Credits

- Slides adapted from Lee Cooper and Joydeep Ghosh
 - http://joyceho.github.io/cs534_s17/slide/2-prob-review.pdf
- UC Berkeley CS188 Intro to Al
- Also see
 - Appendix of the textbook.
 - http://cs229.stanford.edu/section/cs229-prob.pdf
 - http://cs229.stanford.edu/section/cs229-linalg.pdf

Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

Learning Associations

Basket analysis:

P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

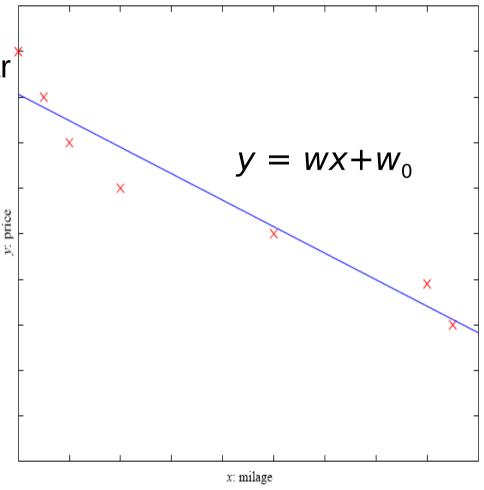
Regression

- Example: Price of a used car
- $\triangleright x$: car attributes

$$y = g(x \mid \theta)$$

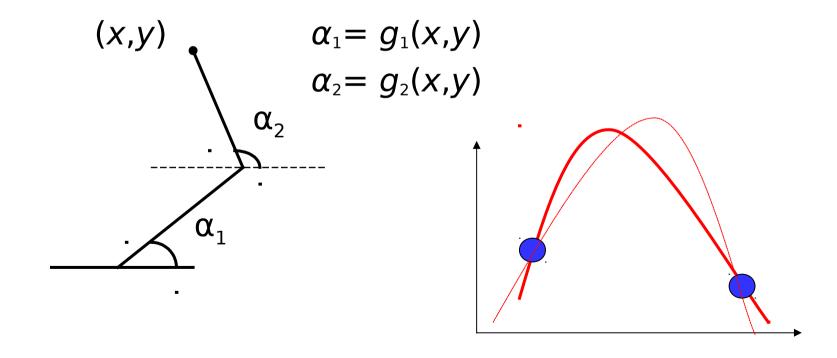
g () model,

 θ parameters



Regression Applications

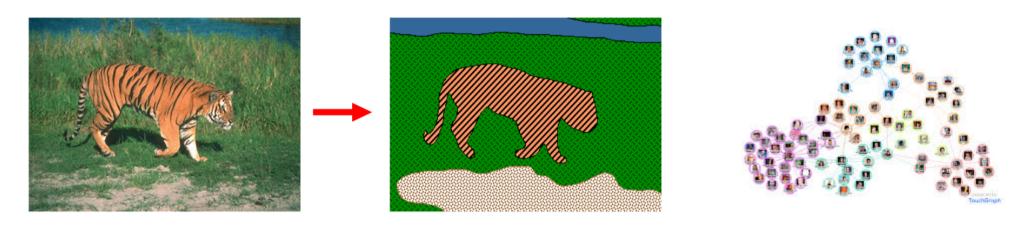
- Navigating a car: Angle of the steering wheel
- Kinematics of a robot arm



Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances

Unsupervised Learning



- Biology: Discovering gene clusters with similar expression patterns, grouping homologous DNA sequences, etc.
- Marketing: Grouping customers with similar traits for segmenting the market, product positioning etc.
- Vision: Image segmentation, feature learning for recognition,...
- Social network analysis (discovering user communities with similar interests)
- Crime analysis (identification of "hot spots"

Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

Resources: Datasets

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html
- Statlib: http://lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/

Resources: Journals

- Journal of Machine Learning Research www.jmlr.org
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association

