Parametric Methods
(Chapter 4)




Sample Statistics and Population Parameters

« A Schematic Depiction

Populat10n (sample space) Sample
n 6 O

v

N

Inference

Panmeters  $=  Statistics
IXx)
‘ .', ;,

) F(x)




Examples: Bernoulli/Multinomial

Two states, failure/success, x in {0,1}
P (x)=p,(1=py) =%

L (p,IX) = log [, p,“ (1 = p,) ! =9
MLE: p,= ¥, x'/ N

K>2 states, X, in {0,1}

L(P1,P2,...,pK|X) = log rltl—li pixit
MLE:p,=3% x'/ N

p(x) =N (u, 0°)




Maximum Likelihood Estimation

. Assume the instances x='.»*...¥...."| are independent
and identically distributed (/id), and drawn from some
known probability distribution x

— X' ~plx|g)

— 6 : model parameters (assumed to be fixed but unknown here)

« MLE attempts to find & that make x the most likely to
be drawn

— Namely, maximize the likelihood of the instances

x.xY are iid

e

N

l(¢9|x): p(xl@): p(xl,m ,,\'N|H): H p(x’l@)

t=

—t



Maximum Likelihood Estimation

« Because logarithm will not change the value of ¢ when
it take its maximum (monotonically increasing/decreasing)

— Finding & that maximizes the likelihood of the instances is
equivalent to finding & that maximizes the log likelihood of the
samples azb

= log a = log b

L(Hlx): log l(9|x): i log p(,\"|9)
t=1

— As we shall see, logarithmic operation can further simplify the
computation when estimating the parameters of those
distributions that have exponents




MLE: Bernoulli Distribution (1/3)

« Bernoulli Distribution

— Arandom variable X takes either the value x=1 (with
probability 7 ) or the value x=1 (with probability [—7 )
« Can be thought of as X is generated form two distinct states
— The associated probability distribution

Plx)=r(1-r)™ ,xe{0,1}
« The log likelihood for a set of /id instances x drawn from
Bernoulli distribution

X={xl,x.2,...,x’, ..,x“’}
N - i 5
£ (l'l‘X, ): log I ‘I’ )(1 —r )(l—:xt )
r=1
9 :(Z‘Yr)log "+(1Nr_z.\'[)10g(l—r)
t=1 , i=1



MLE: Bernoulli Distribution (2/3)

« MLE of the distribution parameter r
r=1

N

o=

— The estimate for 7 is the ratio of the number of occurrences of
{ :
the event ( X =1 ) to the number of experiments

« The expected value for X
E[X]= > x-P(x)=0-Q-7)+1-7r =7

xe{0,1}

« The variance value for Y
var (X)= E[Xz]— (E[X])2 =r -7’ = r(l - r)
-



MLE: Bernoulli Distribution (3/3)

d .. 0
dr dr
L Y
¥ X N — > x
r L—F d y
N
Yy x!
= 7 =121

The maximum likelihood estimate of the mean is the sample average



Properties of estimator

eP

E(9") = 6°

A statistic is said to be an unbiased estimate of a given parameter
when the mean of the sampling distribution of that statistic can be
shown to be equal to the parameter being estimated.

Consistency of an estimator means that as the sample size gets large the estimate
gets closer and closer to the true value of the parameter



MLE: Multinomial Distribution (1/3)

« Multinomial Distribution

— A generalization of Bernoulli distribution

— The value of a random variable X* can be one of K mutually
exclusive and exhaustive states x e {Sl, L K} with

probabilities 7;,7,,: ., 1%, respectively
— The associated probablllty dlstrlbutlon

A HI Zr =1

{l it X choose state s,
Ay —

0 otherwise

« The log likelihood for a set of /id instances X drawn from a

multinomial distribution X
N K

M >
L(l"X)Z log I I | I o x={xl,x‘,...,x’,...,AN}
=1 =1



MLE: Multinomial Distribution (2/3)

« MLE of the distribution parameter r;

— The estimate for 7; Is the ratio of the number of experiments
with outcome of state ; ( s; =] ) to the number of experiments




