Week 6

Clustering

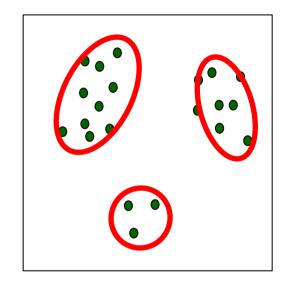
Emre Ugur, BM 33 emre.ugur@boun.edu.tr http://www.cmpe.boun.edu.tr/~emre/courses/cmpe462 cmpe462@listeci.cmpe.boun.edu.tr

Acknowledgements

- Dimensionality reduction: adapted from textbook materials
- Clustering: adapted from Alexander Ihler's Machine Learning course material

Unsupervised learning

- Supervised learning
- Predict target value ("y") given features ("x")
- Unsupervised learning
- Understand patterns of data (just "x")
- Useful for many reasons
- Data mining ("explain")
- Representation (feature generation or selection)

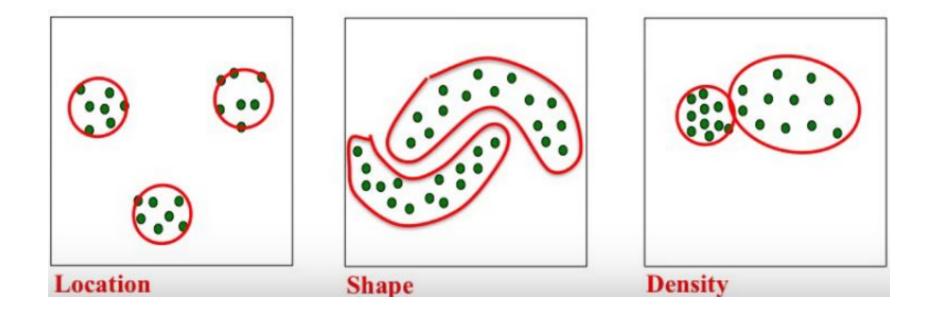


- One example: clustering
- Describe data by discrete "groups" with some characteristics

Clustering and Data Compression

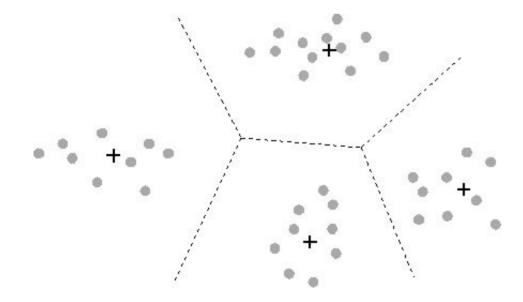
- Cluster describes data by "groups"
- The meaning of groups may vary by data

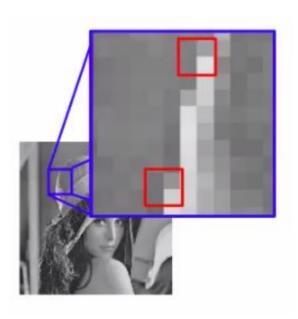
Examples



Clustering and Data Compression

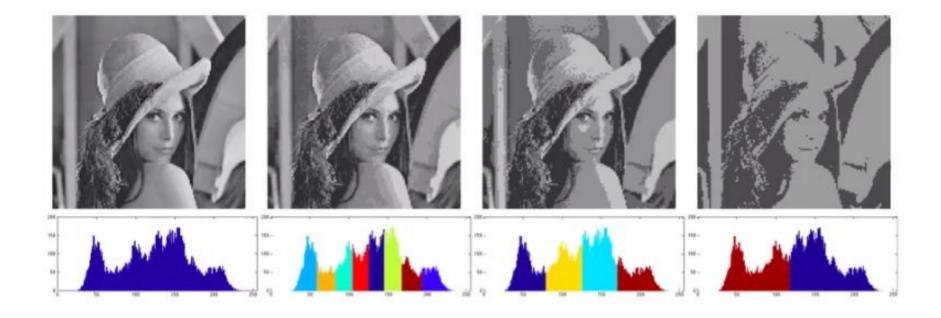
- Clustering is related to vector quantization
- Dictionary of vectors (the cluster centers)
- Each original value represented using a dictionary index
- Each center "claims" a nearby region (Voronoi region)





