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Final Exam Contents

 Vectors
 Matrices
 Lists
 Data frames
 For-loop
 While-loop
 Repeat-loop
 Break and next statements
 If-else statement
 Nested loops

 Scatter plot
 Histogram
 Barplot
 Figure arrays
 Stripchart
 Pie chart
 Read from the keyboard
 Import files
 Accessing data from the 

Internet
 Writing data to files
 Factors
 Correlation and regression



Data structure types

Vectors: one-dimensional arrays
Numeric vectors
Complex vectors
Logical vectors
Character vectors or text strings

Matrices: two-dimensional
Arrays: multi-dimensional
Factors: vectors of categorical variables
Lists: ordered collection of objects
Data frames: generalization of matrices, different columns can store 
different mode data
Functions: objects that make specific operations
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Short Summary Vectors

Integer mode
> person.weight <- c(65, 66, 61)

Numeric (floating-point number)
> person.height <- c(1.70, 1.75, 1.62)

Character (string)
> person.name <- c("Can", "Cem", "Hande")

Logical (Boolean)
> person.female <- c(FALSE, FALSE, TRUE)

Complex
> complex.numbers <- c(1+2i, -1+0i)
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Short Summary Vectors
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Short Summary Vectors

Filtering
> person.height[person.height > 1.65]
 Can  Cem 
1.72 1.75

Recycling
> c(1, 2, 3) + c(1, 2, 3, 4)
[1] 2 4 6 5

Vector operations
> person.weight / person.height^2
  C(1,2,3)           c(2,4)
> person.weight / person.height * person.height
     Can      Cem    Hande 
21.97134 21.55102 23.24341
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Short Summary Matrices

Creation
> y <- matrix(c(1,2,3,4),nrow=2,ncol=2)

> cbind(c(1,2), c(3,4))

Matrix operations
Transposition t(y)
Element by element product y * y
Matrix multiplication y %*% y
Matrix scalar multiplication 3 * y
Matrix addition y + y

Indexing, e.g. select first and second row
> z[c(1,2),]



Assist. Prof. Emre Ugur 814th December 2016

Short Summary Matrices

Assign new values to submatrices
> z[c(1:2), c(2:3)] <- matrix(c(20,21,22,23), nrow=2)

Filtering, e.g. obtain those rows of matrix z having elements in 
the second column which are at least equal to 5
> z[z[,2] >= 5,]
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Short Summary Lists

Creation
> joe <- list(name="Joe", salary=55000, staff=T)

Indexing
> joe$salary
> joe[["salary"]]
> joe[[2]]

Vectors as list components
> my.list <- list(vec1 = c(1,2), vec2 = c(3,4), 
vec3 = 5:7)
Nested list
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Short Summary Data frames

Creation
> person <- data.frame(height=person.height, 
weight=person.weight)

Indexing
> person[[1]]
> person[["height"]]
> person$height
> person[c(1,2),]
> person[-3,]

Filtering
> person[person$height >= 1.7,]
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Short Summary Data frames

Data import
> person.data <- read.table(header=TRUE, 
"height_weight_data.txt", sep=",")

Data modifications
> person.data$BMI <- person.data$Weight / 
person.data$Height^2

Summary
> summary(person.data)

Merging
> merge(person.data, person.data2)



Factors example 1
patientId <- c(1,2,3,4)
age <- c(25,34,28,52)
diabetes <- c("Type1","Type2","Type1","Type1")
diabetes <- factor(diabetes)
status <- c("Poor","Improved","Excellent","Poor")
status <- factor(status,order=TRUE)
patientdata <- data.frame(patientId,age,diabetes,status)
summary(patientdata)

  patientId         age         diabetes       status 
 Min.   :1.00   Min.   :25.00   Type1:3   Excellent:1  
 1st Qu.:1.75   1st Qu.:27.25   Type2:1   Improved :1  
 Median :2.50   Median :31.00             Poor     :2  
 Mean   :2.50   Mean   :34.75                          
 3rd Qu.:3.25   3rd Qu.:38.50                          
 Max.   :4.00   Max.   :52.00 
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Looping

The most frequently used looping construct is 
x <-c(1,2,3)
for(i in x) {expression}
The for-loop iterates through all elements of the vector vec
For each element of the vector vec there will be one iteration of 
the loop and expression is executed
At each iteration, the variable x takes the value of the current 
element of vec

 First iteration: x = vec[1]
 Second iteration: x = vec[2]

l <- list(c(1,2),c(3,4,5))
for (i in 1:length(l)){
  if (i==1)
    next
  for (y in l[[i]])
    print(y)
}
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Print variable when iterating

