
Assistant Professor Dr. Bert ARNRICH 111th May 201614th December 2016 Assist. Prof. Emre Ugur

Introduction to Computing for Economics and
Management

Final Summary

Assist. Prof. Emre Ugur 214th December 2016

Final Exam Contents

 Vectors
 Matrices
 Lists
 Data frames
 For-loop
 While-loop
 Repeat-loop
 Break and next statements
 If-else statement
 Nested loops

 Scatter plot
 Histogram
 Barplot
 Figure arrays
 Stripchart
 Pie chart
 Read from the keyboard
 Import files
 Accessing data from the

Internet
 Writing data to files
 Factors
 Correlation and regression

Data structure types

Vectors: one-dimensional arrays
Numeric vectors
Complex vectors
Logical vectors
Character vectors or text strings

Matrices: two-dimensional
Arrays: multi-dimensional
Factors: vectors of categorical variables
Lists: ordered collection of objects
Data frames: generalization of matrices, different columns can store
different mode data
Functions: objects that make specific operations

Assist. Prof. Emre Ugur 414th December 2016

Short Summary Vectors

Integer mode
> person.weight <- c(65, 66, 61)

Numeric (floating-point number)
> person.height <- c(1.70, 1.75, 1.62)

Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- c(FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+2i, -1+0i)

Assist. Prof. Emre Ugur 514th December 2016

Short Summary Vectors

Assist. Prof. Emre Ugur 614th December 2016

Short Summary Vectors

Filtering
> person.height[person.height > 1.65]
 Can Cem
1.72 1.75

Recycling
> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Vector operations
> person.weight / person.height^2
 C(1,2,3) c(2,4)
> person.weight / person.height * person.height
 Can Cem Hande
21.97134 21.55102 23.24341

Assist. Prof. Emre Ugur 714th December 2016

Short Summary Matrices

Creation
> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

Matrix operations
Transposition t(y)
Element by element product y * y
Matrix multiplication y %*% y
Matrix scalar multiplication 3 * y
Matrix addition y + y

Indexing, e.g. select first and second row
> z[c(1,2),]

Assist. Prof. Emre Ugur 814th December 2016

Short Summary Matrices

Assign new values to submatrices
> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

Filtering, e.g. obtain those rows of matrix z having elements in
the second column which are at least equal to 5
> z[z[,2] >= 5,]

Assist. Prof. Emre Ugur 914th December 2016

Short Summary Lists

Creation
> joe <- list(name="Joe", salary=55000, staff=T)

Indexing
> joe$salary
> joe[["salary"]]
> joe[[2]]

Vectors as list components
> my.list <- list(vec1 = c(1,2), vec2 = c(3,4),
vec3 = 5:7)
Nested list

Assist. Prof. Emre Ugur 1014th December 2016

Short Summary Data frames

Creation
> person <- data.frame(height=person.height,
weight=person.weight)

Indexing
> person[[1]]
> person[["height"]]
> person$height
> person[c(1,2),]
> person[-3,]

Filtering
> person[person$height >= 1.7,]

Assist. Prof. Emre Ugur 1114th December 2016

Short Summary Data frames

Data import
> person.data <- read.table(header=TRUE,
"height_weight_data.txt", sep=",")

Data modifications
> person.data$BMI <- person.data$Weight /
person.data$Height^2

Summary
> summary(person.data)

Merging
> merge(person.data, person.data2)

Factors example 1
patientId <- c(1,2,3,4)
age <- c(25,34,28,52)
diabetes <- c("Type1","Type2","Type1","Type1")
diabetes <- factor(diabetes)
status <- c("Poor","Improved","Excellent","Poor")
status <- factor(status,order=TRUE)
patientdata <- data.frame(patientId,age,diabetes,status)
summary(patientdata)

 patientId age diabetes status
 Min. :1.00 Min. :25.00 Type1:3 Excellent:1
 1st Qu.:1.75 1st Qu.:27.25 Type2:1 Improved :1
 Median :2.50 Median :31.00 Poor :2
 Mean :2.50 Mean :34.75
 3rd Qu.:3.25 3rd Qu.:38.50
 Max. :4.00 Max. :52.00

Assist. Prof. Emre Ugur 1314th December 2016

Looping

The most frequently used looping construct is
x <-c(1,2,3)
for(i in x) {expression}
The for-loop iterates through all elements of the vector vec
For each element of the vector vec there will be one iteration of
the loop and expression is executed
At each iteration, the variable x takes the value of the current
element of vec

 First iteration: x = vec[1]
 Second iteration: x = vec[2]

l <- list(c(1,2),c(3,4,5))
for (i in 1:length(l)){
 if (i==1)
 next
 for (y in l[[i]])
 print(y)
}

Assist. Prof. Emre Ugur 1414th December 2016

Print variable when iterating

Let’s print out the value of variable x when iterating through the
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Assist. Prof. Emre Ugur 1514th December 2016