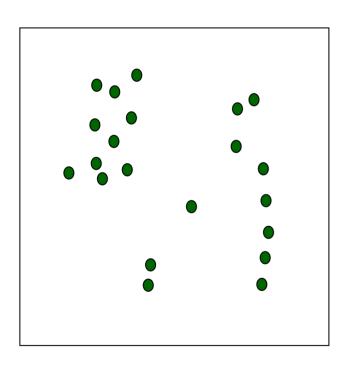
Clustering and Data Compression

- Clustering is related to vector quantization
- Dictionary of vectors (the cluster centers)
- Each original value represented using a dictionary index
- Each center "claims" a nearby region (Voronoi region)
- Example in 1D: cluster pixels' grayscale values



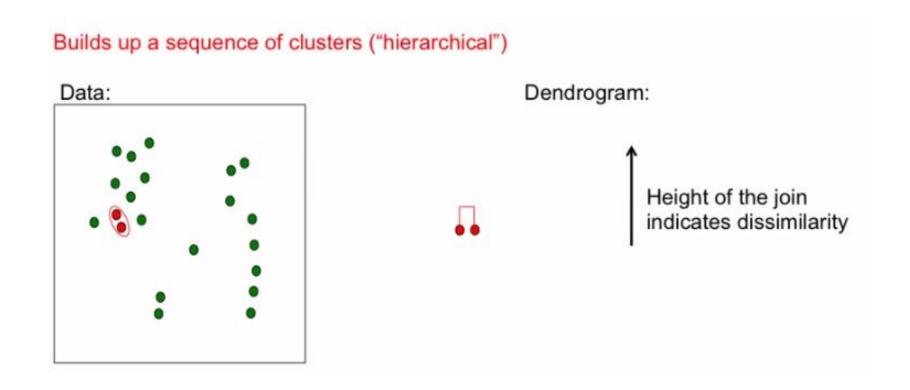
Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

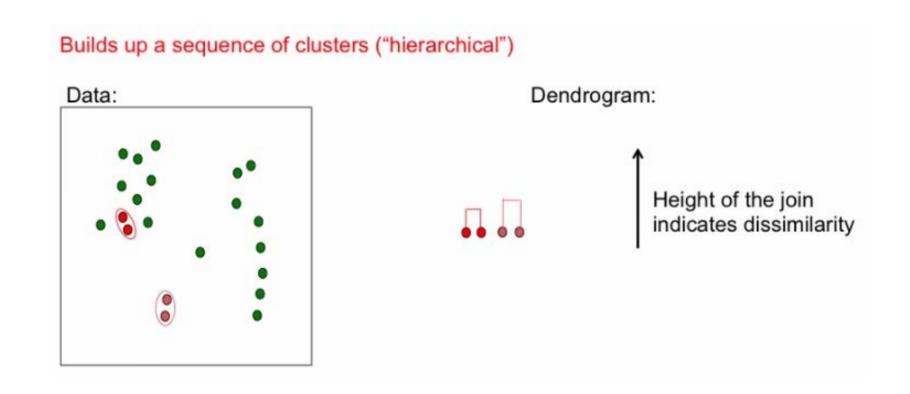


- Another simple clustering alg
- Define a distance between clusters
- Initialize: every example is a cluster
- Iterate:
 - Compute distances between all clusters (store for efficiency)
 - Merge two closest clusters
- Save both clustering and sequence of cluster ops
- "Dendrogram"

