Chapter 4: Parametric
Methods
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Parametric Methods

e Discussed how to make optimal decisions when the uncertainty is modeled
using probabilities

e Now see how we can estimate these probabilities from a given training set.

e \We start with the parametric approach for classification and regression.

e Statistical inference: make decision based on information provided by sample
e Parametric approach: Assume that the sample is drawn from a distribution
that obeys a known model, e.g. Gaussian

e Advantage: Small number of parameters.
o E.g. mean and variance - sufficient statistics of the distribution

e Estimate parameters of a distribution: Maximum likelihood method



Parametric estimation

X ={ xt};where xt~ p (X)
Parametric estimation:

Assume a form for p (x | 6) and estimate 6, its sufficient
statistics, using X

e.g., N (u, 02) where 8 = { u, 02}

Maximum likelihood method/estimation



Maximum Likelihood Estimation

X = { x'}‘;\’: . independent and identically distributed (iid) sample

x! ~ p(x|0) x'are instances drawn from some known probability density family, p(x|6),

find 0 that makes sampling x' from p(x|0) as likely as possible

N — -
1(8|1X) = p(X|0) = l_[ p(x'0) the likelihood of sample X

(=1

In maximum likelihood estimation, we are interested in finding 6 that makes X the
most likely to be drawn. We thus search for 6 that maximizes the likelihood of the

sample, which we denote by I(B1X).
1(0)



Maximum Likelihood Estimation

Likelihood of 6 given the sample X

At
101X) = p(X10) = | | p(x'16)

(=1

Log-likelihood of 6 given the sample X

N
L£(0]1X) =logl(81X) = D logp(x'0)

t=1

Maximum likelihood estimator:



Maximum Likelihood Estimation

Because logarithm will not change the value of ¢ when
it take its maximum (monotonically increasing/decreasing)

— Finding @ that maximizes the likelihood of the instances is
equivalent to finding @ that maximizes the log likelihood of the
samples 4 %

L(o]x)=log 1(0]x )= Z\: log p(x’|9)

t=1

= log a = log b

— As we shall see, logarithmic operation can further simplify the
computation when estimating the parameters of those
distributions that have exponents



Bernoulli Density

A random variable X takes either x=1 (with prob. p) or x=0.

The associated probability distribution: ~ P(x) = p*(1 — p)'*,x € {0,1}
Al

Likelihood: 1(01X) = p(X|0) = [ | p(x'10)

(=1
Maximize log-likelihood

N
log 1_[ p(x‘)(l - p)(l—x')
t=1 Z( Xt

> x'logp + (N - Zx‘) log(1 — p)
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Gaussian Density

X is Gaussian (normal) distributed with mean g and o?, denoted as N(u and o?), if
its density function is

e
exp| - y —0 < X <

202

(x) = :
- N

Given a sample X = {x'}., with x! ~ N (u, 02), the log likelihood of a
Gaussian sample is

_ N 2 (x! — u)?
L, o7 X) = . log(21mr) — Nlogo g2
N N "
X X (x' - m)
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