Introduction to Computing for Economics and
Management

Final Summary

14" December 2016 Assist. Prof. Emre Ugur

Final Exam Contents

" Vectors " Scatter plot
" Matrices " Histogram
" Lists " Barplot
" Data frames " Figure arrays
" For-loop " Stripchart
" While-loop " Pie chart
" Repeat-loop " Read from the keyboard
" Break and next statements " Import files
" If-else statement " Accessing data from the
" Nested loops Internet
" Writing data to files
" Factors

" Correlation and regression

14" December 2016 Assist. Prof. Emre Ugur 2

Data structure types

»\/ectors: one-dimensional arrays
» Numeric vectors Vector
» Complex vectors s
» |_ogical vectors 4
» Character vectors or text strings N

Data Frame columns

» Matrices: two-dimensional (fade)

» Arrays: multi-dimensional 5, 60,67 |

» Factors: vectors of categorical varial [Nasal]

» Lists: ordered collection of objects

» Data frames: generalization of matrices, different columns can store
different mode data

» Functions: objects that make specific operations

Matrix Array

Short Summary Vectors

Integer mode
> person.weight <- c (65, 66, ©61)

Numeric (floating-point number)
> person.height <- c¢(1.70, 1.75, 1.62)

Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- ¢ (FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+21, -1+01)

14" December 2016 Assist. Prof. Emre Ugur

Short Summary Vectors

14" December 2016 Assist. Prof. Emre Ugur 5

Short Summary Vectors

Filtering

> person.height[person.height > 1.65]
Can Cem

1.72 1.75

Recycling
> c(1l, 2, 3) + c(1, 2, 3, 4)
(1] 2 4 6 5

Vector operations
> person.weight / person.height”?2

C(1,2,3) c(2,4)
> person.weight / person.height * person.height
Can Cem Hande

21.97134 21.55102 23.24341

14" December 2016 Assist. Prof. Emre Ugur 6

Short Summary Matrices

Creation
> vy <- matrix(c(l,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

Matrix operations
Transposition t (y)

Element by element product y * vy
Matrix multiplication y $*% vy
Matrix scalar multiplication 3 * v
Matrix addition y + v

Indexing, e.g. select first and second row
> z[c(1l,2),]

14" December 2016 Assist. Prof. Emre Ugur 7

Short Summary Matrices

Assign new values to submatrices
> z[c(l:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

Filtering, e.g. obtain those rows of matrix z having elements in
the second column which are at least equal to 5
> z[z[,2] >= 5,]

14" December 2016 Assist. Prof. Emre Ugur 8

Short Summary Lists

Creation
> jJoe <- list (name="Joe", salary=55000, staff=T)

Indexing

> joeS$salary

> jJoel[["salary"]]
> jJoe[[2]]

Vectors as list components

> my.list <- list(vecl = c(1,2), vec2 = c(3,4),
vec3 = b:7)

Nested list

14" December 2016 Assist. Prof. Emre Ugur 9

Short Summary Data frames

Creation
> person <- data.frame (height=person.height,
welght=person.weilght)

Indexing

> person| [1]]
person|[["height"]]
personSheight
person(c(l,2),]
person[-3,]

vV V V V

Filtering
> person[person$height >= 1.7,]

14" December 2016 Assist. Prof. Emre Ugur 10

Short Summary Data frames

Data import
> person.data <- read.table (header=TRUE,
"height weight data.txt", sep=",")

Data modifications
> person.data$BMI <- person.dataSWeight /
person.dataSHeight”"?2

Summary
> summary (person.data)

Merging

> merge (person.data, person.data2?)

14" December 2016 Assist. Prof. Emre Ugur 11

Factors example 1

patientId <- c¢(1,2,3,4)

age <- c(25,34,28,52)

diabetes <- c("Typel", "Type2", "Typel", "Typel")

diabetes <- factor (diabetes)

status <- c ("Poor","Improved", "Excellent", "Poor")

status <- factor(status, order=TRUE)

patientdata <- data.frame(patientld,age,diabetes, status)
summary (patientdata)

patientId age diabetes status
Min. :1.00 Min. :25.00 Typel:3 Excellent:1
st Qu.:1.75 lst Qu.:27.25 Type2:1 Improved :1
Median :2.50 Median :31.00 Poor 12
Mean :2.50 Mean :34.75

3rd Qu.:3.25 3rd Qu.:38.50
Max. :4.00 Max. :52.00

Looping

The most frequently used looping construct is

X <-c(1,2,3)

for(i 1n x) {expression}

The for-loop iterates through all elements of the vector vec

For each element of the vector vec there will be one iteration of
the loop and expression Is executed