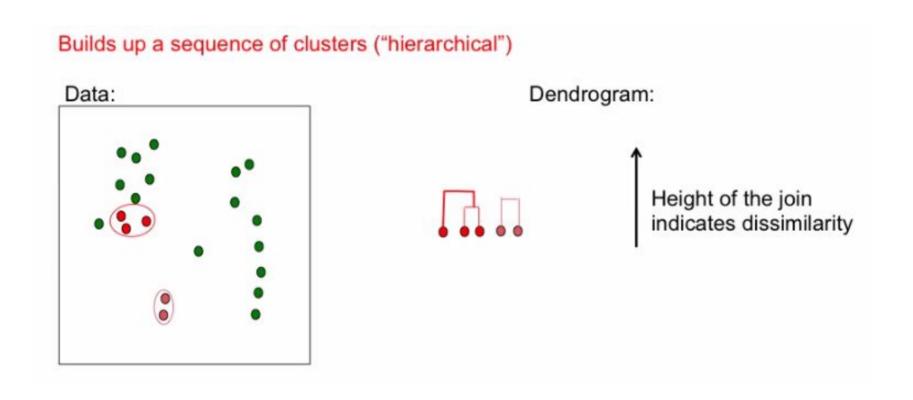
Iteration 1



Iteration 2

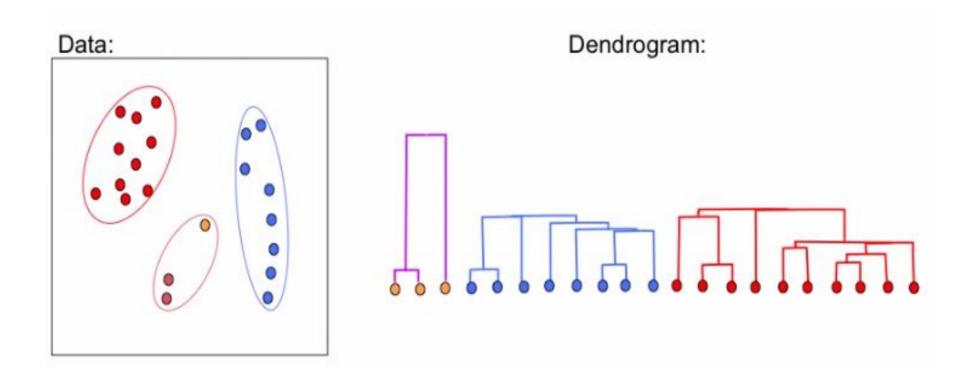


Iteration 3

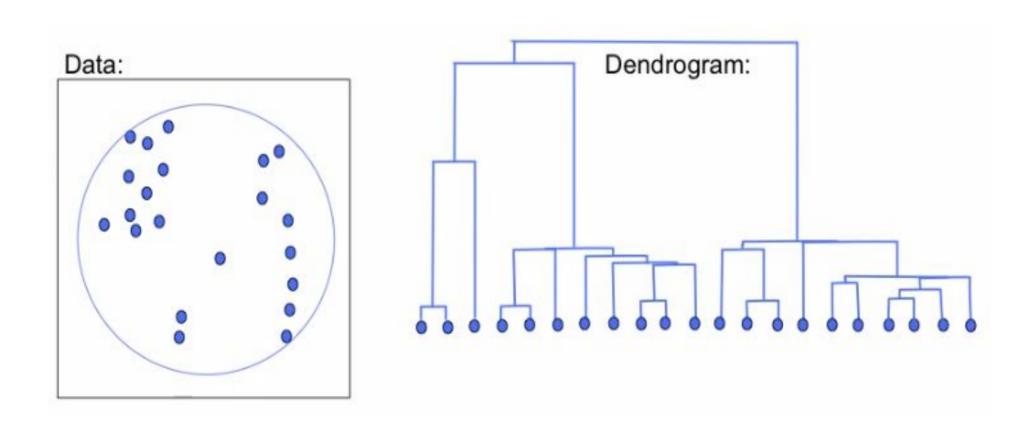


In matlab: "linkage" function (stats toolbox)