Print variable when iterating

 The for-loops works with other modes beside numeric as well

Example: like before we print the value of the variable when
iterating through a vector of strings

> word.vector <- c("a", "text", "consists",
"of")

> for(word in word.vector) {print (word)}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 1614th December 2016

Print variable when iterating

As an alternative we can create a new vector which ranges from
1 until the length of the vector, iterate through this vector and
access the original vector via indexing

> vector.indices <- 1:length(word.vector)

> vector.indices
[1] 1 2 3 4

> for(i in vector.indices) {print(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 1714th December 2016

Print variable when iterating

We can write the alternative way in one line

> for(i in word.vector) {print (i)}

> for(i in 1:length(word.vector)) {print
(word.vector[i])}

[1] "a"
[1] "text"
[1] "consists"
[1] "of"

Assist. Prof. Emre Ugur 1814th December 2016

Compute length of a vector

Write our own function for computing the length of a vector

function to compute length of vector vec
vec.length <- function(vec)
{
 # initialize counter
 counter <- 0

 # iterate through vec and increase counter
 for(x in vec) {counter <- counter + 1}

 # return counter
 return(counter)
}

Assist. Prof. Emre Ugur 1914th December 2016

Compute Euclidean norm of a vector

compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
 # initialize norm
 norm <- 0

 # compute sum of squared vector elements
 for(x in vec) {norm <- norm + x^2}

 # sqrt of sum
 norm <- sqrt(norm)

 return(norm)
}

Assist. Prof. Emre Ugur 2014th December 2016

Square elements of a vector

We can change the elements of the input vector and return a
new vector, e.g. square the elements of a vector

square elements of vector vec
square.vec <- function(vec)
{
 # initialize output vector vec.res
 vec.res <- c()

 # fill vec.res with squared elements of vec
 for(x in vec) {vec.res <- c(vec.res, x^2)}

 return(vec.res)
}

Assist. Prof. Emre Ugur 2114th December 2016

Nested loops

In nested loops, an inner loop is placed inside of another outer
loop
for(i in 1:2)
{
 for(j in 1:3)
 {
 print(paste("outer", i, "inner", j))
 }
}
[1] "outer 1 inner 1"
[1] "outer 1 inner 2"
[1] "outer 1 inner 3"
[1] "outer 2 inner 1"
[1] "outer 2 inner 2"
[1] "outer 2 inner 3"

Assist. Prof. Emre Ugur 2214th December 2016

While loop

A frequently used looping construct is
while(condition) {expression}

 As long as the condition is satisfied, the expression is
executed

Example:
> i <- 1
> while(i<5) {i <- i+1}
> i
[1] 5

 In the example we observe that the while loop is executed 4
times

Assist. Prof. Emre Ugur 2314th December 2016

Break

We can control when to exit the while-loop by using break in
combination with an if statement

i <- 1
while(TRUE)
 {
 i <- i + 1
 if(i >= 10) {break}
 }
i
[1] 10

Assist. Prof. Emre Ugur 2414th December 2016

Repeat loop

Another looping construct is
 repeat {expression}

 Expression is executed until the loop is terminated with
break

 In comparison to the while-loop there is no longer a condition
test

 We can use it whenever we don’t have a condition to test

Assist. Prof. Emre Ugur 2514th December 2016

Repeat loop

Example in which we use repeat instead of while(TRUE)

i <- 1
repeat
 {
 i <- i + 1
 if(i >= 10) {break}
 }
i
[1] 10

Assist. Prof. Emre Ugur 2614th December 2016

Next

 Another useful statement is next, which skips the remainder
of the current iteration of the loop and proceed directly to the
next iteration

We can use a next statement in while-loops, repeat-loops and
for-loops as well

for(i in 1:3)
{
 print("a")
 next
 print("b")
}
[1] "a"
[1] "a"
[1] "a"

Assist. Prof. Emre Ugur 2714th December 2016

Scatter plots of data frames

> plot(person.data[,2:5])

Assist. Prof. Emre Ugur 2814th December 2016

Histogram

 A histogram is similar to a barplot since we visualize how
many observations fall within specified divisions called “bins”

 In R we simply call the hist function

 hist creates the bins automatically, counts the number of
observations that fall within the bins and plots the result

A histogram of normal distributed random numbers with mean 0
is created with
> rnorm1000 <- rnorm(1000)
> hist(rnorm1000)

Assist. Prof. Emre Ugur 2914th December 2016

Histogram

> hist(rnorm1000)

Assist. Prof. Emre Ugur 3014th December 2016

Figure array

 Sometimes we need to place several figures in the same plot

 For example, we would like to have the plot of the normal
distributed random numbers and the corresponding histogram
in one plot

 We use par to specify how several figures will be drawn in
an number of rows by number of columns array
 par(mfrow=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by rows
 par(mfcol=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by columns

Assist. Prof. Emre Ugur 3114th December 2016

Figure array

We place the plot of the normal distributed random numbers
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
> par(mfrow=c(1,1))

