Chapter 2
Supervised Learning



Learning a class from example

Class C of a “family car”

e [ Prediction: Is car x a family car?
e [ Knowledge extraction: What do people expect

from a family car?
1 Output: Positive (+) and negative (—) examples
) Input representation: x1: price, X2 : engine power

Seating capacity, color?
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We want to learn the class, C, of a "family car."

Discuss with an expert: (p, <price <p,) AND (e, < engine power <e,)
2T
H, the hypothesis class from which we g
believe C is drawn, namely, the set of - o o c
’ =
rectangles. - - & o B
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The learning algorithm then should find a J 2 ©
particular hypothesis, h, to approximate C as L S =

closely as possible. & = -
Which h is equal or closest to C? | . . .
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Hypothesis class H

1if h classifies x as positive

Which h is equal or closest to C? h(x) =
0 if h classifies x as negative

In real life we do not know C(x), so we cannot evaluate how well h(x) matches C(x).

What we have is a training set X, which is a small subset of the set of all possible x

Error of hon ‘H
N

E(th)=§1(h(xt)¢ rt)



Hypothesis class H

b i 1 if h classifies x as positive
3 h(x)= . o .

= 0 if h classifies x as negative
L:;" False positive
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How many h(x)?
Infinite number of h(x) with zero error.

Different predictions of different candidate
hypothesis.

Generalization: how well our hypothesis
will correctly classify future examples that
are not part of the training set.

S: most specific hypothesis

G: the most general hypothesis



S, G, and the Version Space

5 4
3 most specific hypothesis, S
z
L::iu most general hypothesis, G
o - e G
g S c
& Dg S h € H between S and Gis
o © s consistent
o -
= & and make up the
o Version space
» (Mitchell, 1997)
x,: Price

Any heH between S and G is a valid hypothesis with no error, said to be
consistent with the training set, and such h make up the version space.



How to exploit S and G

most specific hypothesis, S

most general hypothesis, G
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Reject in case of double (uncertainty due to lack of data), defer decision to human
expert



Vapnik-Chervonenkis (VC) Dimension

Make sure H is flexible enough, or has enough "capacity," to learn C.
Assume N points

How many ways to label positive or negative?

2N learning problems can be defined.

H shatters N: If any learning problem definable by N examples can be learned with
no error by a hypothesis drawn from H.

The maximum number of points that can be shattered by H is called the VC
dimension of H, is denoted as VC(H), and measures the capacity of the
hypothesis class H.



VC dimension

How many points can be shattered by an axis-aligned rectangle?

Enough that we find four points that can be shattered; it is not necessary that we
be able to shatter any four points

But, no five instances can be shattered

A



VC dimension

How many points can be shattered by an axis-aligned rectangle?

There can be at most 4 distinct extreme points (smallest or largest along some
dimension) and these cannot be included (labeled +) without including the 5th point.

No five instances can be shattered

A



VC dimension, examples

Consider X = R, want to learn ¢: X — {0,1}
What is VC dimension of
Open intervals:
H1: if x>a, then y=1 else y=0
Closed intervals:

H2: if a<x<b, then y=1 else y=0



VC dimension, examples

Let us say our hypothesis class (H) is a line instead of rectangle. How many points
a line can shatter in 2 dimensional input space, i.e. what is VC(H)?

How many points a point can shatter in 1D?

Let us say our hypothesis class (H) is a convex polygon (in 2D) instead of
rectangle. What is VC(H)?



VC dimension is pessimistic

e using a rectangle as our hypothesis class, we can learn only datasets
containing four points and not more.

e VC dimension is independent of the probability distribution from which
instances are drawn.

e In real life: world is smoothly changing, i.e. close instances have similar
labels.



Noise and Model Complexity

With noise, might be impossible to have zero error. Several interpretations:

e Imprecision in recording the input attributes

e Errorin labels

e Additional attributes that affect label. Hidden or latent. They are modelled as a
random component. .

With noise, there is no simple boundary.
Use simpler il I

- Easier to check
- Easier to train [ ®
- Easier to explain

- Generalized better




Noise and Model Complexity

Use simpler

Easier to check

Easier to train
o less number of parameter
o Small change in training instances, expect
m Small change in simpler model
m Large change in complex model
m  Simple model has less variance

Easier to explain
Generalized better

Occam'’s razor: simpler explanations are more plausible and any unnecessary

complexity should be shaved off.




