
CHAPTER 3:

Bayesian Decision 
Theory

Parametric Methods
(Chapter 4)



Sample Statistics and Population Parameters
• A Schematic Depiction
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Examples: Bernoulli/Multinomial
• Bernoulli: Two states, failure/success, x in {0,1} 

P (x) = po
x (1 – po ) 

(1 – x)

L (po|X) = log ∏t po
xt (1 – po ) 

(1 – xt) 

MLE: po = ∑t x
t / N 

• Multinomial: K>2 states, xi in {0,1}
P (x1,x2,...,xK) = ∏i pi

xi

L(p1,p2,...,pK|X) = log ∏t ∏i pi
xit 

MLE: pi = ∑t xi
t / N

• Gaussian: p(x) = N ( μ, σ2)



Maximum Likelihood Estimation



Maximum Likelihood Estimation



MLE: Bernoulli Distribution (1/3)



MLE: Bernoulli Distribution (2/3)



MLE: Bernoulli Distribution (3/3)



Properties of estimator

A statistic is said to be an unbiased estimate of a given parameter 
when the mean of the sampling distribution of that statistic can be 
shown to be equal to the parameter being estimated.
Consistency of an estimator means that as the sample size gets large the estimate 
gets closer and closer to the true value of the parameter 
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MLE: Multinomial Distribution (1/3)



MLE: Multinomial Distribution (2/3)



MLE: Multinomial Distribution (3/3)



MLE: Gaussian Distribution (1/3)



MLE: Gaussian Distribution (2/3)



MLE: Gaussian Distribution (3/3)



Properties of estimator

A statistic is said to be an unbiased estimate of a given parameter 
when the mean of the sampling distribution of that statistic can be 
shown to be equal to the parameter being estimated.
Consistency of an estimator means that as the sample size gets large the estimate 
gets closer and closer to the true value of the parameter 
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Evaluating an Estimator : Bias and Variance (2/6)



Evaluating an Estimator



Evaluating an Estimator



Evaluating an Estimator



Evaluating an Estimator : Bias and Variance (1/6)



Evaluating an Estimator : Bias and Variance (3/6)



Evaluating an Estimator : Bias and Variance (4/6)



Evaluating an Estimator : Bias and Variance (5/6)



Evaluating an Estimator : Bias and Variance (6/6)



Exercise



Bias and Variance: Example 2

As we increase complexity, 
bias decreases (a better fit to data) 
variance increases (fit varies more with data)
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Bayes’ Estimator
• Some expert says that with 90% confidence, θ lies between 5 and 9, 

symmetrically around 7.
• p(θ) ~ N(7, (2/1.64)2).



Assume known prior density of the parameter

Assume prior density p(θ) 
e.g. θ is approximately normal and with 90% 
confidence, θ lies between 5 and 9, 
symmetrically around 7.
p(θ) ~ 

• Assume that examples are drawn from some distribution that obeys a known 
model



Given training sample, estimate density of an input

.



Given training sample, estimate density of an input

.

Sufficient statistics



Given training sample, estimate density of an input

.

If we are doing prediction 
as in regression g(.)

Difficult to compute integral, assume p(θ|X) has narrow peak

If we are doing prediction 
as in regression g(.)



Given training sample, estimate density of an input 
- assume p(θ|X) has narrow peak around its mode
- use the maximum a posteriori (MAP) to make the 

calculation easier.

If we are doing prediction 
as in regression g(.)

Difficult to compute integral, assume p(θ|X) has narrow peak

If we are doing prediction 
as in regression g(.)

MAP

MAP



Assume p(θ|X) has narrow peak

Using maximum a posteriori (MAP) estimate:

Estimate density of (predict output of) an input:



Assume p(θ|X) has narrow peak and p(θ) is 
flat
Instead of Maximum a posteriori (MAP) estimate:

Use maximum likelihood (ML) estimate:

the MAP estimate will be equivalent to the maximum likelihood 
estimate



Example

What is MAP and ML estimate of θ?

What is MAP and ML estimate of θ?



Given training sample, estimate density of an 
input

Bayes' estimator: instead, find expected value of the posterior 
density:

The best estimate of a random variable is its mean



Example: 
Suppose xt and θ are both from Normal distribution

Bayes' estimator of θ 

Inversely proportional to their 
variances
N increases?



Parametric Classification
Posterior probability of class Ci

Discriminant function

If Gaussian distribution:



Parametric Classification



Parametric Classification: Example
● Assume we are a car company selling K different cars, and for 

simplicity, let us say that the sole factor that affects a customer's 
choice is his or her yearly income, which we denote by x.

