("text.txt", what="")

 Usually we use scan to read the entire content of a file into a
vector

 We have learned in a previous lecture that we need to be
careful when dealing with vectors and mixed modes

In the following we learn how scan behaves when confronted
with mixed modes

Assist. Prof. Emre Ugur 3030th November 2016

Suppose we have files named f1.txt, f2.txt, f3.txt, and f4.txt with
the following contents:

Let’s check how scan behaves when reading those files.

Read data with scan

f1.txt
123
4 5
6

f2.txt
123
4.2 5
6

f3.txt
abc
de f
g

f4.txt
abc
123 6
y

Assist. Prof. Emre Ugur 3130th November 2016

Read data with scan

f1.txt
123
4 5
6

> scan("f1.txt")
Read 4 items
[1] 123 4 5 6

We get a 4-dimensional vector of integers as expected.

Assist. Prof. Emre Ugur 3230th November 2016

Read data with scan

f2.txt
123
4.2 5
6

> scan("f2.txt")
Read 4 items
[1] 123.0 4.2 5.0 6.0

We get a 4-dimensional vector of floating-point numbers since
with 4.2 we havd a non-integer number in our file.

Assist. Prof. Emre Ugur 3330th November 2016

Read data with scan

f3.txt
abc
de f
g

> scan("f3.txt")
Error in scan(file, what, nmax, sep, dec,
quote, skip, nlines, na.strings, :
 scan() expected 'a real', got 'abc'

We get an error message since scan was expecting numbers
and not characters.

Assist. Prof. Emre Ugur 3430th November 2016

Read data with scan

f3.txt
abc
de f
g

> scan("f3.txt", what="")
Read 4 items
[1] "abc" "de" "f" "g"

The type of the what argument gives the type of data to be
read. If we specify what="" then we get a 4-dimensional
vector of characters.

Assist. Prof. Emre Ugur 3530th November 2016

Read data with scan

f4.txt
abc
123 6
y

> scan("f4.txt", what="")
Read 4 items
[1] "abc" "123" "6" "y"

We get a 4-dimensional vector of characters.

Assist. Prof. Emre Ugur 3630th November 2016

Read data with scan

 By default, scan() assumes that the items of the vector are
separated by whitespace, which includes blanks, carriage
return/line feeds, and horizontal tabs.

 We can use the optional sep argument for other situations.

 For example, we can set sep to the newline character \n to
read in each line as a string

Assist. Prof. Emre Ugur 3730th November 2016

Read data with scan

f3.txt
abc
de f
g

> scan("f3.txt", what="", sep="\n")
Read 3 items
[1] "abc" "de f" "g"

Each line of the file is now a vector element and thus de and f
are assigned together.

Assist. Prof. Emre Ugur 3830th November 2016

Read data with scan

We can use scan() to read from the keyboard by specifying
an empty string instead of the filename

> v <- scan("")
1: 1
2: 2 3 4
5: 17
6:
Read 5 items

> v
 [1] 1 2 3 4 17

Assist. Prof. Emre Ugur 3930th November 2016

Read from the keyboard

If we want to read in a single line from the keyboard,
readline() is a good choice

> readline()
This line will be stored in a single string
[1] "This line will be stored in a single
string"

We can call readline() with an optional prompt

> readline("Please enter your line: ")
Please enter your line: Here is my line
[1] "Here is my line"

Assist. Prof. Emre Ugur 4030th November 2016

Read into a matrix

 There is no direct way of reading from a file into a matrix

 We can use scan() in combination with matrix() to create
a matrix from data in a file

Let’s assume we have the following data stored in the file
height_weight.txt

1.7 65
1.75 66
1.62 61
1.76 64
1.78 63

Assist. Prof. Emre Ugur 4130th November 2016

Read into a matrix

We use scan() to read in the matrix row by row

> matrix(scan("height_weight.txt"), ncol=2,
byrow=TRUE)
Read 10 items
 [,1] [,2]
[1,] 1.70 65
[2,] 1.75 66
[3,] 1.62 61
[4,] 1.76 64
 [5,] 1.78 63

Assist. Prof. Emre Ugur 4230th November 2016

Read into a matrix

As alternative we can use read.table(), which returns a
data frame, and then convert via as.matrix()

> as.matrix(read.table("height_weight.txt"))
 V1 V2
[1,] 1.70 65
[2,] 1.75 66
[3,] 1.62 61
[4,] 1.76 64
 [5,] 1.78 63

Assist. Prof. Emre Ugur 4330th November 2016

Reading text files

We have already learned how to read text data from a file into a
vector
> word.vec <- scan("text.txt", "")
Read 15 items

> word.vec
 [1] "a" "text" "consists" "of"
 [5] "a" "word" "and" "another"
 [9] "word" "and" "so" "on"
 [13] "and" "so" "forth"

Assist. Prof. Emre Ugur 4430th November 2016

Reading text files

 In text files, lines are usually separated by the newline
character \n

We can use readLines() to read in a text into a vector of
strings
> readLines("f3.txt")
 [1] "abc" "de f" "g"