At each iteration, the variable x takes the value of the current
element of vec

" Firstiteration: x = vec[1]

" Second iteration: x = v
1 <= 1list(c(1l,2),c (3
for (i 1n 1l:length (1l

if (i==1)

next
for (y in 1[[1]])
print (y)

)

14" December 2016 Assist. Prof. Emre Ugur 13

Print variable when iterating

Let’s print out the value of variable x when iterating through the
vector vec

> vec <- c(1l:5)

> vec
(1] 1 2 3 4 5

for(x in vec) {print (x)}

> r
[1
[2
I 3
[4
I S

e

14" December 2016 Assist. Prof. Emre Ugur 14

Print variable when iterating

" The for-loops works with other modes beside numeric as well

Example: like before we print the value of the variable when
iterating through a vector of strings

> word.vector <- c("a", "text", "consists'",
"Of")

for (word in word.vector) {print (word)}
"a"

"text"

"consists"

"Of"

>
[1]
[1]
[1]
[1]

14" December 2016 Assist. Prof. Emre Ugur 15

Print variable when iterating

As an alternative we can create a new vector which ranges from
1 until the length of the vector, iterate through this vector and
access the original vector via indexing

> vector.indices <- l:length(word.vector)

> vector.indices

(1] 1 2 3 4

> for (i1 in vector.indices) {print (word.vector[i])}
(1] "a"

[1] "text"

[1] "consists"

[1] "of"

14" December 2016 Assist. Prof. Emre Ugur 16

Print variable when iterating
We can write the alternative way in one line

> for (1 i1n word.vector) {print (1)}

> for (1 1n l:length(word.vector)) {print
(word.vector[i]) }

[l] "a"

[1] "text"

[1] "consistgs"
[l] "Of"

14" December 2016 Assist. Prof. Emre Ugur 17

Compute length of a vector

Write our own function for computing the length of a vector

function to compute length of vector vec
vec.length <- function (vec)

{

1nitialize counter
counter <- 0

iterate through vec and increase counter
for(x i1n wvec) {counter <- counter + 1}

return counter
return (counter)

14" December 2016 Assist. Prof. Emre Ugur 18

Compute Euclidean norm of a vector

compute Euclidean norm of a vector vec
Euclid.norm <- function (vec)

{

initialize norm
norm <—- 0

compute sum of squared vector elements
for(x in vec) {norm <- norm + x"2}

sgrt of sum
norm <- sgrt(norm)

return (norm)

14" December 2016 Assist. Prof. Emre Ugur 19

Square elements of a vector

We can change the elements of the input vector and return a
new vector, e.g. square the elements of a vector

square elements of vector vec
square.vec <- function (vec)

{

initialize output vector vec.res
vec.res <- c ()

£fill vec.res with squared elements of vec
for(x 1n vec) {vec.res <- c(vec.res, x"2)}

return (vec.res)

14" December 2016 Assist. Prof. Emre Ugur 20

Nested loops

In nested loops, an inner loop is placed inside of another outer
loop
for(i in 1:2)
{
for(j in 1:3)
{

print (paste ("outer", 1, "i1nner", 7))

}

[1] "outer 1 inner 1"
[1] "outer 1 inner 2"
[1] "outer 1 inner 3"
[1] "outer 2 inner 1"
[1] "outer 2 inner 2"
[1] "outer 2 inner 3"

14" December 2016 Assist. Prof. Emre Ugur 21

While loop

A frequently used looping construct is
while (condition) {expression}

" As long as the condition is satisfied, the expression is
executed

Example:

> 1 <=1

> while (1<5) {1 <- 1+1}
> 1

(1] 5

" In the example we observe that the while loop is executed 4
times

14" December 2016 Assist. Prof. Emre Ugur 22

Break

We can control when to exit the while-loop by using break in
combination with an i f statement

1 <=1
while (TRUE)

{
1 <- 1 + 1
1f(1 >= 10) {break}

14" December 2016 Assist. Prof. Emre Ugur 23

Repeat loop

Another looping construct is
"repeat {expression}

" Expression is executed until the loop is terminated with
break

" In comparison to the while-loop there is no longer a condition
test

" We can use it whenever we don’t have a condition to test

14" December 2016 Assist. Prof. Emre Ugur 24

Repeat loop

Example in which we use repeat instead of while (TRUE)

1 <=1
repeat

{
1 <- 1 + 1
1f(1 >= 10) {break}

14" December 2016 Assist. Prof. Emre Ugur 25

Next

* Another useful statement is next, which skips the remainder

of the current iteration of the loop and proceed directly to the
next iteration

We can use a next statement in while-loops, repeat-loops and
for-loops as well

for(i in 1:3)
{
print ("a")
next
print ("b")