 The last line resets mfrow to its default value

Assist. Prof. Emre Ugur 3214th December 2016

Figure array

Assist. Prof. Emre Ugur 3314th December 2016

Figure array exercise: mid-semester analysis of
grades, grades average bins, v2

for each attendance level, plot mean grade of quiz and
midterm
par(mfrow=c(1,2))
for (column in c(1:length(grades))){
 cNames=colnames(grades)
 if (cNames[column]=="Q.Avg." || # or
 cNames[column]=="Midterm..100."){
 means<-c()
 indices <- c()
 for (x in seq(0,100,10)){
 m = mean(grades[grades$Attendance>=x,column])
 means <- c(means,m)
 indices <- c(indices,x)
 }
 plot(indices,means,main=colnames(grades)
 [column],xlab="% of attendance")
 }
}

Assist. Prof. Emre Ugur 3414th December 2016

Figure array exercise:

Assist. Prof. Emre Ugur 3514th December 2016

Boxplot

A “boxplot”, also known as “box-and-whiskers plot”, is a graphical
summary of a distribution.

We differentiate between
 Box in the middle
 The lines (“whiskers”)
 Additional points

Assist. Prof. Emre Ugur 3614th December 2016

Boxplot

 The box in the middle
indicates first quartile,
median, and third quartile

 The lines (“whiskers”) show
the largest or smallest
observation that falls within a
distance of 1.5 times the box
size from the nearest quartile

 If any observations fall
farther away, the additional
points are considered
“extreme” values and are
shown separately

Assist. Prof. Emre Ugur 3714th December 2016

Stripcharts

stripchart(list(rnumbers$rnorm1000,
rnumbers$pos.rnorm1000))

stripchart(list(rnumbers$rnorm100
0, rnumbers$pos.rnorm1000),
method="jitter")

Assist. Prof. Emre Ugur 3814th December 2016

Pie charts

 Pie charts are an alternative to barplots

 We first start with the word list example

 Next we consider another example on caffeine consumption
and marital status

 Next we consider an example on sales data

Assist. Prof. Emre Ugur 3914th December 2016

Pie chart of word frequency

We create a pie chart of word frequency with
> pie(word.freq[1:10])

Assist. Prof. Emre Ugur 4014th December 2016

Read data with scan

We already know the scan function from reading text data from
a file into a vector
> word.vec <- scan("text.txt", what="")

 Usually we use scan to read the entire content of a file into a
vector

 We have learned that we need to be careful when dealing
with vectors and mixed modes

Assist. Prof. Emre Ugur 4114th December 2016

Read data with scan

We already know the scan function from reading text data from
a file into a vector
> word.vec <- scan("text.txt", what="")

 Usually we use scan to read the entire content of a file into a
vector

 We have learned in a previous lecture that we need to be
careful when dealing with vectors and mixed modes

In the following we learn how scan behaves when confronted
with mixed modes

Assist. Prof. Emre Ugur 4214th December 2016

Accessing files from the Internet

 Certain input functions, such as read.table() and
scan(), can read data from web URLs as well

 Reading data from the Internet is of particular interest when
dealing with real-time data like stock exchange

 In the following we will access files from
 The UCI Machine Learning Repository
 Project Gutenberg

Assist. Prof. Emre Ugur 4314th December 2016

Writing to a file

 So far we have imported data, processed the data and
visualized the results

 A convenient way to save data to a file is write.table()

 It works similar to read.table()

 write.table() writes a data frame into a file

Linear regression

> plot(x,y,xlim=c(1,30),ylim=c(1,35))
> myModel <- lm(y~x, data=df)
> abline(myModel,col="red")
> str(myModel)
List of 12
 $ coefficients : Named num [1:2] 0.536 1.04
 ..- attr(*, "names")= chr [1:2] "(Intercept)" "x"
 $ residuals : Named num [1:20] -1.21 4.12 -1.37
-1.45 -2.82 ...
 ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ..
myModel is a list of 12 elements, use the first
element

Linear regression, real world

Let us check out how our regression model performs:
realCrime <- cdata$crime
crimeModel <- lm(crime ~ poverty + single, data =
cdata)
plot(c(1:51),realCrime)

testData <- data.frame(poverty=cdata$poverty,
single=cdata$single)
predCrime <- predict(crimeModel, testData)
points(c(1:51),predCrime,col=red)

Assist. Prof. Emre Ugur 4614th December 2016

Final Exam

 CMPE140.01: Monday 2nd January between 10:00 and 11:30
in the computer lab BM B4

 CMPE140.02: Monday 2nd January between 11:30 and 13:00
in the computer lab BM B4

Assist. Prof. Emre Ugur 4714th December 2016

Preparation for Final Exam

 Make sure you did all homework

 Beside the lecture slides, use the slides and R scripts from
problem and lab sessions and check the quizzes

 Everything is in the course webpage.

 Have a good exam !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