We observe that the result is equivalent to using scan() and
setting sep to the newline character \n
> scan("f3.txt", what="", sep="\n")
Read 3 items
 [1] "abc" "de f" "g"

Assist. Prof. Emre Ugur 4530th November 2016

Accessing files from the Internet

 Certain input functions, such as read.table() and
scan(), can read data from web URLs as well

 Reading data from the Internet is of particular interest when
dealing with real-time data like stock exchange

 In the following we will access files from
 Economics
 The UCI Machine Learning Repository
 Project Gutenberg

Assist. Prof. Emre Ugur 4630th November 2016

Economics datasets

http://data.worldbank.org/topic/financial-sector

Assist. Prof. Emre Ugur 4730th November 2016

The UCI Machine Learning Repository

 The UCI Machine Learning
Repository is a collection of
databases that are used by the
machine learning community for the
empirical analysis of machine
learning algorithms

 Currently, 311 datasets are available,
see
http://archive.ics.uci.edu/ml/datasets.
html
l Diabetes, dermatology, hearth

disease
l Mushroom, iris, mammals
l Faces, etc.

Assist. Prof. Emre Ugur 4830th November 2016

Iris flower data set

 We will work with the most famous
dataset from the repository: the
Iris flower data set

 The dataset consists of 4
dimensions: length and width of
the sepals and petals

 The dataset was introduced by Sir
Ronald Fisher in 1936

Assist. Prof. Emre Ugur 4930th November 2016

Iris flower data set

 Data were obtained from three
different species of the Iris flower:
 Iris setosa
 Iris versicolor
 Iris virginica

 For each of the three species 50
samples are available

 In total 150 measurement are
available

Assist. Prof. Emre Ugur 5030th November 2016

Iris flower data set

 URL of the Iris flower data set:
http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data

We read the data from the Internet source using
read.table() by providing the URL instead of a file name

 > iris.flower <-
read.table("http://archive.ics.uci.edu/ml/mac
hine-learning-databases/iris/iris.data",
sep=",")

Assist. Prof. Emre Ugur 5130th November 2016

Iris flower data set

We can now work with the Internet data like with every other
data frame
> head(iris.flower)
 V1 V2 V3 V4 V5
1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa

> colnames(iris.flower) <- c("Sepal.Length",
"Sepal.Width", "Petal.Length", "Petal.Width", "Species")

 > plot(iris.flower)

Assist. Prof. Emre Ugur 5230th November 2016

Iris flower data set

Assist. Prof. Emre Ugur 5330th November 2016

Iris flower data set

In order to color the data points according to their species, we
add a new column color and specify the color information

> iris.flower$color <- ifelse(iris.flower$Species ==
"Iris-setosa", "red", ifelse(iris.flower$Species ==
"Iris-versicolor", "green", "blue"))

We plot again and use the color information for coloring the
data points

> plot(iris.flower[,1:4], col=iris.flower$color)

Assist. Prof. Emre Ugur 5430th November 2016

Iris flower data set

Assist. Prof. Emre Ugur 5530th November 2016

Iris flower data set

 From the previous plot we can observe the most important
characteristics of the Iris flower data set

 The red data points which contains samples from Iris-setosa
are clearly separable from the two other species colored with
green in red

For example, if we filter the data points which have petal length
smaller than 2.5 we get only Iris-setosa
> iris.flower[iris.flower$Petal.Length < 2.5,]

 The two other species are not linearly separable from each
other

Assist. Prof. Emre Ugur 5630th November 2016

Project Gutenberg

 Offers over 46000 free ebooks

 Available formats are HTML, EPUB, Kindle, PDF, and plain
text

 We make use of our function findwords() to analyze the
most frequent words in some ebooks

Assist. Prof. Emre Ugur 5730th November 2016

Project Gutenberg

We start with Alice's Adventures in
 Wonderland by Lewis Carroll

According the Project Gutenberg, the book
 belongs to the most popular ebooks

We can download various formats of this
book from
 http://www.gutenberg.org/ebooks/11

Plain text is available from
http://www.gutenberg.org/files/11/11-0.txt

Assist. Prof. Emre Ugur 5830th November 2016

Project Gutenberg

When we previously analyzed the word frequencies of the
Wikipedia article about R, we first created a text file and called
findwords()with it

 > word.list <- findwords("R_wikipedia.txt",
sort.by.freq=T)

In fact, we don’t need to create a text file since the scan()
function inside findwords() can read an URL directly
> word.vec <-
scan("http://www.gutenberg.org/files/11/11-
0.txt", "")
Read 24386 items

Assist. Prof. Emre Ugur 5930th November 2016

Project Gutenberg

 Checking if you are a web-bot
 Therefore it is not possible to directly read with scan()

function

 File → Save Page As → Alice.txt in R/ directory

Assist. Prof. Emre Ugur 6030th November 2016

Project Gutenberg

As before, we first create the word list with findwords(), next
we compute the word frequencies and finally we plot the result
as a barplot

> word.list <- findwords("Alice.txt", sort.by.freq=T)
Read 24386 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:20], las=2, main="Alice's
Adventures in Wonderland")