Eventually

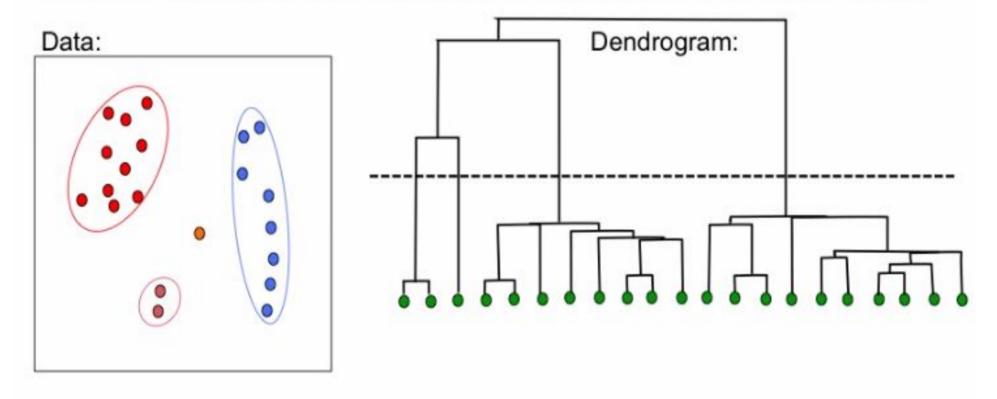


Dendrogram



From dentogram to clusters

Given the sequence, can select a number of clusters or a dissimilarity threshold:



Cluster distances

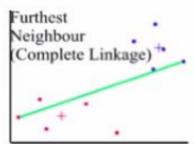
$$D_{\min}(C_i, C_j) = \min_{x \in C_i, \ y \in C_j} ||x - y||^2$$

Nearest
Neighbour
(Single Linkage)

produces minimal spanning tree.

$$D_{\max}(C_i, C_j) = \max_{x \in C_i, \ y \in C_j} ||x - y||^2$$

$$D_{\text{avg}}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i, y \in C_i} ||x - y||^2$$



avoids elongated clusters.

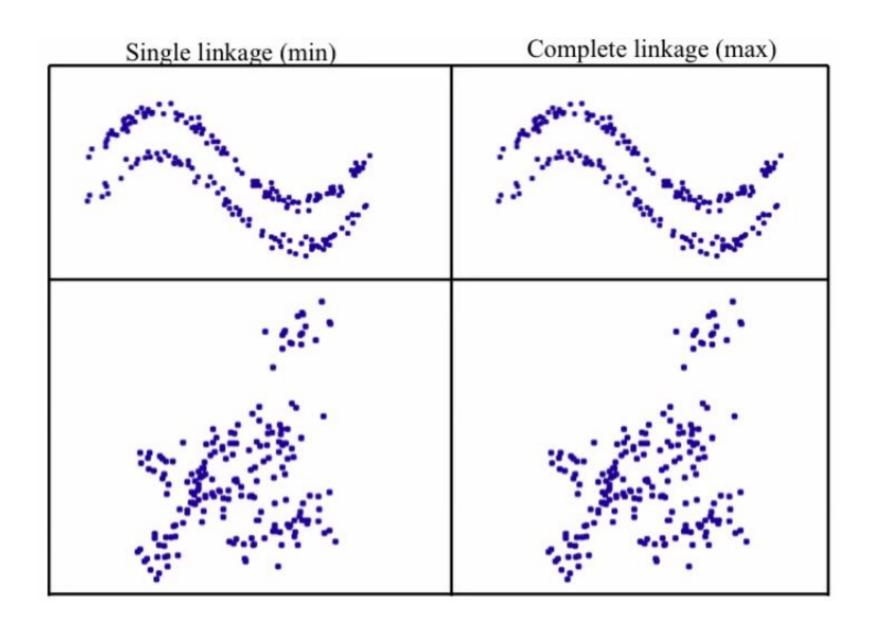
$$D_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

