Credits

» Slides adapted from Lee Cooper and Joydeep Ghosh
» http://joyceho.github.io/cs534 s17/slide/2-prob-review.pdf
» UC Berkeley CS188 Intro to Al

» Also see
» Appendix of the textbook.
» http://cs229.stanford.edu/section/cs229-prob.pdf

» http://cs229.stanford.edu/section/cs229-linalg.pdf
=
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Applications

» Association

» Supervised Learning
» Classification

» Regression

» Unsupervised Learning
» Reinforcement Learning
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Learning Associations

» Basket analysis:

P (Y | X ) probabllity that somebody who buys X also buys Y
where X and Y are products/services.

Example: P ( chips | beer ) = 0.7
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Regression

» Example: Price of a used car|
» X : car attributes
y . price
y=g((x|0)
g () model,
6 parameters

x: milage
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Regression Applications

» Navigating a car: Angle of the steering wheel
» Kinematics of a robot arm

(x,y) a,= g.(x,y)
a,= g.(x,y)
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Unsupervised Learning

» | earning “what normally happens”
» No output
» Clustering: Grouping similar instances
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Unsupervised Learning

X
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» Biology : Discovering gene clusters with similar expression
patterns, grouping homologous DNA seguences, etc.

» Marketing: Grouping customers with similar traits for segmenting
the market, product positioning etc.

» Vision : Image segmentation, feature learning for recognition,...

» Social network analysis (discovering user communities with
similar interests)

» Crime analysis (identification of “hot spots”
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Reinforcement Learning

» |earning a policy: A of outputs
» No supervised output but delayed reward
» Credit assignment problem

» Game playing

» Robot in a maze

» Multiple agents, partial observability, ...
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Resources: Datasets

» UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.htm|

» UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html
» Statlib: http:/lib.stat.cmu.edu/

» Delve: http://www.cs.utoronto.ca/~delve/
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Resources: Journals

Journal of Machine Learning Research www.jmlr.org

Machine Learning

Neural Computation

Neural Networks

IEEE Transactions on Neural Networks

IEEE Transactions on Pattern Analysis and Machine Intelligence
Annals of Statistics

» Journal of the American Statistical Association
. 'R
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Resources: Conferences

International Conference on Machine Learning (ICML)
ICMLOS5: http://icml.ais.fraunhofer.de/

European Conference on Machine Learning (ECML)
ECMLOS5: http://lecmlpkdd05.liacc.up.pt/

Neural Information Processing Systems (NIPS)
NIPSO05: http://nips.cc/

Uncertainty in Artificial Intelligence (UAI)

UAIQOS5: http://www.cs.toronto.edu/uai2005/
Computational Learning Theory (COLT)

COLTO5: http://learningtheory.org/colt2005/
International Joint Conference on Atrtificial Intelligence (IJCAI)
|IJCAIOS: http://ijcai05.csd.abdn.ac.uk/

International Conference on Neural Networks (Europe)
ICANNOS: http://www.ibspan.waw.pl/ICANN-2005/

\AAAAAAAAAAAAAAI
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Random Variables

A random variable is some aspect of the world about which w
(may) have uncertainty

" R=Isitraining?
" T=Isit hot or cold?
" D =How long will it take to drive to work?
" L=Where is the ghost?
We denote random variables with capital letters
Like variables in a CSP, random variables have domains
" Rin {true, false} (often write as {+r, -r})
" Tin {hot, cold}
" Din |0, )
" Lin possible locations, maybe {(0,0), (0,1), ...}




" Associate a probability with each value

" Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

" Weather:

P(W)
wW P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number
P(W = rain) = 0.1

Must have;

Ve P(X =x2)>0

and

Y P(X=2z)=1



Joint Distributions

" A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):

P(x1,xo,...2n)

P(x1,z0,...20) > 0O

>y P(x1,z0,...20n) = 1

(z1,22,...71)
Size of distribution if n variables with domain sizes d?

P(T,W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain | 0.3

" For all but the smallest distributions, impractical to write out!