Assist. Prof. Emre Ugur 6130th November 2016

Project Gutenberg

Assist. Prof. Emre Ugur 6230th November 2016

Project Gutenberg

As a second book we analyze word frequencies from The
Adventures of Tom Sawyer by Mark Twain
http://www.gutenberg.org/cache/epub/74/pg74.txt

> word.list <- findwords("TomSawyer.txt",
sort.by.freq=T)
Read 53582 items

> word.freq <- sapply(word.list, length)

> barplot(word.freq[1:20], las=2, main="The Adventures
of Tom Sawyer")

Assist. Prof. Emre Ugur 6330th November 2016

Project Gutenberg

Assist. Prof. Emre Ugur 6430th November 2016

Project Gutenberg

 In both bar plots we observe frequent English words like “the”,
“and”, “a”, etc.

 Both plots differ obviously in the name of the main character:
“Alice” vs. “Tom”

 We can also realize that in the first book the main character is
female since we observe “she” and “her” while in the second
book we observe “he” and “his”

Assist. Prof. Emre Ugur 6530th November 2016

Compare book contents

word.list.alice <- findwords("Alice.txt", sort.by.freq=T)
word.freq.alice <- sapply(word.list.alice, length)
word.list.sawyer <- findwords("TomSawyer.txt", sort.by.freq=T)
word.freq.sawyer <- sapply(word.list.sawyer, length)
par(mfrow=c(1,2))
pie(word.freq.alice[1:20], main="Alice's Adventures")
pie(word.freq.sawyer[1:20], main="The Adventures of Tom")
par(mfrow=c(1,1))

Assist. Prof. Emre Ugur 6630th November 2016

Compare book contents, diff

a function that takes returns the frequencies that only
appear in one vector.
freq.alice=word.freq.alice
freq.sawyer=word.freq.sawyer
only.alice <- getDiffFreq(freq.alice[1:30],freq.sawyer[1:30])
only.sawyer <- getDiffFreq(freq.sawyer[1:30],freq.alice[1:30])
par(mfrow=c(1,2))
pie(only.alice, main="Alice's Adventures")
pie(only.sawyer, main="The Adventures of Tom")
par(mfrow=c(1,1))

getDiffFreq <- function (vec1, vec2){

 return (uniqueVec1)
}

Assist. Prof. Emre Ugur 6730th November 2016

Compare book contents, diff

GetDiffFreq <- function (vec1, vec2){
 uniqueVec1 <- c()
 For (
 return (uniqueVec1)
}

Assist. Prof. Emre Ugur 6830th November 2016

Compare book contents, diff

Assist. Prof. Emre Ugur 6930th November 2016

Export Graphics

 In RStudio the Export menu provides ways to export your
graphics in various formats

Assist. Prof. Emre Ugur 7030th November 2016

Writing to a file

 So far we have imported data, processed the data and
visualized the results

 A convenient way to save data to a file is write.table()

 It works similar to read.table()

 write.table() writes a data frame into a file

Assist. Prof. Emre Ugur 7130th November 2016

Recap: read.table

We import the data into the data frame person.data by using
the function read.table

> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

> person.data
 Name Height Weight
1 Can 1.70 65
2 Cem 1.75 66
3 Hande 1.62 61
4 Lale 1.76 64
5 Arda 1.78 63
6 Bilgin 1.77 84
7 Cem 1.69 75
8 Ozlem 1.75 65
9 Ali 1.73 75
 10 Haluk 1.71 81

Assist. Prof. Emre Ugur 7230th November 2016

Writing to a file

We compute the BMI

> person.data$BMI <- round(person.data$Weight /
person.data$Height^2, 2)

> person.data
 Name Height Weight BMI
1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 61 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
 10 Haluk 1.71 81 27.70

Assist. Prof. Emre Ugur 7330th November 2016

Writing to a file

We store the extended data frame into the file
height_weight_data2.txt

 > write.table(person.data, "height_weight_data2.txt")

 The file will be saved in your current working directory

Assist. Prof. Emre Ugur 7430th November 2016

Writing to a file

 We check the file contents by opening the file in a text editor

 We observe that a space is used by default to separate the
entries

Assist. Prof. Emre Ugur 7530th November 2016

Writing to a file

We open the file with read.table and check the contents

> person.data2 <- read.table(header=TRUE,
"height_weight_data2.txt", sep="")

> person.data2
 Name Height Weight BMI
1 Can 1.70 65 22.49
2 Cem 1.75 66 21.55
3 Hande 1.62 61 23.24
4 Lale 1.76 64 20.66
5 Arda 1.78 63 19.88
6 Bilgin 1.77 84 26.81
7 Cem 1.69 75 26.26
8 Ozlem 1.75 65 21.22
9 Ali 1.73 75 25.06
 10 Haluk 1.71 81 27.70

Assist. Prof. Emre Ugur 7630th November 2016

Homework

1.Create a bar plot and a pie chart of the most frequent words
from your favorite ebook

2.Export bar plot and pie chart as pdf

3.Use the data on body height and weight from previous
homework. Compute BMI and store the resulting data frame
in a file.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