Centroid

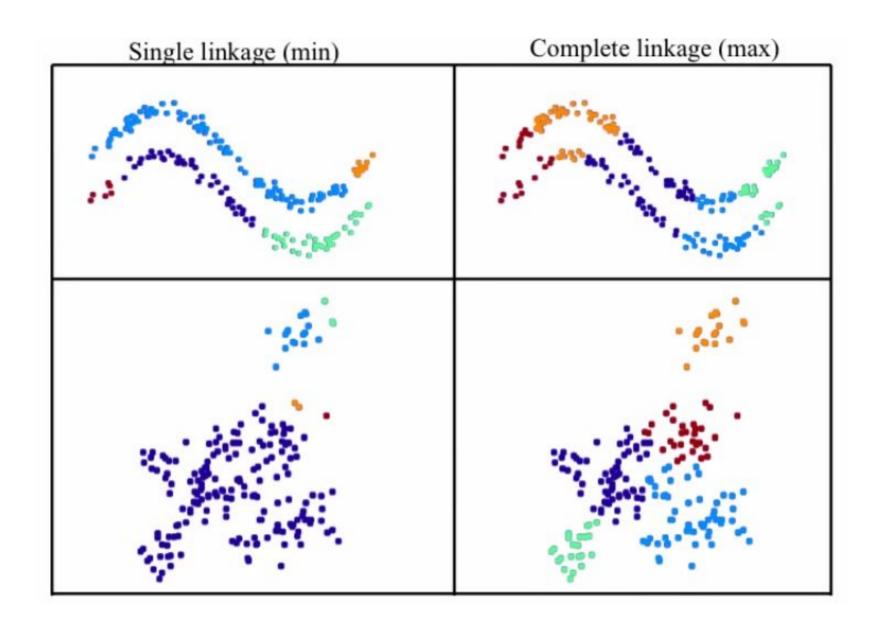
Need:

$$D(A,C) \rightarrow D(A+B,C)$$

Cluster Distances

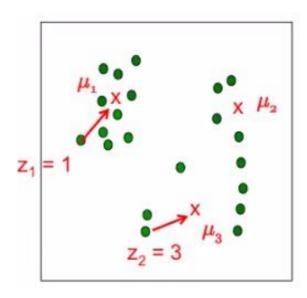


Cluster Distances



K-Means Clustering

- A simple clustering algorithm
- Iterate between
 - Updating the assignment of data to clusters
 - Updating the cluster's summarization
- Suppose we have K clusters, c=1..K
- Represent clusters by locations ¹/_e
- Example i has features x_i
- Represent assignment of ith example z_i 2 1..K



K-Means Clustering

Iterate until convergence:

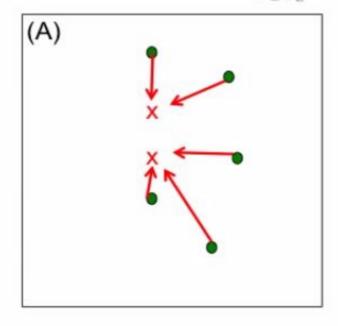
(A) For each datum, find the closest cluster

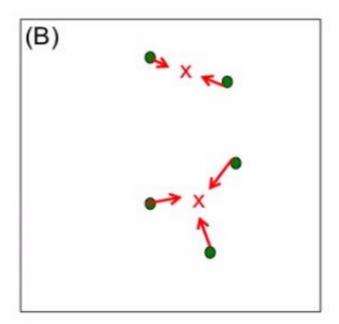
$$z_i = \arg\min_c \|x_i - \mu_c\|^2 \qquad \forall i$$

(B) Set each cluster to the mean of all assigned data:

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S_c} x_i$$

$$S_c = \{i : z_i = c\}, \ m_c = |S_c|$$





K-Means Clustering

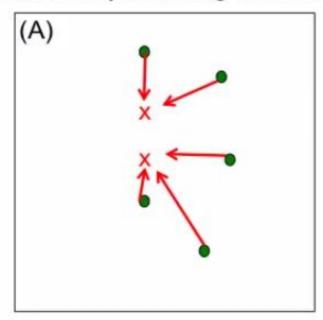
Optimizing the cost function:

$$C(\underline{z},\underline{\mu}) = \sum_{i} ||x_i - \mu_{z_i}||^2$$

Coordinate descent:

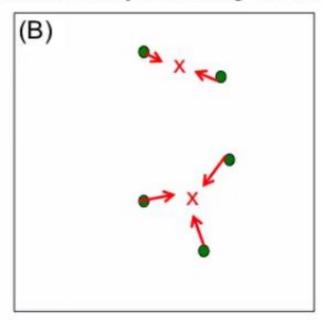
Over the cluster assignments:

Only one term in sum depends on z_i Minimized by selecting closest μ_c



Over the cluster centers:

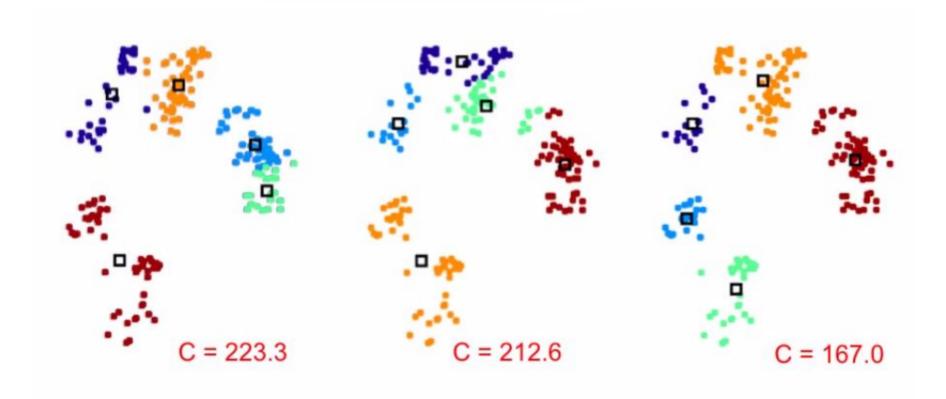
Cluster c only depends on x_i with z_i=c Minimized by selecting the mean



K-Means clustering

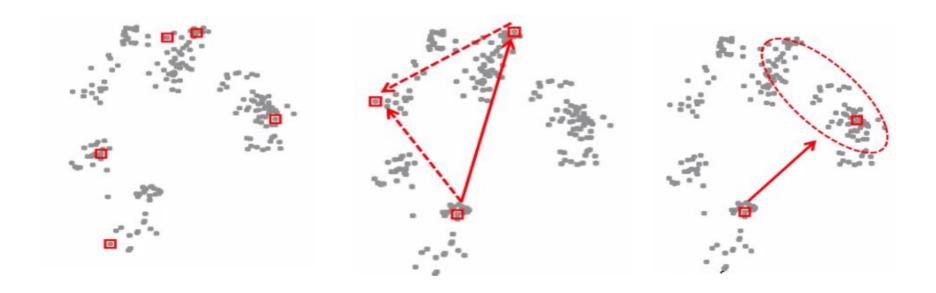
- As with any descent method, beware of local minima
- · Algorithm behavior depends significantly on initalization

$$C(\underline{z},\underline{\mu}) = \sum_{i} ||x_i - \mu_{z_i}||^2$$



K-Means clustering

- As with any descent method, beware of local minima
- Algorithm behavior depends significantly on initalization
- Random: ensures centers are near data,
- may choose nearby points
- Distance-based: find the point farthest from the clusters so far
- may choose outliers
- Random+distance: choose next points far but randomly