MLE: Multinomial Distribution (3/3)
L(r‘x):loglj lirl."r =

t i t=1 i=1

_ t=1 i=1 i=1 -
or; or, W
Lagrange Multiplier
N 1
= Z sie—+21=0
t=1 t;
IR
= e ) ¢
3
K 1 N (K
Sy :1:——2(2 s;]
1=] /1 =1 =1 =1
> A=-=N
N
> st
= 7, = L=
’ N

Lagrange Multiplier: http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html



MLE: Gaussian Distribution (1/3)

« Also called Normal Distribution

— Characterized with mean A and variance o / \
\
(=) /[ \
= exp | — ——], -0 <X <0
P()= 7 p{ 20 \ N
— Recall that mean and variance are sufficient statistics for
Gaussian

« The log likelihood for a set of /id instances drawn from
Gaussian distribution x

N [(‘—”] X={x1,x3,...,,\‘f,...,,\‘N}
J -
L(u.ox)= log H T
=1 Z
N g
N > (- u)
= ——log (27 )- N log 0 — =1 ——
2 20°



MLE: Gaussian Distribution (2/3)

« MLE of the distribution parameters # and o~

N ;
2%
m = /[, — t=1 sample average
N
N 4 o)
¥ (x - m)
¢C = G = 1=1 sample variance

N

« Remindthat # and o&° are still fixed but unknown




MLE: Gaussian Distribution (3/3)
7 " é(a"—;zf

L(u,]x)= - Liog )~ tog o -

..................

6L(/1.0’|X)_ 1 & (o 3 *_r=1.‘
e 0m R G aY 0m s B

8L(/1.0’|x)

= i) = —V+1—Z\: (x"—//sz:? c? = L=t

0o ° s il N




Properties of estimator

eP

E(9") = 6°

A statistic is said to be an unbiased estimate of a given parameter
when the mean of the sampling distribution of that statistic can be
shown to be equal to the parameter being estimated.

Consistency of an estimator means that as the sample size gets large the estimate
gets closer and closer to the true value of the parameter



Evaluating an Estimator : Bias and Variance (2/6)

variance

Figure 4.1: 6 is the parameter to be estimated. d;
are several estimates (denoted by ‘x’) over different
samples. Bias is the difference between the expected
value of d and #. Variance is how much d; are
scattered around the expected value. We would like

both to be small.



Evaluating an Estimator

Let X be a sample from a population specified up to a parameter 6, and
let d = d(X) be an estimator of 8. To evaluate the quality of this estima-
tor, we can measure how much it is different from @, that is, (d(X) — 0)°.

r(d,0) = E[(d(X) - 0)?]

The bias of an estimator is given as
be(d) = E[d(X)] - O

sample average, m, is an unbiased estimator of the mean, u, because

Elm]=E [Z&xt] = lZE[X‘] LA




Evaluating an Estimator

sample average, m, is an unbiased estimator of the mean, u, because

E[m] =

increases. m is also a consistent estimator, thatis, Var(m) — 0 as N — oo

Var(m) =




Evaluating an Estimator

sample average, m, is an unbiased estimator of the mean, u, because

E[m] =E[Z‘xt] - lZE[X‘] S
{

N N N

increases. m is also a consistent estimator, thatis, Var(m) — 0 as N — oo

t 1 2 2
Var(m) = Var (ZIX ) = WZVar(x') O
t

N N< N




Evaluating an Estimator : Bias and Variance (1/6)

« The mean square error of the estimator d can be further
decomposed into two parts respectively composed of
bias and variance

+(d.0)=E|@-6)]




Evaluating an Estimator : Bias and Variance (3/6)

« Example 1: sample average and sample variance

— Assume samples x—{\ 2l } are independent and
Identically distributed (/id), and drawn from some known
probability distribution X with mean x and variance &

Mean u = E[X]: Zx-p(x)

Variance o = E|(x - ) |= E[x*]- (£[x ]y

4

1
— X

N

M<

Sample average (mean) for the observed samples m =

1

N 1)
Sample variance for the observed samples s- :% (\ —m)'
[V t=1

oI S~ _N_l—li(\ —m)- ?