1] "a"
1] "a"
1] "a"

}
[
[
[

14" December 2016 Assist. Prof. Emre Ugur 26

Scatter plots of data frames

> plot (person.datal[,2:5])

65 75

11 1

00 04 08

14" December 2016

65 70 75 80 00 02 04 06 08 10
- 1] 1] - ‘5 1 1 1 | |
%0 © © oo © 8 °L
o o
Height o o o o o Y |o oF
('] [w]
L= L= (=]
o o o
° Weight ° °
o B o® o
© o o © - g -
L= L= o
o ° o ° 8L
o o
BMI =
° 8 00 8 °
[#] (=] [#) [#] L#) [#) Q oo 9
above22.5
(w1 00 o [a'e » ul 0o 0
I I |]] I I
1.65 1.70 1.75 20 22 24 26 28

Assist. Prof. Emre Ugur

1.75

1.65

28

24

27

Histogram

" A histogram is similar to a barplot since we visualize how
many observations fall within specified divisions called “bins”

" In R we simply call the hist function

" hist creates the bins automatically, counts the number of
observations that fall within the bins and plots the result

A histogram of normal distributed random numbers with mean O
IS created with

> rnorml000 <= rnorm(1000)
> hist (rnorml000)

14" December 2016 Assist. Prof. Emre Ugur 28

Histogram

> hist (rnorml1000)

Histogram of rnorm1000

o
O n—
od
o
m —
= .
Q
c
@
o | o
o O -
E e
L
o _
Ty
o — | I]
[I | |
-3 -2 -1 0
morm1000

14" December 2016

Assist. Prof. Emre Ugur

29

Figure array

" Sometimes we need to place several figures in the same plot

" For example, we would like to have the plot of the normal
distributed random numbers and the corresponding histogram
In one plot

" We use par to specify how several figures will be drawn in

an number of rows by number of columns array

" par (mfrow=c (nr, nc)) specifies that figures will be drawn in an nr-
by-nc array by rows

" par (mfcol=c (nr, nc)) specifies that figures will be drawn in an nr-
by-nc array by columns

14" December 2016 Assist. Prof. Emre Ugur 30

Figure array

We place the plot of the normal distributed random numbers
and the corresponding histogram side by side

rnorml1000 <- rnorm(1000)
par (mfrow=c(1,2))

plot (rnorml000)

hist (rnorml000)

par (mfrow=c (1l,1))

vV V. V V V

" The last line resets mfrow to its default value

14" December 2016 Assist. Prof. Emre Ugur 31

\Q\BNIVG

.BD(}‘,e

Figure array

1863

Histogram of rnorm1000

M — —
N o
m— —
3 5
S 0 - 5 S - — B
E -
o T - @
c .
o - 2 -
0?_
— 1]
0 o -
Y | l | [I O L e
0 200 400 600 800 1000 4 3 2 1 0 1 2 3
Index morm1000

14" December 2016 Assist. Prof. Emre Ugur 32

2,

SEED

g&q\ﬂ 6"%
Figure array exercise: mid-semester analysis of @
grades, grades average bins, v2

for each attendance level, plot mean grade of quiz and

midterm
par (mfrow=c (1, 2))

for (column in c(l:1length(grades))) {
cNames=colnames (grades)
if (cNames[column]=="Q.Avg." || # or
cNames [column]=="Midterm..100.") {

means<-c ()

indices <- c()

for (x 1n seqg(0,100,10)) {
m = mean (grades[gradesSAttendance>=x,column])
means <- c (means,m)
indices <- c(indices, x)

}

plot (indices,means,main=colnames (grades)

[column],xlab="% of attendance")

}

114" December 2016 Assist. Prof. Emre Ugur 33

Figure array exercise:

means

14" December 2016

65

60

55

50

Q.Avg.

OO

40 80

% of attendance

means

77

76

75

74

Midterm..100.

Q0

% of attendance

Assist. Prof. Emre Ugur

34

Boxplot

A “boxplot”, also known as “box-and-whiskers plot”, is a graphical
summary of a distribution.