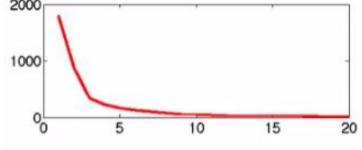


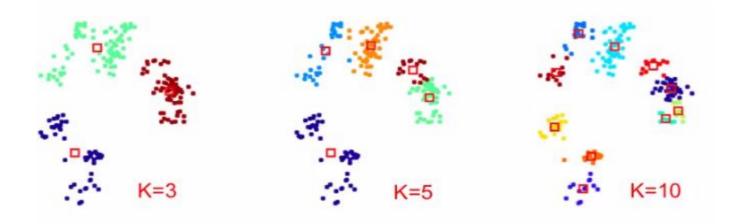
Choosing the number of clusters

With cost function

$$C(\underline{z},\underline{\mu}) = \sum ||x_i - \mu_{z_i}||^2$$

what is the optimal value of k? (can increasing k ever increase the cost?)





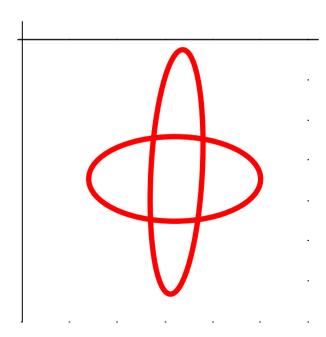
One solution is to penalize for complexity

$$J(\underline{z},\underline{\mu}) = \log \left[\frac{1}{m d} \sum_{i} \|x_i - \mu_{z_i}\|^2 \right] + k \frac{\log m}{m}$$

X-means method

Mixtures of Gaussians

- K-means algorithm
 - Assigned each example to exactly one cluster
 - What if clusters are overlapping?
 - Hard to tell which cluster is right
 - Maybe we should try to remain uncertain
 - Used Euclidean distance
 - What if cluster has a non-circular shape?
- Gaussian mixture models
 - Clusters modeled as Gaussians
 - Not just by their mean
 - EM algorithm: assign data to cluster with some probability



Revisit k-means

EM'ish algorithm, define unobserved latent variables z_i, cluster membership

Iterate until convergence:

(A) For each datum, find the closest cluster

$$z_i = \arg\min_{c} \|x_i - \mu_c\|^2 \qquad \forall i$$

Compute expected value of latent variable z_i based on model params

(B) Set each cluster to the mean of all assigned data:

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S_c} x_i \qquad \qquad S_c = \{i : z_i = c\}, \ m_c = |S_c|$$

Minimize error / maximize likelihood

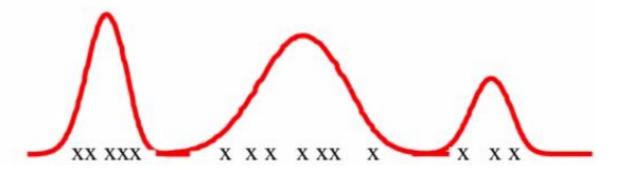
$$C(\underline{z},\underline{\mu}) = \sum_i \|x_i - \mu_{z_i}\|^2$$
 neters)

Mixtures of Gaussians

Start with parameters describing each cluster

Mean
$$\mu_c$$
 , $\,$ variance σ_c , "size" π_c

Probability distribution:
$$p(x) = \sum_c \pi_c \ \mathcal{N}(x \ ; \ \mu_c, \sigma_c)$$



Mixtures of Gaussians

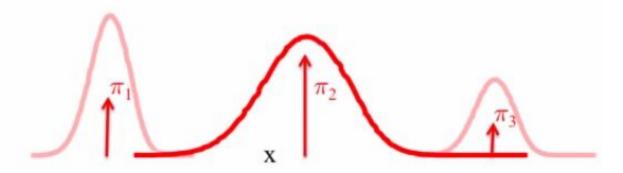
Start with parameters describing each cluster