Prior probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity=true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather = |sunny rain cloudy snow
Cavity=true [0.144 0.02 0.016 0.02
Cavity = false|0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points
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Probabilistic Models

] ic ai0i SRR Distribution over TW
A probabilistic model is a joint distribution IStribu v

over a set of random variables T W P

hot sun 0.4
hot rain 0.1

Probabilistic models:
" (Random) variables with domains

" Assignments are called outcomes cold sun 0.2
" Joint distributions: say whether assignments d .
(outcomes) are likely co rain 0.3
" Normalized: sum to 1.0 _
" Ideally: only certain variables directly interact Constraint over TW
. . : T W P
" Constraint satisfaction problems:
" Variables with domains hot sun T
" Constraints: state whether assignments are .
possible hot rain F
* Ideally: only certain variables directly interact cold sun F
cold rain T




Events

" An eventis a set E of outcomes

P(E)Y= )  P(z1...zn)
@@l
" From a joint distribution, we can calculate the
probability of any event

" Probability that it’s hot AND sunny?
" Probability that it's hot?
" Probability that it’s hot OR sunny?
" Typically, the events we care about are partial
assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Quiz: Events

" P(+x, +y) ?

" P(+x) ?

" P(-y OR+x) ?

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

—-
P(t) =) P(ts)

—-
P(s) = Z P(t,s)
t

P(X1 ==z1) =Y P(X1=u11,X0=1xp)

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

e ——
P(x) =) P(z,y)
Y

—_—
P(y) = > P(z,y)




Conditional probability

Conditional or posterior probabilities
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache,49ersWin) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional Probabilities

" Asimple relation between joint and conditional probabilities
" Infact, this is taken as the definition of a conditional probability

P(afb) = 2La:0)

P(b)

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a)

— — 2
P(W:s|T:c):P(W sT=c) _02

P(T = c¢) 0.5

=

=P(W=s,T=c¢c)+PW=r,T =c)
=0.24+0.3 =0.5

= 0.4



Quiz: Conditional Probabilities

" Plx | +y)?

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
X +y 0.4 " P(-x | +y) ?
X y 0.1

" P(y | +x)?



Conditional Distributions

® Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions

- P(W|T = hot)

Joint Distribution

P(T,W)
W P
T W P
sun 0.8
~~ hot sun 0.4
i rain 0.2 .
E hot rain 0.1
= P(W|T = cold) cold | sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6




Inference by enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch] catch| — catch
cavity | .108 | .012 .072| .008
—1cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiywpeP (W)

Chapter 13 17



Inference by enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch] catch| — catch
cavity | .108 | .012 .072| .008
-1 cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiywpeP (W)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch] catch| — catch
cavity | .108|.012 | .072] .008
-1 cavity | .016| .064 144 | 576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiywpeP (W)

P(cavityVtoothache) = 0.10840.012+0.0724-0.008+0.0164-0.064 = 0.28

Chapter 13 19



Inference by enumeration

Start with the joint distribution:
toothache

=1 toothache

catch| — catch] catch| — catch

cavity | .108
1 cavity ||.016 | .064

144 | .576

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
0.016 + 0.064

=04
0.108 + 0.012 4 0.016 + 0.064

P(—cavity|toothache) =

Chapter 13 20



Normalization

toothache =1 toothache

catch| —catchj catch| — catch
cavity .108-.012 .072| .008
—cavity [ .016l[[.064] | .144] 576

Denominator can be viewed as a normalization constant «

P(Cavity|toothache) = a P(Cavity, toothache)
a |P(Cavity, toothache, catch) + P(Cavity, toothache, —~catch)]

a [(0.108,0.016) + (0.012, 0.064)]

a (0.12,0.08) = (0.6,0.4)

General idea: compute distribution on query variable

by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbe H =X — Y — E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y[E=e)=aP(Y,E=e) = aX,P(Y,E=¢,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???
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Inference by Enumeration

" P(W)?

" P(W | winter)?

" P(W | winter, hot)?

S T W P
summe | hot sun 0.30
r
summe | hot rain 0.05
r
summe | cold sun 0.10
r
summe | cold rain 0.05
r
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




Random Variable Types

- Discrete random variable: X can take only a finite number
of values

- Example: Number of heads in a sequence of tosses

- Continuous random variable: X takes infinite number of
possible values

- Example: Amount of time for a radioactive particle to
decay
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Cumulative Distribution Function (CDF)

- CDF: function F'x : R — [0, 1] that specifies a probability measure
Fx(z) & P(X < x)

- Used to calculate the probability of an event in F

- Properties:

r—r— 0O

. lim FX(QE) =1

L —r OO

<y = Fx(z) < Fx(y)
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Probability Mass Function (PMF)

- Probability measure for discrete random variable

- PMF: function px(x) : 2 — R such that
px(z) = P(X = )

- Properties:

0.5
0 <px(z) <1 0.3
0.2
Z P X (ZE) =1 ] [
rxeVal(X) 1 3 7 >
: Z Px (.CI?) = P (X c A) https://en.wikipedia.org/wiki/Probability mass function
rEA
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Probability Density Function (PDF)

- Probability measure for continuous random variable

- PDF is derivative of CDF

» dFx () may not always exist If

fx(x) = y CDF is not differentiable
£z
+ Properties:
f(x)
fx(z) =0 E
00 b-a '
fx(x)de =1

|
fx(x)de = P(X € A) 0 a b X
rcEA https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
CS 534 [Spring 2017] - Ho



https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

Example: Normal Distribution

mean
l 1 _ (z—w)?

