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Credits

Slides adapted from Lee Cooper and Joydeep Ghosh

http://joyceho.github.io/cs534_s17/slide/2-prob-review.pdf

UC Berkeley CS188 Intro to AI

Also see

Appendix of the textbook.

http://cs229.stanford.edu/section/cs229-prob.pdf

http://cs229.stanford.edu/section/cs229-linalg.pdf
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Applications

Association

Supervised Learning
Classification

Regression

Unsupervised Learning

Reinforcement Learning
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Learning Associations

Basket analysis: 

P (Y | X ) probability that somebody who buys X also buys Y 
where X and Y are products/services.

Example: P ( chips | beer ) = 0.7
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Regression

Example: Price of a used car

x : car attributes

y : price

y = g (x | θ)
g ( ) model,

	θ parameters

y = wx+w0
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Regression Applications

Navigating a car: Angle of the steering wheel 

Kinematics of a robot arm

α1= g1(x,y)

α2= g2(x,y)

α1

α2

(x,y)
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Unsupervised Learning

Learning “what normally happens”

No output

Clustering: Grouping similar instances
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Unsupervised Learning

Biology : Discovering gene clusters with similar  expression 
patterns, grouping homologous DNA  sequences, etc.

Marketing: Grouping customers with similar traits  for segmenting 
the market, product positioning etc.

Vision : Image segmentation, feature learning for  recognition,...

Social network analysis (discovering user  communities with 
similar interests)

Crime analysis (identification of “hot spots”
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Reinforcement Learning

Learning a policy: A sequence of outputs

No supervised output but delayed reward

Credit assignment problem

Game playing

Robot in a maze

Multiple agents, partial observability, ...
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Resources: Datasets

UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html

UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html

Statlib: http://lib.stat.cmu.edu/

Delve: http://www.cs.utoronto.ca/~delve/

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://lib.stat.cmu.edu/
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Resources: Journals

Journal of Machine Learning Research www.jmlr.org

Machine Learning 

Neural Computation

Neural Networks

IEEE Transactions on Neural Networks

IEEE Transactions on Pattern Analysis and Machine Intelligence

Annals of Statistics

Journal of the American Statistical Association

...
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Resources: Conferences

International Conference on Machine Learning (ICML) 
ICML05: http://icml.ais.fraunhofer.de/
European Conference on Machine Learning (ECML)
ECML05: http://ecmlpkdd05.liacc.up.pt/
Neural Information Processing Systems (NIPS)
NIPS05: http://nips.cc/
Uncertainty in Artificial Intelligence (UAI)
UAI05: http://www.cs.toronto.edu/uai2005/
Computational Learning Theory (COLT)
COLT05: http://learningtheory.org/colt2005/
International Joint Conference on Artificial Intelligence (IJCAI)
IJCAI05: http://ijcai05.csd.abdn.ac.uk/
International Conference on Neural Networks (Europe)
ICANN05: http://www.ibspan.waw.pl/ICANN-2005/
...



Random Variables

 A random variable is some aspect of the world about which we 
(may) have uncertainty
 R = Is it raining?
 T = Is it hot or cold?
 D = How long will it take to drive to work?
 L = Where is the ghost?

 We denote random variables with capital letters
 Like variables in a CSP, random variables have domains

 R in {true, false}   (often write as {+r, -r})
 T in {hot, cold}
 D in [0, )
 L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions
 Associate a probability with each value

 Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

 Weather: 



Shorthand notation:

OK if all domain entries are unique

Probability Distributions
 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values

 A probability (lower case value) is a single number

 Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

Size of distribution if n variables with domain sizes d?

 For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint

distribution because every event is a sum of sample points

Chapter 13 12



Probabilistic Models

 A probabilistic model is a joint distribution 
over a set of random variables

 Probabilistic models:
 (Random) variables with domains 
 Assignments are called outcomes
 Joint distributions: say whether assignments 

(outcomes) are likely
 Normalized: sum to 1.0
 Ideally: only certain variables directly interact

 Constraint satisfaction problems:
 Variables with domains
 Constraints: state whether assignments are 

possible
 Ideally: only certain variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W



Events

 An event is a set E of outcomes

 From a joint distribution, we can calculate the 
probability of any event

 Probability that it’s hot AND sunny?
 Probability that it’s hot?
 Probability that it’s hot OR sunny?

 Typically, the events we care about are partial 
assignments, like P(T=hot)

 

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

 P(+x, +y) ?

 P(+x) ?

 P(-y OR +x) ?