Evaluating an Estimator : Bias and Variance (4/6)

« Example 1 (count.)
— Sample average m is an unbiased estimator of the mean #

Eln]- [ S| 3]

E[m]— =

. m is also a consistent estimator: Var(m)— 0 as N —

Var(m)= Va{VZX ) S Var(x)= T >0
N 14 A t=1 N

Var(aX +b)=a’ - Var(X)
Var(X + Y )= Var(X )+ Var(Y)



Evaluating an Estimator : Bias and Variance (5/6)

« Example 1 (count.)

— Sample variance s?is an asymptotically unbiased estimator of
the variance &2

2 1 o t -
s (x' =m)
]V =1

Fb)e e[ 1% (o my N
:*N t=1 > N m
N =
- E 1— (X —m )3} (X *'s are iid. ) -
i N
[ 1 N " 2
- B _Z (X‘" —2X -m + m “)}
& N =1
:E_N "2 _ 2N «m%+ Nm %]
L J:,\r Y
—E—\ X% N o _\°E=-\ ]‘\ E[”’]
N i Afr - *;V




Evaluating an Estimator : Bias and Variance (6/6)

« Example 1 (count.)

— Sample variance s?is an asymptotically unbiased estimator of

) 2 2
the variance o Var(m )= % = E[mz]— (E[m])

2 2
= E[m"]= %+(E[n Iy =O-7+,u2

ls?]- *N*.E[Xz]i\—Ti\f.E[z772] /

N

Vai(X)=c = { |- (A x]} (N -1)
=AY = +(Hx) =+t = X = o —I= ¢g°

\

The size of the observed sample set




Exercise

Show that Z; — Z5 is an unbiased estimator for p; — us.
. 2

(o )P
T

2
2

2
0,
niy

Also show that the variance of this estimator is




Bias and Variance: Example 2

a) b) C) d)

= fixed Nx) = fxed glix)=a +ax+ax +ax elx) =

different
samples
for an unknown
population

X > (x.v)

y=Fl(x)

. As we increase complexity,

E [(a’ B Erd -I)- ]+ (E I'd 'I 8 )2 s (\ )+ 8 | bias decreases (a better fit to data)
ke bias? “' 2 '~ 7 variance increases (fit varies more with data)




Bayes’ Estimator

« Some expert says that with 90% confidence, 0 lies between 5 and 9,
symmetrically around 7.

. p(B) ~ N(7, (2/1.64)).

Confidence Confifle_nce z value,
Level Coefficient, 7
1-a al2
80% .80 1.28
98% .98 2.33
99.8% 998 3.08
99.9% 999 3.27
~ p(X|0)p(0) p(X|0)p(0)

p(0]X) =

p(X)  [p(XI|0)p(0)do




Assume known prior density of the parameter

« Assume that examples are drawn from some distribution that obeys a known
model

Assume prior density p(6)

e.g. 0 is approximately normal and with 90%
confidence, 6 lies between 5 and 9,
symmetrically around 7.

P(6) ~ N (7,(2/1.64)2).




Given training sample, estimate density of an input

p(xX|X)




Given training sample, estimate density of an input

p(xX|X)

p(x,0|X)deoe
p(x[0,X)p(0|X)dO

p(x10)p(6]X)do

Sufficient statistics




Given training sample, estimate density of an input

p(X1X) p(x,01X)d0

= | p(x|0,X)p(0|X)doO

p(x10)p(6]X)do

J

If we are doing prediction

as in regression g(.) Y = Jg(x‘e)p(Q‘X)dQ

Difficult to compute integral, assume p(6|X) has narrow peak




Given training sample, estimate density of an input

- assume p(6|X) has narrow peak around its mode

- use the maximum a posteriori (MAP) to make the
calculation easier

p(xX|X)

p (X ‘ QV\/PAP

If we are doing prediction
as in regression g(.)

y = g(XIQXP

Difficult to compute integral, assume p(6|X) has narrow peak




Assume p(6|X) has narrow peak

Using maximum a posteriori (MAP) estimate:

Orap = argmgxp(e\x)

Estimate density of (predict output of) an input:

p(X|X) = p(X[Omapr)

Ymap = 9(X|Opap)
-




Assume p(6|X) has narrow peak and p(0) is
flat

Instead of Maximum a posteriori (MAP) estimate:

p(X[0)p(0)
piX)

Omap = argmaxp(01.X)  poix) -
Use maximum likelihood (ML) estimate:

Onrr = argmglxp(X\Q)

the MAP estimate will be equivalent to the maximum likelihood
estimate




Example

As an example, let us suppose x! ~ N (0, 0¢) and @ ~ N (u, 0?), where
u, o, and o¢ are known:

What is MAP and ML estimate of 67

» 1 2 - 0)°

p(X|9) - (2-"-)1\[/20(‘)” exp|: 2002 ]
@ = x| -

p = mo P 20°

What is MAP and ML estimate of 67 XXt
N

N/o¢ 1/0?
5 S m + 5 SH
N/og+1/0o Niog+1/o




Given training sample, estimate density of an
input

p(XIX) = Jp(x,mxw

Bayes' estimator: instead, find expected value of the posterior
density:

QBayeS =FE[0|X] = J Op(0|X)do

The best estimate of a random variable is its mean




Example:

Suppose x' and 8 are both from Normal distribution
Xt ~ N(0,02%) and 0 ~ N (uo,0¢)

- 1 Pl - 8)°
p(X10) = 2m)NizgN P [ S~ ]
B 1 (6 — [lg)*
pie = o P [ 2075 ]
Bayes' estimator of 6
N/o? 1fs

E[0]X] = Ho

2 > M + 2 2
Nje= +.1 [0y Nlo= + 1o,



Parametric Classification
p (x| C)PLE)

Posterior probability of class C. P (Ci|x) =

p(X)
Discriminant function gi(xX) = p(x|C;)P(Cy)
2
If Gaussian distribution: 1 (X — Hi)
(X|C;) = exp | —
PR e, 207
(a) Likelihoods




Parametric Classification

probability of -class C; as

p(xIG)P(Ci)  — pXIG)P(G)
p(x) k=1 P(XICK)P(Ck)

and use the discriminant function

gi(x) = p(x|C;)P(Cy)

or equivalently

P(Ci|x) =

gi(x) =logp(x|C;) +log P(C;)

If we can assume that p(x|C;) are Gaussian

D 17
gi(x) = —llog 21T — log o — (X I’;') + log P(C;)
2 20;




Parametric Classification: Example

« Assume we are a car company selling K different cars, and for
simplicity, let us say that the sole factor that affects a customer's
choice is his or her yearly income, which we denote by x.

« P(C) is the proportion of customers who buy car type i.

. If the yearly income distributions of such customers can be
approximated with a Gaussian:

o p(xIC,): the probability that a customer who bought car type i has

iIncome X:
© N(Iéllia.lz) .
o M7 meaning I tht”ft
1 N Z r(
L8
t 2 .t
2 2.t (Xt —my)er;
X = {xt’rt}{\;] Sj = Zt r_t
i

discriminant function?

choose Ci if?
- —-— s —

o 1 if xt € G;
=10 ifxteCk+#i




Parametric Classification: Example

— m: )2 "
gi(x) = —%loan —logs; — (X 23’?') + log P(C;)
i

The priors are equal, the last term can also be dropped. If we can
further assume that variances are equal, we can write

gi(x) = —(x — m;)?

Choose C; if |x — m;| = mkjn X — my|

threshold of decision g1 (x) = g2(x)
(x—m)° = (x-mp)?
v = n + mp

a 2



Parametric Classification: 2-class example

g1(x) = g2(x)

(x —m)* = (x-—mp)?
ny + mp

X —

2




Likelihoods
b4 | ! | | | | ! ! |

=10 -8 =6 =4 =2 0 2 4 6 8 10
%
Posteriors with equal priors
]. | | | l | I |
08 e e e o T O S E T T S e S Y 2 e e e s T 2 e i S S B s TS S b e S Y & R AV e S i —