Resources: Conferences

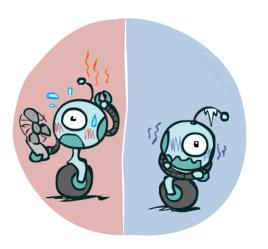
- International Conference on Machine Learning (ICML)
- ICML05: http://icml.ais.fraunhofer.de/
- European Conference on Machine Learning (ECML)
- ECML05: http://ecmlpkdd05.liacc.up.pt/
- Neural Information Processing Systems (NIPS)
- NIPS05: http://nips.cc/
- Uncertainty in Artificial Intelligence (UAI)
- UAI05: http://www.cs.toronto.edu/uai2005/
- Computational Learning Theory (COLT)
- COLT05: http://learningtheory.org/colt2005/
- International Joint Conference on Artificial Intelligence (IJCAI)
- IJCAI05: http://ijcai05.csd.abdn.ac.uk/
- International Conference on Neural Networks (Europe)
- ICANN05: http://www.ibspan.waw.pl/ICANN-2005/

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - **■** D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

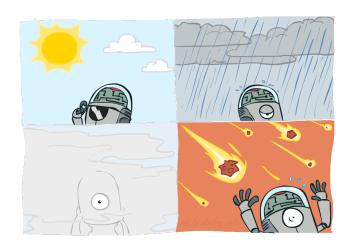
Probability Distributions

- Associate a probability with each value
 - Temperature:



 $egin{array}{c|c} P(T) & & & \\ T & & P & \\ & \text{hot} & 0.5 & \\ & \text{cold} & 0.5 & \\ \hline \end{array}$

Weather:



P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(I)	
Т	Р
hot	0.5

D/T

1 (v	<i>y j</i>
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

P(W)

A distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number P(W=rain)=0.1

Must have:
$$\forall x \ P(X=x) \ge 0$$
 and $\sum_{x} P(X=x) = 0$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

Joint Distributions

A joint distribution over a set of random variables: $X_1, X_2, \dots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$
 $P(x_1, x_2, \dots x_n)$

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$
 $(x_1, x_2, \dots x_n)$

Size of distribution if n variables with domain sizes d?

For all but the smallest distributions, impractical to write out!

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Prior probability

Prior or unconditional probabilities of propositions

e.g.,
$$P(Cavity = true) = 0.1$$
 and $P(Weather = sunny) = 0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

$$\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$$
 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point) $\mathbf{P}(Weather, Cavity) = \mathbf{a} \ 4 \times 2 \text{ matrix of values:}$

Weather=
 sunny
 rain
 cloudy
 snow

$$Cavity = true$$
 0.144
 0.02
 0.016
 0.02

 $Cavity = false$
 0.576
 0.08
 0.064
 0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probabilistic Models

 A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called *outcomes*
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact

Constraint satisfaction problems:

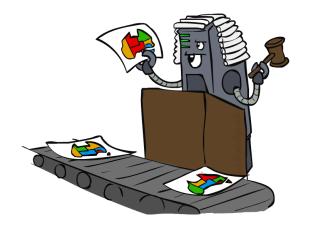
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т



Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(+x, +y) ?

P(+x) ?

P(-y OR +x) ?

P(X, Y)	Z)
---------	----

X	Υ	Р
+χ	+y	0.2
+χ	-y	0.3
-X	+y	0.4
-X	-у	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P	T	7	W	1
<i>1</i>	(<u> </u>	,	VV	1

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

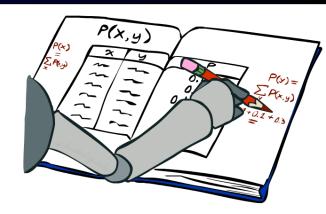
$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4



$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Quiz: Marginal Distributions

P(X,Y)

X	Υ	Р
+χ	+y	0.2
+χ	-y	0.3
-X	+ y	0.4
-X	- y	0.1

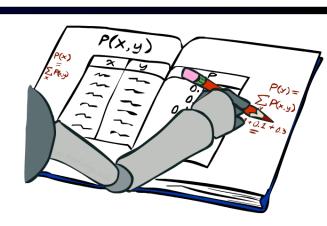
$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+χ	
-X	

Υ	Р
+y	
-у	



Conditional probability

Conditional or posterior probabilities

```
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT "if toothache then 80% chance of cavity"
```

(Notation for conditional distributions:

P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have

$$P(cavity|toothache, cavity) = 1$$

Note: the less specific belief **remains valid** after more evidence arrives, but is not always **useful**

New evidence may be irrelevant, allowing simplification, e.g.,

$$P(cavity|toothache, 49ersWin) = P(cavity|toothache) = 0.8$$

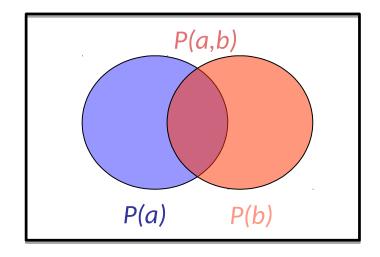
This kind of inference, sanctioned by domain knowledge, is crucial

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3



$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

P(+x | +y) ?