Let’s print out the value of variable x when iterating through the 
vector vec

> vec <- c(1:5)

> vec
[1] 1 2 3 4 5

> for(x in vec) {print (x)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
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Print variable when iterating

 The for-loops works with other modes beside numeric as well

Example: like before we print the value of the variable when 
iterating through a vector of strings

> word.vector <- c("a", "text", "consists", 
"of")

> for(word in word.vector) {print (word)}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"
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Print variable when iterating

As an alternative we can create a new vector which ranges from 
1 until the length of the vector, iterate through this vector and 
access the original vector via indexing

> vector.indices <- 1:length(word.vector)

> vector.indices
[1] 1 2 3 4

> for(i in vector.indices) {print(word.vector[i])}
[1] "a"
[1] "text"
[1] "consists"
[1] "of"
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Print variable when iterating

We can write the alternative way in one line

> for(i in word.vector) {print (i)}

> for(i in 1:length(word.vector)) {print 
(word.vector[i])}

[1] "a"
[1] "text"
[1] "consists"
[1] "of"
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Compute length of a vector

Write our own function for computing the length of a vector

## function to compute length of vector vec
vec.length <- function(vec) 
{
  # initialize counter
  counter <- 0

  # iterate through vec and increase counter
  for(x in vec) {counter <- counter + 1}

  # return counter
  return(counter)
}
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Compute Euclidean norm of a vector

## compute Euclidean norm of a vector vec
Euclid.norm <- function(vec)
{
  # initialize norm
  norm <- 0
  
  # compute sum of squared vector elements
  for(x in vec) {norm <- norm + x^2}
  
  # sqrt of sum
  norm <- sqrt(norm)
  
  return(norm)
}
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Square elements of a vector

We can change the elements of the input vector and return a 
new vector, e.g. square the elements of a vector

## square elements of vector vec
square.vec <- function(vec)
{
  # initialize output vector vec.res
  vec.res <- c()

  # fill vec.res with squared elements of vec
  for(x in vec) {vec.res <- c(vec.res, x^2)}

  return(vec.res)
}
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Nested loops

In nested loops, an inner loop is placed inside of another outer 
loop
for(i in 1:2)
{
  for(j in 1:3)
  {
    print(paste("outer", i, "inner", j))
  }
}
[1] "outer 1 inner 1"
[1] "outer 1 inner 2"
[1] "outer 1 inner 3"
[1] "outer 2 inner 1"
[1] "outer 2 inner 2"
[1] "outer 2 inner 3"
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While loop

A frequently used looping construct is
while(condition) {expression}

 As long as the condition is satisfied, the expression is 
executed

Example:
> i <- 1
> while(i<5) {i <- i+1}
> i
[1] 5

 In the example we observe that the while loop is executed 4 
times
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Break

We can control when to exit the while-loop by using break in 
combination with an if statement

i <- 1
while(TRUE)
  {
    i <- i + 1
    if(i >= 10) {break}
  }
i
[1] 10
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Repeat loop

Another looping construct is
 repeat {expression}

 Expression is executed until the loop is terminated with 
break

 In comparison to the while-loop there is no longer a condition 
test

 We can use it whenever we don’t have a condition to test
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Repeat loop

Example in which we use repeat instead of while(TRUE)

i <- 1
repeat
  {
    i <- i + 1
    if(i >= 10) {break}
  }
i
[1] 10
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Next

 Another useful statement is next, which skips the remainder 
of the current iteration of the loop and proceed directly to the 
next iteration

We can use a next statement in while-loops, repeat-loops and 
for-loops as well

for(i in 1:3)
{
  print("a")
  next
  print("b")
}
[1] "a"
[1] "a"
[1] "a"
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Scatter plots of data frames

> plot(person.data[,2:5])
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Histogram

 A histogram is similar to a barplot since we visualize how 
many observations fall within specified divisions called “bins”

 In R we simply call the hist function

 hist creates the bins automatically, counts the number of 
observations that fall within the bins and plots the result

A histogram of normal distributed random numbers with mean 0 
is created with
> rnorm1000 <- rnorm(1000)
> hist(rnorm1000)
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Histogram

> hist(rnorm1000)
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Figure array

 Sometimes we need to place several figures in the same plot

 For example, we would like to have the plot of the normal 
distributed random numbers and the corresponding histogram 
in one plot

 We use par to specify how several figures will be drawn in 
an number of rows by number of columns array 
 par(mfrow=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by rows
 par(mfcol=c(nr, nc)) specifies that figures will be drawn in an nr-

by-nc array by columns
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Figure array