 

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables 
 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y



Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is all I know

NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, 49ersWin) = P (cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Chapter 13 15



Conditional Probabilities
 A simple relation between joint and conditional probabilities

 In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

 P(+x | +y) ?

 P(-x | +y) ?

 P(-y | +x) ?

 



Conditional Distributions

 Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

Chapter 13 17



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Chapter 13 18



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28

Chapter 13 19



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

Chapter 13 20



Normalization

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Chapter 13 21



Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H =h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???

Chapter 13 22



Inference by Enumeration

 P(W)?

 P(W | winter)?

 P(W | winter, hot)?

S T W P

summe
r

hot sun 0.30

summe
r

hot rain 0.05

summe
r

cold sun 0.10

summe
r

cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20
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Random Variable Types

• Discrete random variable: X can take only a finite number 
of values 

• Example: Number of heads in a sequence of tosses 

• Continuous random variable: X takes infinite number of 
possible values 

• Example: Amount of time for a radioactive particle to 
decay



CS 534 [Spring 2017] - Ho

Cumulative Distribution Function (CDF)
• CDF: function                              that specifies a probability measure 

• Used to calculate the probability of an event in  

• Properties: 

•    

•   

•   

•   

FX : R ! [0, 1]

F
FX(x) , P (X  x)

0  FX(x)  1

lim
x!�1

F

X

(x) = 0

lim
x!1

F

X

(x) = 1

x  y =) FX(x)  FX(y)
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Probability Mass Function (PMF)
• Probability measure for discrete random variable 

• PMF: function                          such that  

• Properties: 

•   

•   

•  

pX(x) : ⌦ ! R

pX(x) , P (X = x)

0  pX(x)  1
X

x2Val(X)

P

X

(x) = 1

X

x2A

P

X

(x) = P (X 2 A) https://en.wikipedia.org/wiki/Probability_mass_function

https://en.wikipedia.org/wiki/Probability_mass_function
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Probability Density Function (PDF)
• Probability measure for continuous random variable 

• PDF is derivative of CDF 

• Properties: 

•   

•   

•  

fX(x) , dFX(x)

dx

may not always exist if 
CDF is not differentiable

Z

x2A

f

X

(x)dx = P (X 2 A)

Z 1

�1
fX(x)dx = 1

fX(x) � 0

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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Example: Normal Distribution

https://en.wikipedia.org/wiki/Normal_distribution

f(x|µ,�2) =
1p
2�2

⇡

e

� (x�µ)2

2�2

mean

variance

https://en.wikipedia.org/wiki/Normal_distribution
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PDFs vs. PMFs

PDF PMF

Values Continuous valued RVs Discrete-valued RVs

Representation Function f(x) Table

Probability Calculated via integration Calculated via summation

P(x = k) 0 Non-zero
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Expectation: Mean and Variance
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Expectation

• What is the expected value of a random variable? 

• Expectation of g(X):  

• “Weighted average” of values that g(x) with weights given 
by pdf or pmf

E[g(X)] ,
X

x2Val(X)

g(x)p
X

(X)

E[g(X)] ,
Z 1

�1
g(x)f

X

(X)
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Expectation: Properties

• Constant 

• Scalar 

• Linearity 
 

E[a] = a, a 2 R

E[af(X)] = aE[f(X)], a 2 R

E[f(X) + g(X)] = E[f(X)] + E[g(X)]
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Expectation: Common Forms

• Mean: expectation of random variable 

• Variance: measure of how concentrated the distribution 
of the random variable is around its mean 

E[X], where g(x) = x

Var[X] , E[(X � E[X])2]
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Common Distributions
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Discrete RV Distributions

• Bernoulli(p): coin flip with probability p of getting a heads 
(p = 1) 

• Binomial(n,p): number of heads in n independent flips of 
a coin with probability p of a heads 

• Geometric(p): number of flips of a coin until the first 
heads 

• Poisson(   ): frequency of events or counts�
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Continuous RV Distributions

• Uniform(a, b): equal probability density between every 
value a and b on the real line 

• Exponential(   ): decaying probability density over the 
nonnegative real numbers 

• Normal(   ,     ): Gaussian distribution 

• Will be dealing with this 99% of the time 

• Interesting properties

�

µ �2
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Continuous RVs: PDF & CDF

http://cs229.stanford.edu/section/cs229-prob.pdf

http://cs229.stanford.edu/section/cs229-prob.pdf
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Common RV Summary

http://cs229.stanford.edu/section/cs229-prob.pdf

http://cs229.stanford.edu/section/cs229-prob.pdf