P(X,Y)

X	Υ	Р
+χ	+y	0.2
+χ	-y	0.3
-X	+y	0.4
-X	-у	0.1

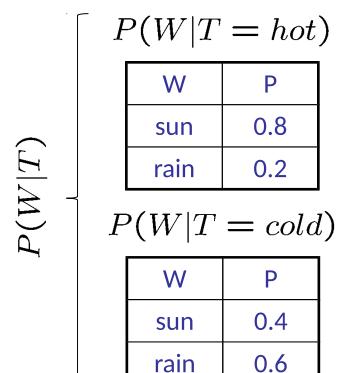
■ P(-x | +y)?

■ P(-y | +x)?

Conditional Distributions

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions



rain

Joint Distribution

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
$\neg cavity$.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
$\neg cavity$.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toothache		¬ toothache		
	catch	¬ catch		catch	¬ catch
cavity	.108	.012		.072	.008
$\neg cavity$.016	.064		.144	.576

Denominator can be viewed as a normalization constant α

$$\mathbf{P}(Cavity|toothache) = \alpha \mathbf{P}(Cavity, toothache)$$

$$= \alpha \left[\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch)\right]$$

$$= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle\right]$$

$$= \alpha \left\langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$

Then the required summation of joint entries is done by summing out the hidden variables:

$$\mathbf{P}(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???

P(W)?

P(W | winter)?

P(W | winter, hot)?

S	Т	W	Р
summe r	hot	sun	0.30
summe r	hot	rain	0.05
summe r	cold	sun	0.10
summe r	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Random Variable Types

- Discrete random variable: X can take only a finite number of values
 - Example: Number of heads in a sequence of tosses
- Continuous random variable: X takes infinite number of possible values
 - Example: Amount of time for a radioactive particle to decay

Cumulative Distribution Function (CDF)

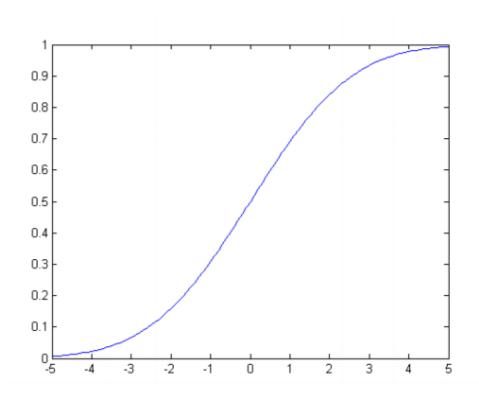
- CDF: function $F_X:\mathbb{R}\to [0,1]$ that specifies a probability measure $F_X(x)\triangleq P(X\leq x)$
- Used to calculate the probability of an event in \mathcal{F}
- Properties:

•
$$0 \le F_X(x) \le 1$$

$$\lim_{x \to -\infty} F_X(x) = 0$$

$$\cdot \lim_{x \to \infty} F_X(x) = 1$$

$$x \leq y \implies F_X(x) \leq F_X(y)$$



Probability Mass Function (PMF)

- Probability measure for discrete random variable
- PMF: function $p_X(x):\Omega\to\mathbb{R}$ such that

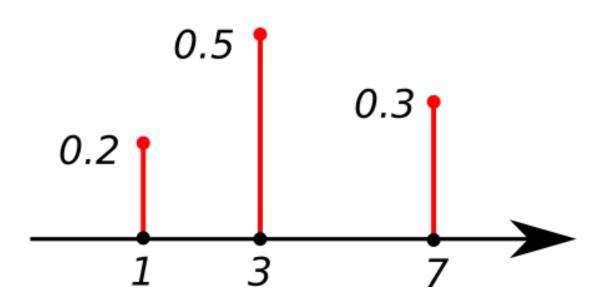
$$p_X(x) \triangleq P(X=x)$$

Properties:

•
$$0 \le p_X(x) \le 1$$

$$\sum_{x \in Val(X)} P_X(x) = 1$$

$$\sum_{x \in A} P_X(x) = P(X \in A)$$



https://en.wikipedia.org/wiki/Probability mass function

Probability Density Function (PDF)