0.4

5_
'\/;

1

0.8

o D6
3‘_

e 04

Likelihoods

Var/ances are d/fferent

Posteriors with equal priors

! ! ! ! !
Two boundarles




Regression

Output: Deterministic function of input with random noise:
¥y =f(x)+e€

Estimate with g(x[0) EIRIx=wxswo

, E[R[x*]
Assume € ~ N(0,0°9)

p(rix) ~ N(g(x|0),0°)

Use maximum likelihood to estimate 6



Regression

Sample Xe= Pty
. . ANT
Log likelihood: ETOXy = logﬂp(x‘,r‘)
(-1
N N
= log | [ p(r'Ix") +1og | [ p(x")
t=1 t=1

Maximize (minimize):

N
E01X) == > [r' — g(x'10)]?
=1

Least Sﬂuares estimate



Linear regression  g(x'Iwi, wo) = wix' +wo

N
E(9|X)=%Z [F - g(x'|0)]2

Derivative wrt W, and W,

>rt = Nwo+w th
[
z Fixt = wy th + Wy Z

Re—wrlte IN vector-matrlx form

R N > ext | wo |
o Soxt Y (xD2 | W = wp | ¥ = S, X!




Linear regression, higher order polynomial

Aw =Yy
[ N .5 Zt(f\’t)z S * Zr('\'t)k
B Zt X! Zt(xt)z Zr(xt)3 L Zr(f\'r)kH
L Zt(xt)k Zt(xt)k+l Zr(xt)k+2 L Zr(xt)2k |
E wWo : K Zt l’t i
1% MR
’ A (wl)2
w = W2 y Y= e FH(XY)
.‘.' : ﬂt )t k
i “k L I Zt’ ((\ ) i

We can write A = D'D and y = DTr where

[ & *)F e e ] Ra
D s ’r =
(A ) ¢ Gl

and we can then solve for the parameters as

w = (DTD) DT



Other error measures

N
Mean square error E(O|X) = lz [r! — g(x!]0)]°
N2

> lrt —g(x'0)]°

Relative square error  Epgp = S (rt —7)2
t E— —

Coefficient of determination pR2 _ 1 _ ErsE




Model selection

 Last lecture: evaluate models with ?
Ex[(E[r|x]1-g(x))?Ix] = (E[r|x] — Ex[g(x)])* + Ex[(g(x) — Ex[g(x)1)°]

B 3

bias variance

Bias2(g) = ﬁz[ﬁ(xt)—f(xr)]z

[

: 1
Variance(g) = W;IZ[gi(x‘)—

* |n practice, use cross-validation
« Divide into training and validation sets




Model selection

* |In practice, use cross-validation
« Divide into training and validation sets

(a) Data and fitted polynomials

Training
— — — Validation

Emor




Homework 1

Function, f(x) = 2sin(1.5x), and one noisy (N (0, 1)) dataset
» 100 samples each containing 20 instances
. Fit 100 models of order 1, order 3, order 5 polynomials
« Plot bias, variance and error of polynomials
* 10 samples, each containing 100 instances
«  Split each sample to training and validation
Plot mean training and validation error for each polynomial

(a) Function and data

« Use a real dataset (Iris dataset) for training and validation error

5 -

251
. + E 2f
+EN+ '
// o , - Erm
oL 7 Ly y~~~.
Bas N
. + 1t N
g N
+ osk oz aaneh e
: : : : ' 0 +

Training
— — = Validation




Model selection

 Cross-validation: Measure generalization accuracy by testing on
data unused during training

 Regularization: Penalize complex models
E'=error on data + A model complexity

Akaike’s information criterion (AIC), Bayesian information criterion
(BIC)

 Minimum description length (MDL): Kolmogorov complexity,
shortest description of data

e Structural risk minimization (SRM)




Model selection

Prior on models, p(model)

p(model|data) = p(data model )p(model)
p(data)

Regularization, when prior favors simpler models
Bayes, MAP of the posterior, p(model|data)

log p(model|data) = log p(data/model) + log p(model) — ¢

: : : _ 1 (w) ~ N(0,1/A)
Exercise: Find MAP for regression and use prior l

E=>[r'—gx'Iw)l* + A > wf
" i

Average over a number of models with high posterior (voting,
ensembles: Chapter 15)