● P(Ci) is the proportion of customers who buy car type i.
● If the yearly income distributions of such customers can be 

approximated with a Gaussian:
○ p(xICi): the probability that a customer who bought car type i has 

income x: 
○ Ɲ(𝞵i,𝞼i

2)
○ 𝞵i:? meaning

discriminant function?
choose Ci if?



Parametric Classification: Example

The priors are equal, the last term can also be dropped. If we can 
further assume that variances are equal, we can write



Parametric Classification: 2-class example
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Equal variances

Single boundary at
halfway between means
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Variances are different

Two boundaries



Regression
Output: Deterministic function of input with random noise:

Estimate with

Assume

Use maximum likelihood to estimate θ
  



Regression
Sample

Log likelihood:

Maximize (minimize): 

Least squares estimate



Linear regression

Derivative wrt w1 and w2

Re-write in vector-matrix form



Linear regression, higher order polynomial



Other error measures
Mean square error

Relative square error

Coefficient of determination

N



Model selection
• Last lecture: evaluate models with ?

 

• In practice, use cross-validation
• Divide into training and validation sets



Model selection
• In practice, use cross-validation
• Divide into training and validation sets
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Homework 1

• 100 samples each containing 20 instances
• Fit 100 models of order 1, order 3, order 5 polynomials
• Plot bias, variance and error of polynomials

• 10 samples, each containing 100 instances
• Split each sample to training and validation
• Plot mean training and validation error for each polynomial

• Use a real dataset (Iris dataset) for training and validation error



Model selection
• Cross-validation: Measure generalization accuracy by testing on 

data unused during training
• Regularization: Penalize complex models
E’=error on data + λ model complexity

Akaike’s information criterion (AIC), Bayesian information criterion 
(BIC)

• Minimum description length (MDL): Kolmogorov complexity, 
shortest description of data

• Structural risk minimization (SRM)



• Prior on models, p(model)

• Regularization, when prior favors simpler models
• Bayes, MAP of the posterior, p(model|data)

• Exercise: Find MAP for regression and use prior 

• Average over a number of models with high posterior (voting, 
ensembles: Chapter 15)

Model selection
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Bayes’ Estimator

• Treat θ as a random var with prior p (θ)
• Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X) 

• Full: p(x|X) = ∫ p(x|θ) p(θ|X) dθ
• Maximum a Posteriori (MAP): θMAP = argmaxθ p(θ|X)
• Maximum Likelihood (ML): θML = argmaxθ p(X|θ)

• Bayes’: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ 
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Bayes’ Estimator: Example

• θML = ?
• θMAP = θBayes’ =
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Exercise
• Given two normal distributions p(x|C1)∼N(μ1, σ1

2 ) and p(x|C2)
∼N(μ2, σ2

2) and P(C1) and P(C2), calculate the Bayes’ 
discriminant points analytically.
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Regression
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Regression: From LogL to Error

Maximizing this is equivalent to minimizing
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Linear Regression
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Polynomial Regression
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Other Error Measures

• Square Error: 

• Relative Square Error:

• Absolute Error: E (θ|X) = ∑t |r
t – g(xt|θ)|
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Tuning model complexity: Bias/Variance

bias variance

noise squared error
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Estimating Bias and Variance

• M samples Xi={xt
i , r

t
i}, i=1,...,M

are used to fit gi (x), i =1,...,M
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bias

variance

f

gi g

f
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Bias/Variance Dilemma

• Example: gi(x)=2 has no variance and high bias

gi(x)= ∑t r
t
i/N has lower bias with variance

• As we increase complexity, 
bias decreases (a better fit to data) and 
variance increases (fit varies more with data)

• Bias/Variance dilemma: (Geman et al., 1992)
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Polynomial Regression

Best fit “min error”
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Best fit, “elbow”
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Model Selection
• Cross-validation: Measure generalization accuracy by testing on 

data unused during training
• Regularization: Penalize complex models

E’=error on data + λ model complexity

Akaike’s information criterion (AIC), Bayesian information 
criterion (BIC)

• Minimum description length (MDL): Kolmogorov complexity, 
shortest description of data

• Structural risk minimization (SRM)
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Bayesian Model Selection

• Prior on models, p(model)

• Regularization, when prior favors simpler models
• Bayes, MAP of the posterior, p(model|data)
• Average over a number of models with high posterior (voting, 

ensembles: Chapter 15)