- Probability measure for continuous random variable
- PDF is derivative of CDF

$$f_X(x) \triangleq \frac{dF_X(x)}{dx}$$

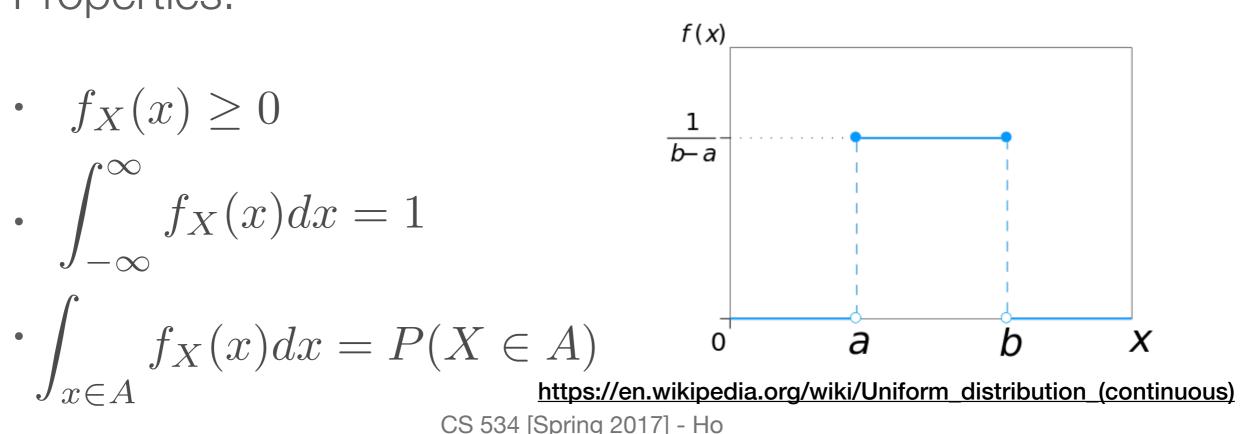
Properties:

•
$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

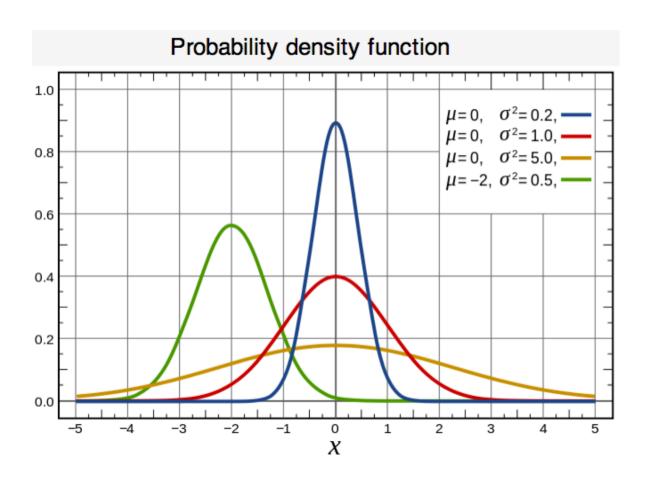
•
$$\int f_X(x)dx = P(X \in A)$$

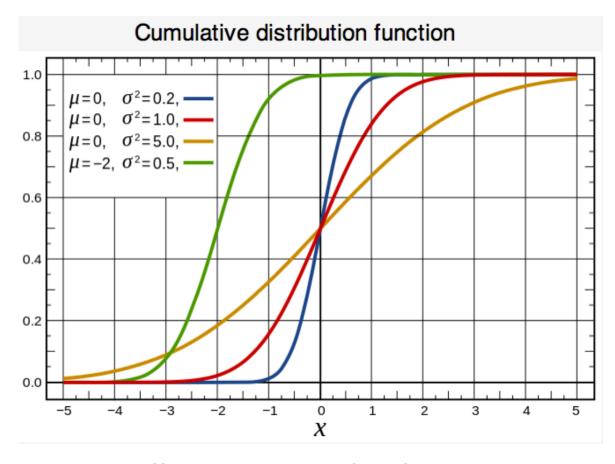
may not always exist if CDF is not differentiable