Bayes’ Estimator

« Treat 6 as a random var with prior p (6)
« Bayes’ rule: p (6|1X) = p(X]|6) p(6) / p(X)

p(xIX) = | p(x16) p(6IX) B

Oap = Argmax, p(6[X)

6,,, = argmax, p(X|6)
6. . =E[B|X]=]6p06]X)d6

Bayes’




Bayes’ Estimator: Example

B 1 - 2(x' —8)"
p(X|9) — (2_”_)1.\7/20_1\.' exp |: 20_2 :|
p(O) - — ex [—(9_“90)“]
V 2TT O 200
* O =7
’ GMAP = 6Bayes’ =
N/o? 007

E[0IX] =

5 5 M + 5 5 HO
NJa= + 1jog N/oc+1/0y

S7



Exercise

» Given two normal distributions p(x|C,)~N(u,, 0. ) and P(X|C,)
~N(u,, 0,%) and P(C1) and P(C2), calculate the Bayes’
dlscrlmlnant points analytically.




Regression

r=f(xHe -
estimator:g(x6) .. < XL
=N (0,07 | e
plr|x)~N(g(x6).?) | =~




Regression: From LogL to Error

£(0|X) = log ]_[

\/ 27TO' 20
1 \A (g
. . E [ e
= log( me) exp[ 562 ;[r g(x10)] ]
. N
= —Nlog(\/2mo) 5 St - g(x!]0)]2

Maximizing this is equivalent to minimizing

E(0]|X) = 12 (¥l — g(x!10)]?
2r=1



Linear Regression

a(x|wy, w, )=w X+

zt rt=NW0+let Xt
> rix=wyy X+w, ) (XY
t t t

t

>r




Polynomial Regression

(X W, ..., Wo, Wy, W J=w, OE) + -« 1, Y 11 X+
1 x (Y - rt

p=|1 PSS BT 'S A I I
X P e (F

w=(D"D) D" r




Other Error Measures

« Square Error:

E (6] X )= Z Irt—g(x16)]

* Relative Square Error: z [r —g th 9)]2
E (6| X)=

* Absolute Error: E (6|X) =

5/~ g(x16) Zl[rf—rf




Tuning model

complexity: Bias/Variance

E [(r— g (X)) x]= E [(r— E [r| x]] X]—I—(E [r| x]- g(x)f

noise squared error

E[(Elr] x}- g(0)] x|

Ela - e[la) |+ (£[a]- o)

=(E[r| x]-E [g(x)])2+EX [(g(x)— E x [Q(X)])z]

bias variance




Estimating Bias and Variance

* Msamples X={x", r'}, i=1,....M
are used to fit g.(x), 1 =1,....M

Bias’lgl=y, 3 [g0¢)- ()]
Variance(g)=llv—MZ D g () Q(xt)]Z




(a) Function and data (b) Order 1




Bias/VVariance Dilemma

* Example: g(x)=2 has no variance and high bias

g(x)= 5 r'/N has lower bias with variance

* As we increase complexity,
bias decreases (a better fit to data) and
variance increases (fit varies more with data)
« Bias/Variance dilemma: (Geman et al., 1992)




Polynomial Regression

35

25

Best fit “min error”




2.5

1.5

(a) Data and fitted polynomials

(b) Error vs polynomial order

Best fit, “elbow”

= Training
v Validation




Model Selection

Measure generalization accuracy by testing on
data unused during training

Penalize complex models
E’=error on data + A model complexity

Akaike’s information criterion (AlC), Bayesian information
criterion (BIC)

Kolmogorov complexity,

shortest description of data




Bayesian Model Selection

 Prior on models, p(model)

data| modd ) p(modd )

p(rrodd| data)="L"

p(data)

« Regularization, when prior favors simpler models
« Bayes, MAP of the posterior, p(model|data)

« Average over a number of models with high posterior (voting,
ensembles: Chapter 15)