We differentiate between
" Box in the middle

" The lines ("whiskers”)

" Additional points

5.5

| SO QOO0 D0 O

5.0

4.5
oo oRelele'slere) }

14" December 2016 Assist. Prof. Emre Ugur 35

Boxplot

" The box in the middle
indicates first quartile,
median, and third quartile

lrm

" The lines (“whiskers™) show =
the largest or smallest
observation that falls withina — -
distance of 1.5 times the box
size from the nearest quartile

" If any observations fall

farther away, the additional =
points are considered
“extreme” values and are ? 7

shown separately

14" December 2016 Assist. Prof. Emre Ugur 36

Stripcharts

stripchart (list (rnumbersSrnorml1000, stripchart (list (rnumbersSrnorml00
rnumbersS$Spos.rnorml1000)) 0, rnumbersS$Spos.rnorml000),
method="jitter")

I T O 0 000

4 0 0 01 (110 N o e I W 00 0m 0 O

\ | T T | T T \ T
3 2 1 0 1 2 3 3

14" December 2016 Assist. Prof. Emre Ugur 37

Pie charts

" Pie charts are an alternative to barplots
" We first start with the word list example

" Next we consider another example on caffeine consumption
and marital status

" Next we consider an example on sales data

14" December 2016 Assist. Prof. Emre Ugur 38

Pie chart of word frequency

We create a pie chart of word frequency with
> pile (word.freqg[1:10])

and

the

Retrieved for

14" December 2016 Assist. Prof. Emre Ugur 39

Read data with scan

We already know the scan function from reading text data from
a file into a vector
> word.vec <- scan("text.txt", what="")

" Usually we use scan to read the entire content of a file into a
vector

" We have learned that we need to be careful when dealing
with vectors and mixed modes

14" December 2016 Assist. Prof. Emre Ugur 40

Read data with scan

We already know the scan function from reading text data from
a file into a vector
> word.vec <- scan("text.txt", what="")

" Usually we use scan to read the entire content of a file into a
vector

" We have learned in a previous lecture that we need to be
careful when dealing with vectors and mixed modes

In the following we learn how scan behaves when confronted
with mixed modes

14" December 2016 Assist. Prof. Emre Ugur 41

Accessing files from the Internet

" Certain input functions, such as read.table () and
scan (), can read data from web URLs as well

" Reading data from the Internet is of particular interest when
dealing with real-time data like stock exchange

" In the following we will access files from
“ The UCI Machine Learning Repository
" Project Gutenberg

14" December 2016 Assist. Prof. Emre Ugur 42

Writing to a file

" So far we have imported data, processed the data and
visualized the results

" A convenient way to save datato afileis write.table ()

" It works similar to read.table ()

"write.table () writes a data frame into a file

14" December 2016 Assist. Prof. Emre Ugur 43

Linear regression

> plot(x,y,xlim=c(1,30),ylim=c (1,3
data=df) -

> myModel <- 1Im(y~Xx,
> abline (myModel,col="red")
> str (myModel)

List of 12
S coefficients Named num [1
.— attr(*, "names")= chr |1
S residuals Named num [1
-1.45 -2.82
.— attr(*, "names")= chr |[1

myModel is a list of 12 elements,

element

I I I

0 5 10 15 20 25 30 35

:2] 0.536 1.04

:2] " (Intercept)" "x"
:20] -1.21 4.12 -1.37
:20] "1" "2" "3" "4"

use the first

30

Linear regression, real world

Let us check out how our regression model performs:

realCrime <- cdata$Scrime
crimeModel <- Im(crime ~ poverty
cdata)

plot(c(1:51), realCrime)

realCrime

testData <- data.frame(poverty=cdat5

single=cdata$single)
predCrime <- predict (crimeModel,
points(c(l:51),predCrime, col=red)

realCrime

+ single, data =
] [
s |
&
=
% —
. o “ o o
— o o ©
] Oooo o ©° ° ©o = OOO oo
S S5 oo 0® o o o ©
- oCo o ° a0 o O o o
T T T 1
10 20 30 40 50
$pove rty Tc(1:51)
testData)
1 ()
g _| .
B o
(=1
8 —
. o ° o > O
-~ © o _ o
- 08 ;;;m.-. g B O o, o o o OOP.IQ.«- i [(x) -
S 8 o .\.) 700.6 = o) Iod - 00 ©
o e8° - o ° < DDBU - 8 560 %
T

10

20

30

c(1:51)

Final Exam

" CMPE140.01: Monday 2™ January between 10:00 and 11:30
In the computer lab BM B4

" CMPE140.02: Monday 2™ January between 11:30 and 13:00
In the computer lab BM B4

14" December 2016 Assist. Prof. Emre Ugur 46

Preparation for Final Exam

" Make sure you did all homework

" Beside the lecture slides, use the slides and R scripts from
problem and lab sessions and check the quizzes

" Everything is in the course webpage.

" Have a good exam !

14" December 2016 Assist. Prof. Emre Ugur 47

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