Example: Normal Distribution

mean
$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 variance





https://en.wikipedia.org/wiki/Normal_distribution

PDFs vs. PMFs

	PDF	PMF
Values	Continuous valued RVs	Discrete-valued RVs
Representation	Function f(x)	Table
Probability	Calculated via integration	Calculated via summation
P(x = k)	0	Non-zero

Expectation: Mean and Variance

Expectation

- What is the expected value of a random variable?
- Expectation of g(X):

$$E[g(X)] \triangleq \sum_{x \in Val(X)} g(x)p_X(X)$$

$$E[g(X)] \triangleq \int_{-\infty}^{\infty} g(x) f_X(X)$$

 "Weighted average" of values that g(x) with weights given by pdf or pmf

Expectation: Properties

Constant

$$E[a] = a, \ a \in \mathbb{R}$$

Scalar

$$E[af(X)] = aE[f(X)], \ a \in \mathbb{R}$$

Linearity

$$E[f(X) + g(X)] = E[f(X)] + E[g(X)]$$

Expectation: Common Forms

Mean: expectation of random variable

$$E[X]$$
, where $g(x) = x$

 Variance: measure of how concentrated the distribution of the random variable is around its mean

$$Var[X] \triangleq E[(X - E[X])^2]$$

Common Distributions

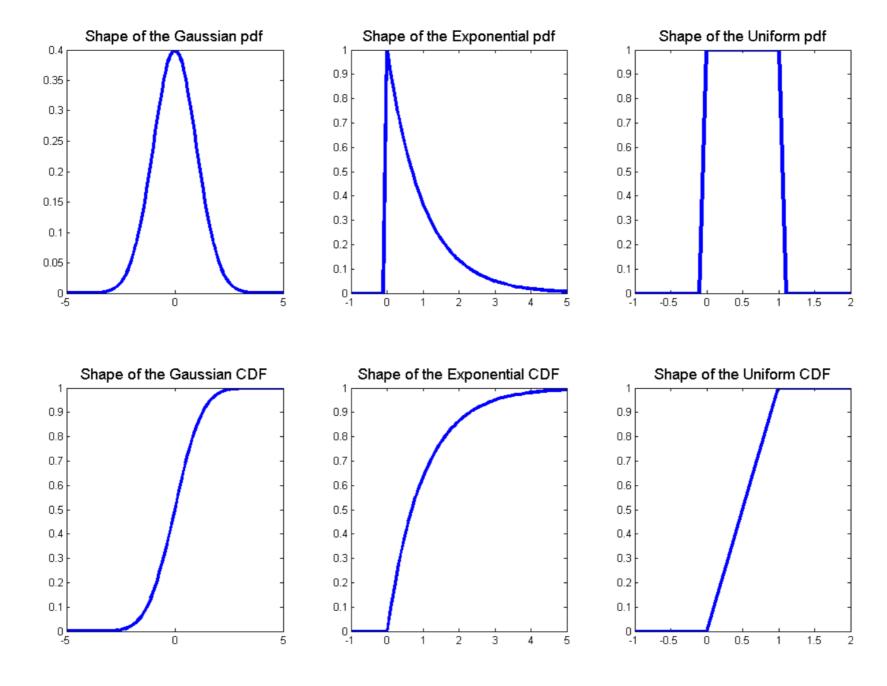
Discrete RV Distributions

- Bernoulli(p): coin flip with probability p of getting a heads
 (p = 1)
- Binomial(n,p): number of heads in n independent flips of a coin with probability p of a heads
- Geometric(p): number of flips of a coin until the first heads
- Poisson(λ): frequency of events or counts

Continuous RV Distributions

- Uniform(a, b): equal probability density between every value a and b on the real line
- Exponential(λ): decaying probability density over the nonnegative real numbers
- Normal(μ , σ^2): Gaussian distribution
 - Will be dealing with this 99% of the time
 - Interesting properties

Continuous RVs: PDF & CDF



http://cs229.stanford.edu/section/cs229-prob.pdf

Common RV Summary

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0. \end{cases}$	p	p(1-p)
Binomial(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $0 \le k \le n$	$\mid np \mid$	npq
Geometric(p)	$p(1-p)^{k-1}$ for $k = 1, 2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$ for $k=1,2,\ldots$	λ	λ
Uniform(a,b)	$\frac{1}{b-a} \ \forall x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Gaussian(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
$Exponential(\lambda)$	$\lambda e^{-\lambda x} \ x \ge 0, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$