Mean μ_c , $\,$ variance σ_c , "size" π_c

Probability distribution:
$$p(x) = \sum_{c} \pi_{c} \mathcal{N}(x ; \mu_{c}, \sigma_{c})$$

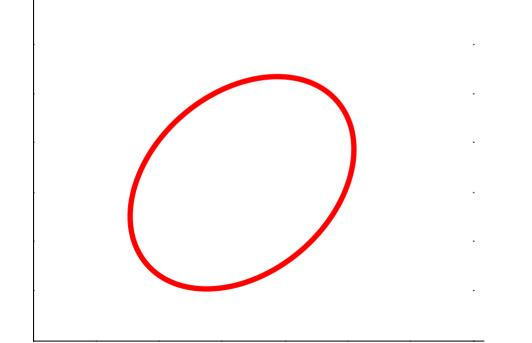
$$p(z = c) = \pi_c$$
$$p(x|z = c) = \mathcal{N}(x ; \mu_c, \sigma_c)$$

Select a mixture component with probability π Sample from that component's Gaussian



Multivariate Gaussian models

$$\mathcal{N}(\underline{x} \; ; \; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2} (\underline{x} - \underline{\mu})^T \Sigma^{-1} (\underline{x} - \underline{\mu})\right\}$$



Maximum Likelihood estimates

$$\hat{\mu} = \frac{1}{N} \sum_{i} x^{(i)}$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{i} (x^{(i)} - \hat{\mu})^{T} (x^{(i)} - \hat{\mu})$$

We'll model each cluster using one of these Gaussian "bells"...

EM Algorithm: E-step

Start with clusters: Mean μ_c , Covariance Σ_c , "size" π_c

E-step ("Expectation")

- For each datum (example) x_i, responsibility / soft membership
- Compute "r_{ic}", the probability that it belongs to cluster c
 - Compute its probability under model c
 - Normalize to sum to one (over clusters c)

$$r_{ic} = \frac{\pi_c \mathcal{N}(x_i \; ; \; \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} \mathcal{N}(x_i \; ; \; \mu_{c'}, \Sigma_{c'})}$$

$$r_1 \approx .33; \; r_2 \approx .66$$

- If x_i is very likely under the cth Gaussian, it gets high weight
- Denominator just makes r's sum to one

EM Algorithm: M-step

- Start with assignment probabilities r_{ic}
- Update parameters: mean μ_c , Covariance Σ_c , "size" π_c
- M-step ("Maximization")
 - For each cluster (Gaussian) z = c,
 - Update its parameters using the (weighted) data points

$$m_c = \sum_i r_{ic}$$
 Total responsibility allocated to cluster c $\pi_c = \frac{m_c}{m}$ Fraction of total assigned to cluster c

$$\mu_c = \frac{1}{m_c} \sum_i r_{ic} x^{(i)}$$

$$\Sigma_c = \frac{1}{m_c} \sum_i r_{ic} (x^{(i)} - \mu_c)^T (x^{(i)} - \mu_c)$$

Weighted mean of assigned data

Weighted covariance of assigned data (use new weighted means here)

Expectation-Maximization

Each step increases the log-likelihood of our model

$$\log p(\underline{X}) = \sum_{i} \log \left[\sum_{c} \pi_{c} \, \mathcal{N}(x_{i} \; ; \; \mu_{c}, \Sigma_{c}) \right]$$

(we won't derive this here, though)

Iterate until convergence

- Convergence guaranteed another ascent method
- Local optima: initialization often important

What should we do

- If we want to choose a single cluster for an "answer"?
- With new data we didn't see during training?

Choosing the number of clusters

- Can use penalized likelihood of training data (like k-means)
- True probability model: can use log-likelihood of test data, log p(x')