Multiple Classes, C. i=1,...,K

Family cars, sports cars, luxury sedan

Sports car

View a K-class classification problem
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Regression

The output is a numeric value, what we would like to learn is not a class, but is a
continuous function.

N
Xi= {x‘,r‘}tzl r'eR
We would like to find the function f(x) that passes through these points such that
we have rt = f(x!)

There is noise added to the output of the unknown function ' = f(xt)+ &

Approximate the output by our model g(x)

. . -~ E(g|X)=
Find g(.) that minimizes the empirical error



Regression

Find g(.) that minimizes the empirical error. Again our approach is the same; we
assume a hypothesis class for g(.) with a small set of parameters. If we assume

that g(x) is linear P

g(x) =WiX1+ - +WgXg + Wy = szXj-i-Wo
J=1

A’
E(wi,wo|X) = ) [r' — (wix + wp) )P
t=1



Minimum, maximum, saddle points

What does the first derivative of f(x) at a point (p) tell about?

e If first derivative is > 0 at p, f(x) is increasing at x=p
e |If first derivative is 0 at p, p is called a critical point of f(x), nothing more

What does the first derivative of f(x) at a point (p) tell about?

e If second derivative is > 0 at p, f(x) is concave up at x=p
e If second derivative is 0 at p, then nothing more




Minimum, maximum, saddle points

A

fw)

.
P - ccc e e -—-—

i




Regression

A’
E(wi,wolX) = > [r' — (wix + wp))?
t=1

g(x) = wix + wo

AI
E(wi,wolX) = > [r' — (wix + wp)]?

t=1
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Model selection and generalization

Learning is an ill-posed problem. d binary inputs, 2*d possible values, 2*2”d
possible functions. Each distinct value removes half of the hypothesis. How many
distinct values to have one hypothesis remained?

Xy X2 || hy|h2 |h3|hg | hs|hg | hy | hg |hg | hig|hyy [hy2 | hy3 | hig | hys | hye
O/0ffO|10]|]O0|0(O0|0(0]0]1]|1 1 1 1 1 1 1
O 1010|0011/ 1T]2(O010([010]1 1 1 1
1/0(fO010(1|1(0]O0O|1]1(0]| 0|1 110|101 1
1110111011 (0]1110]11]10] 1 0 1 0 1 0 1




Model selection and generalization

Learning is an ill-posed problem. d binary inputs, 2*d possible values, 2*2”d
possible functions. Each distinct value removes half of the hypothesis. How many

distinct values to have one hypothesis remained?
Data is not sufficient to find a unique solution

e The need for inductive bias, assumptions about H
Generalization: How well a model performs on new data

e [] Overfitting: H more complex than C or f
e [ Underfitting: H less complex than C or f



Triple Trade-Off

There is a trade-off between three factors (Dietterich, 2003):

e Complexity of H, ¢ (H),
e Training set size, N,
e Generalization error, E, on new data

e AsNT, E|
e Asc (H)1, first E| and then E?

The generalization error of an overcomplex hypothesis can be kept in check by
increasing the amount of training data but only up to a point.



Cross-Validation

We can check the generalization ability of a hypothesis, namely, the quality of its
inductive bias, if we have access to data outside the training set.

To estimate generalization error, we need data unseen during training. We split
the data as

1 Training set (50%)
1 Validation set (25%)

1 Test (publication) set (25%)



Dimensions of a Supervised Machine Learning Algo

We have a sample X = {x',r } -1 Independent and identically distributed
Three decisions:

. . . g(x16)
1. Model - with sufficient capacity :
2. Loss function E®]X)= ( ( |9))

3. Optimization procedure 6" = arg min E6| X)



Model selection

Inconsistent linear
Consistent 6™ order fit
fix) Polynomial fit.

Consistent 7 order
. olynomial fit
S poly

Consistent linear fit
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Fitting a function of a single variable to some data points. f
is unknown — approximate with h selected from a
hypothesis space, H (e.g. the set of polynomials).

Consistent hypothesis if it agrees with all the data.
Ockham'’s razor: Select the simplest consistent hypothesis
Simpler hypotheses that may generalize better.

"L consistent sinusoidal

f(i)

Y

-y

(d)

Complex model: high variance

Small change in training instances,
expect large change in complex model

https://www.desmos.com/calculator
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