
Chapter 2
Supervised Learning



Learning a class from example
Class C of a “family car”

● � Prediction: Is car x a family car?
● � Knowledge extraction: What do people expect

from a family car?

� Output: Positive (+) and negative (–) examples

� Input representation: x1: price, x2 : engine power 

Seating capacity, color?



Training set X

attributes

labels



We want to learn the class, C, of a "family car."
Discuss with an expert:

H, the hypothesis class from which we 
believe C is drawn, namely, the set of 
rectangles. 

The learning algorithm then should find a 
particular hypothesis, h, to approximate C as 
closely as possible.

Which h is equal or closest to C?



Hypothesis class H
Which h is equal or closest to C?

In real life we do not know C(x), so we cannot evaluate how well h(x) matches C(x).

What we have is a training set X, which is a small subset of the set of all possible x



Hypothesis class H



How many h(x)?
Infinite number of h(x) with zero error. 

Different predictions of different candidate 
hypothesis.

Generalization: how well our hypothesis 
will correctly classify future examples that 
are not part of the training set.

S: most specific hypothesis

G: the most general hypothesis



S, G, and the Version Space

Any h∈H between S and G is a valid hypothesis with no error, said to be 
consistent with the training set, and such h make up the version space.



How to exploit S and G

Reject in case of double (uncertainty due to lack of data), defer decision to human 
expert



Vapnik-Chervonenkis (VC) Dimension
Make sure H is flexible enough, or has enough "capacity," to learn C.

Assume N points

How many ways to label positive or negative?

2N learning problems can be defined.

H shatters N: If any learning problem definable by N examples can be learned with 
no error by a hypothesis drawn from H. 

The maximum number of points that can be shattered by H is called the VC 
dimension of H, is denoted as VC(H), and measures the capacity of the 
hypothesis class H.



VC dimension
How many points can be shattered by an axis-aligned rectangle?

Enough that we find four points that can be shattered; it is not necessary that we 
be able to shatter any four points

But, no five instances can be shattered



VC dimension
How many points can be shattered by an axis-aligned rectangle?

There can be at most 4 distinct extreme points (smallest or largest along some 
dimension) and these cannot be included (labeled +) without including the 5th point.

No five instances can be shattered



VC dimension, examples
Consider X = R, want to learn c: X → {0,1}

What is VC dimension of

Open intervals:    

      H1: if x>a, then y=1 else y=0

Closed intervals:

      H2: if a<x<b, then y=1 else y=0



VC dimension, examples
Let us say our hypothesis class (H) is a line instead of rectangle. How many points 
a line can shatter in 2 dimensional input space, i.e. what is VC(H)? 

How many points a point can shatter in 1D?

Let us say our hypothesis class (H) is a convex polygon (in 2D) instead of 
rectangle. What is VC(H)?



VC dimension is pessimistic
● using a rectangle as our hypothesis class, we can learn only datasets 

containing four points and not more.
● VC dimension is independent of the probability distribution from which 

instances are drawn.
● In real life: world is smoothly changing, i.e. close instances have similar 

labels.



Noise and Model Complexity
With noise, might be impossible to have zero error. Several interpretations:

● Imprecision in recording the input attributes
● Error in labels
● Additional attributes that affect label. Hidden or latent. They are modelled as a 

random component. 
With noise, there is no simple boundary. 
Use simpler 

- Easier to check
- Easier to train
- Easier to explain
- Generalized better



Noise and Model Complexity
Use simpler 

● Easier to check
● Easier to train

○ less number of parameter
○ Small change in training instances, expect

■ Small change in simpler model
■ Large change in complex model
■ Simple model has less variance

● Easier to explain
● Generalized better
● Occam’s razor: simpler explanations are more plausible and any unnecessary 

complexity should be shaved off.



Multiple Classes, Ci i=1,...,K
Family cars, sports cars, luxury sedan

View a K-class classification problem 
as K two-class problems.



Regression
The output is a numeric value, what we would like to learn is not a class, but is a 
continuous function.

We would like to find the function f(x) that passes through these points such that 
we have rt = f(xt)

There is noise added to the output of the unknown function

Approximate the output by our model g(x)

Find g(.) that minimizes the empirical error



Regression
Find g(.) that minimizes the empirical error. Again our approach is the same; we 
assume a hypothesis class for g(.) with a small set of parameters. If we assume 
that g(x) is linear



Minimum, maximum, saddle points
What does the first derivative of f(x) at a point (p) tell about?

● If first derivative is > 0 at p,  f(x) is increasing at x=p
● If first derivative is 0 at p, p is called a critical point of f(x), nothing more

What does the first derivative of f(x) at a point (p) tell about?

● If second derivative is > 0 at p,  f(x) is concave up at x=p
● If second derivative is 0 at p, then nothing more

But



Minimum, maximum, saddle points



Regression



Model selection and generalization
Learning is an ill-posed problem. d binary inputs, 2^d possible values, 2^2^d 
possible functions. Each distinct value removes half of the hypothesis. How many 
distinct values to have one hypothesis remained?



Model selection and generalization
Learning is an ill-posed problem. d binary inputs, 2^d possible values, 2^2^d 
possible functions. Each distinct value removes half of the hypothesis. How many 
distinct values to have one hypothesis remained?

Data is not sufficient to find a unique solution

● The need for inductive bias, assumptions about H

 Generalization: How well a model performs on new data

● � Overfitting: H more complex than C or f
● � Underfitting: H less complex than C or f



Triple Trade-Off
There is a trade-off between three factors (Dietterich, 2003):

● Complexity of H, c (H),
● Training set size, N,
● Generalization error, E, on new data

● As N↑, E↓
● As c (H)↑, first E↓ and then E↑

The generalization error of an overcomplex hypothesis can be kept in check by 
increasing the amount of training data but only up to a point.



Cross-Validation
We can check the generalization ability of a hypothesis, namely, the quality of its 
inductive bias, if we have access to data outside the training set.

To estimate generalization error, we need data unseen during training. We split 
the data as

� Training set (50%)

� Validation set (25%)

� Test (publication) set (25%)



Dimensions of a Supervised Machine Learning Algo
We have a sample                             independent and identically distributed

Three decisions:

1. Model - with sufficient capacity
2. Loss function
3. Optimization procedure



Model selection

Fitting a function of a single variable to some data points. f 
is unknown → approximate with h selected from a 
hypothesis space, H (e.g. the set of polynomials).

Consistent hypothesis if it agrees with all the data. 
Ockham’s razor: Select the simplest consistent hypothesis 
Simpler hypotheses that may generalize better.

Complex model: high variance

Small change in training instances, 
expect large change in complex model

https://www.desmos.com/calculator

https://www.desmos.com/calculator