1.0

2
f(xllL? o ) — € 202
V2072
N\ O°T
variance
Probability density function Cumulative distribution function
o T 1o T T | L L L |"|"'..|—';_
_ H=0, 0%=0.2, == | | |H=0, 0°=0.2,=—— = / L~ i
H=0, 02=1.0, w—| - | H=0, 0221.0,— / / / B
08 H=0, 0%=5.0, = 08 p=0, 0?=50, = l
= H=-2, 0%=0.5, == | L | U=-2, 02=0.5, == / /// |
| 06— / |

0.6 __ . . . : : . __ / / ]
oal . . . | 04l / 7 —
b ] oaf V// /// _'
0.0 -_ — J \%'l\\t\‘\ : 00 __rl_’ ﬂ‘//l PRI PR TR SN PO PO I —-

' I A A l A I l A A A

https://en.wikipedia.org/wiki/Normal distribution
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PDFs vs. PMFs

PDF

Values
Representation
Probabillity

P(x = k)

Continuous valued RVs
Function f(x)

Calculated via integration

PMF

Discrete-valued RVs

Table

Calculated via summation

Non-zero
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Expectation: Mean and Variance
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EXpectation

- What is the expected value of a random variable”

+ Expectation of g(X):

Elg(X)& » g(@)px(X)

rxeVal(X)

Blo(x)] = [ " g(@) fx(X)

— OO

- “Weighted average” of values that g(x) with weights given
by pdf or pmf
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EXxpectation: Properties

- Constant
Flal =a, a € R
- Scalar
Elaf(X)] = aE[f(X)], a €R
- Linearity
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Expectation: Common Forms

- Mean: expectation of random variable
E|X]|, where g(z) =z

- Variance: measure of how concentrated the distribution
of the random variable I1s around Iits mean

Var[X] = E[(X — E[X])?]
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Common Distributions
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Discrete RV Distributions

- Bernoulli(p): coin flip with probability p of getting a heads
(P =1)

- Binomial(n,p): number of heads in n independent flips of
a coin with probabillity p of a heads

- Geometric(p): number of flips of a coin until the first
heads

- Poisson( A): frequency of events or counts

CS 534 [Spring 2017] - Ho



Continuous RV Distributions

- Uniform(a, b): equal probability density between every
value a and b on the real line

- Exponential( A): decaying probability density over the
nonnegative real numbers

- Normal( i, o?): Gaussian distribution
- Will be dealing with this 99% of the time

- Interesting properties
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Continuous RVs: PDF & CDF

Shape of the Gaussian pdf Shape of the Exponential pdf Shape of the Uniform pdf
0.4 1 : : . : 1 . .
035 09t 09}
08} 08}
03}
07t 07t
0.5 06} 06}
02} . 05} 05}
0.15} 04r 04r
03} 03}
01}
02t 02}
005 0.1} 01}
0 : 0 0 :
5 0 5 1 4 405 0 05 1 15 2
Shape of the Gaussian CDF Shape of the Exponential CDF Shape of the Uniform CDF
1 : 1 . : : : 1 . . .
039t . 09t 09}
08} - 08} 08}
07} . 07} 07}
06} | 06} 06}
05} . 05} 05}
04} . 04} 04}
03} : 03} 03}
02} E 02t 02}
01t . 01t 01t
0 : 0 0 :
5 0 5 1 4 5 1 05 15 2

http://cs229.stanford.edu/section/cs229-prob.pdf
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Common RV Summary

Distribution PDF or PMF Mean | Variance
. D, ifx=1
Bernoulli(p) 1 —p. ifz=0. D p(1 —p)

Binomial(n, p) (Z) p*(1—p)"Ffor0<k<n | np npq

Geometric(p) p(l —p)s=1 fork=1,2,... 11—) 1p_2p

Poisson(\) e *\%/x! fork=1,2,... A A

Uniform(a,b) L Vz € (a,b) ath (bzg)
(z—p)?

Gaussian(u, o?) #%e_ 202 L o2

Exponential(\) | e ™% x>0, >0 5 T

http://cs229.stanford.edu/section/cs229-prob.pdf
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