We place the plot of the normal distributed random numbers 
and the corresponding histogram side by side

> rnorm1000 <- rnorm(1000)
> par(mfrow=c(1,2))
> plot(rnorm1000)
> hist(rnorm1000)
> par(mfrow=c(1,1))

 The last line resets mfrow to its default value
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Figure array
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Figure array exercise: mid-semester analysis of 
grades, grades average bins, v2

# for each attendance level, plot mean grade of quiz and 
# midterm
par(mfrow=c(1,2))
for (column in c(1:length(grades))){
  cNames=colnames(grades)
  if (cNames[column]=="Q.Avg." ||   # or
      cNames[column]=="Midterm..100." ){
    means<-c()
    indices <- c()
    for (x in seq(0,100,10)){
      m = mean(grades[grades$Attendance>=x,column])
      means <- c(means,m)
      indices <- c(indices,x)
    }
    plot(indices,means,main=colnames(grades)  
         [column],xlab="% of attendance")
  }
} 
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Figure array exercise:
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Boxplot

A “boxplot”, also known as “box-and-whiskers plot”, is a graphical 
summary of a distribution. 

We differentiate between
 Box in the middle
 The lines (“whiskers”)
 Additional points



Assist. Prof. Emre Ugur 3614th December 2016

Boxplot

 The box in the middle 
indicates first quartile, 
median, and third quartile

 The lines (“whiskers”) show 
the largest or smallest 
observation that falls within a 
distance of 1.5 times the box 
size from the nearest quartile

 If any observations fall 
farther away, the additional 
points are considered 
“extreme” values and are 
shown separately
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Stripcharts

stripchart(list(rnumbers$rnorm1000, 
rnumbers$pos.rnorm1000))

stripchart(list(rnumbers$rnorm100
0, rnumbers$pos.rnorm1000), 
method="jitter")



Assist. Prof. Emre Ugur 3814th December 2016

Pie charts

 Pie charts are an alternative to barplots 

 We first start with the word list example

 Next we consider another example on caffeine consumption 
and marital status

 Next we consider an example on sales data
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Pie chart of word frequency

We create a pie chart of word frequency with
> pie(word.freq[1:10])
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Read data with scan

We already know the scan function from reading text data from 
a file into a vector 
> word.vec <- scan("text.txt", what="")

 Usually we use scan to read the entire content of a file into a 
vector 

 We have learned that we need to be careful when dealing 
with vectors and mixed modes
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Read data with scan

We already know the scan function from reading text data from 
a file into a vector 
> word.vec <- scan("text.txt", what="")

 Usually we use scan to read the entire content of a file into a 
vector 

 We have learned in a previous lecture that we need to be 
careful when dealing with vectors and mixed modes

In the following we learn how scan behaves when confronted 
with mixed modes
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Accessing files from the Internet

 Certain input functions, such as read.table() and 
scan(), can read data from web URLs as well

 Reading data from the Internet is of particular interest when 
dealing with real-time data like stock exchange

 In the following we will access files from 
 The UCI Machine Learning Repository
 Project Gutenberg
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Writing to a file

 So far we have imported data, processed the data and 
visualized the results

 A convenient way to save data to a file is write.table()

 It works similar to read.table()

 write.table() writes a data frame into a file



Linear regression

> plot(x,y,xlim=c(1,30),ylim=c(1,35))
> myModel <- lm(y~x, data=df)
> abline(myModel,col="red")
> str(myModel)
List of 12
 $ coefficients : Named num [1:2] 0.536 1.04
  ..- attr(*, "names")= chr [1:2] "(Intercept)" "x"
 $ residuals    : Named num [1:20] -1.21 4.12 -1.37 
-1.45 -2.82 ...
  ..- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ..
# myModel is a list of 12 elements, use the first 
element



Linear regression, real world

Let us check out how our regression model performs:
realCrime <- cdata$crime
crimeModel <- lm(crime ~ poverty + single, data = 
cdata)
plot(c(1:51),realCrime)

testData <- data.frame(poverty=cdata$poverty, 
single=cdata$single)
predCrime <- predict(crimeModel, testData)
points(c(1:51),predCrime,col=red)
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Final Exam

 CMPE140.01: Monday 2nd January between 10:00 and 11:30 
in the computer lab BM B4

 CMPE140.02: Monday 2nd January between 11:30 and 13:00 
in the computer lab BM B4
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Preparation for Final Exam

 Make sure you did all homework

 Beside the lecture slides, use the slides and R scripts from 
problem and lab sessions and check the quizzes 

 Everything is in the course webpage.

 Have a good exam !
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