#### Machine Learning - CMPE462

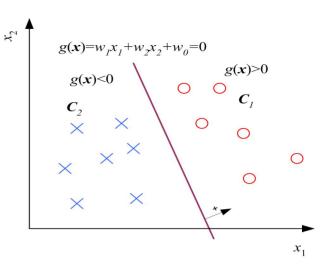
#### **Decision Trees**

Emre Ugur, BM 33 emre.ugur@boun.edu.tr http://www.cmpe.boun.edu.tr/~emre/courses/cmpe462 cmpe462@listeci.cmpe.boun.edu.tr

## Previously on CMPE462

Linear discriminants

$$g_i(\mathbf{x} | \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0}$$



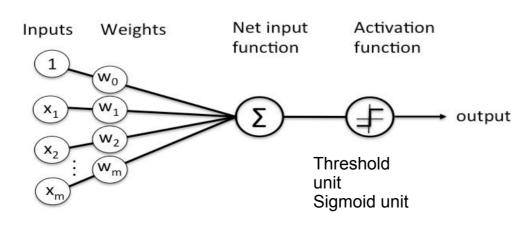
Logistic discrimination

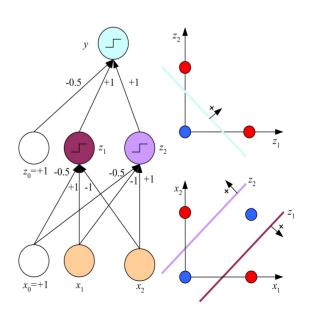
$$y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \text{ and choose} C_1 \text{ if } y > 0.5$$

Gradient descent

$$\Delta w_j = \eta \sum_t (r^t - y^t) x_j^t$$

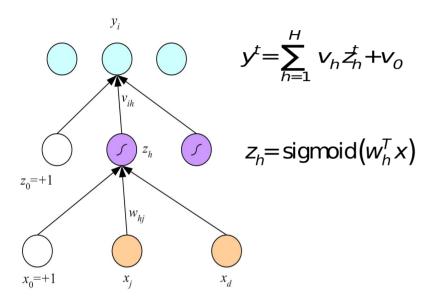
Perceptrons





## Previously on CMPE462

Multilayer perceptron



$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$-\eta \sum_{t} \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$-\eta \sum_{t} -(r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

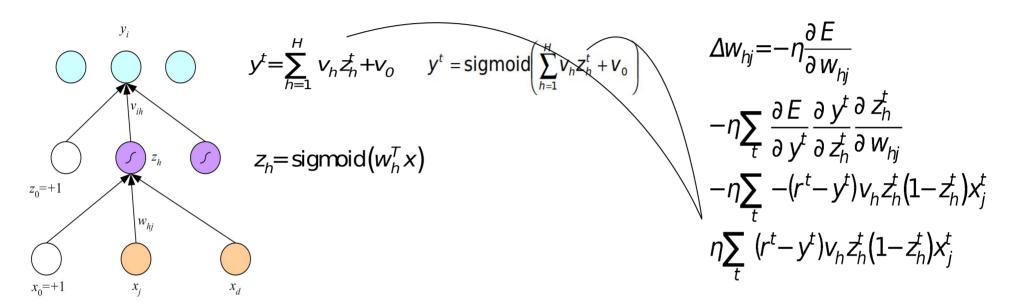
$$\eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

## Quiz

• Build a perceptron that calculates NOT of its one input.

## Previously on CMPE462: A paranthesis

Multilayer perceptron



Logistic discrimination

 $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \text{ and choose} C_1 \text{ if } y > 0.5$ 

$$\Delta W_j = \eta \sum_t (r^t - y^t) x_j^t$$

## Logistic Discrimination Logistic Regression: Target is categorical

- Do not model class-conditional densities, but their ratio
- Two classes: Assume log likelihood ratio is linear

$$\log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} = \mathbf{w}^T \mathbf{x} + w_0^o$$

$$\log \operatorname{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)}$$

$$= \mathbf{w}^T \mathbf{x} + w_0$$

$$\operatorname{where} w_0 = w_0^o + \log \frac{P(C_1)}{P(C_2)}$$

$$y = \hat{P}(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

# Logistic Discrimination Logistic Regression: Target is categorical

- Do not model class-conditional densities, but their ratio
- Two classes: Assume log likelihood ratio is linear

## **Training: Two Classes**

$$X = \{\mathbf{x}^{t}, r^{t}\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text{Bernoulli}(y^{t})$$

$$y = P(C_{1} \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^{T}\mathbf{x} + w_{0})]}$$

$$I(\mathbf{w}, w_{0} \mid X) = \prod_{t} (y^{t})^{(r^{t})} (1 - y^{t})^{(1 - r^{t})}$$

$$E = -\log I$$

$$E(\mathbf{w}, w_{0} \mid X) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

## Training: Gradient-Descent

$$E(\mathbf{w}, \mathbf{w}_{0} \mid \mathbf{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$\text{If } \mathbf{y} = \text{sigmoid}(\mathbf{a}) \quad \frac{d\mathbf{y}}{d\mathbf{a}} = \mathbf{y}(1 - \mathbf{y})$$

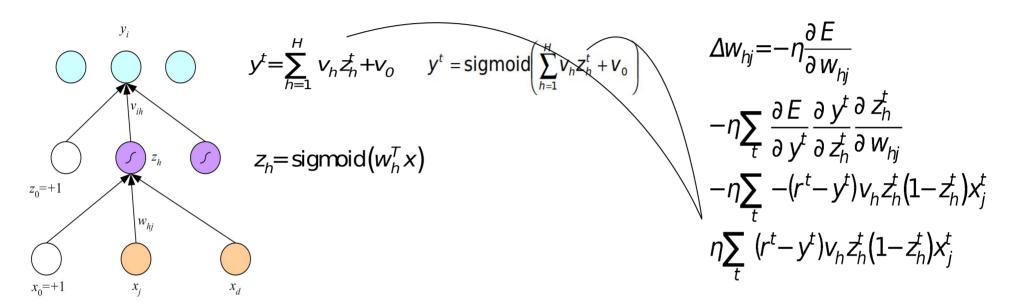
$$\Delta \mathbf{w}_{j} = -\eta \frac{\partial E}{\partial \mathbf{w}_{j}} = \eta \sum_{t} \left( \frac{r^{t}}{\mathbf{y}^{t}} - \frac{1 - r^{t}}{1 - \mathbf{y}^{t}} \right) \mathbf{y}^{t} (1 - \mathbf{y}^{t}) \mathbf{x}_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - \mathbf{y}^{t}) \mathbf{x}_{j}^{t}, j = 1, \dots, d$$

$$\Delta \mathbf{w}_{0} = -\eta \frac{\partial E}{\partial \mathbf{w}_{0}} = \eta \sum_{t} (r^{t} - \mathbf{y}^{t})$$

## Previously on CMPE462: A paranthesis

Multilayer perceptron

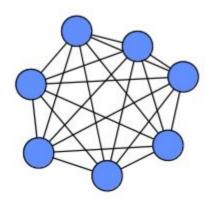


Logistic discrimination

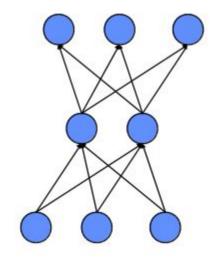
 $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \text{ and choose} C_1 \text{ if } y > 0.5$ 

$$\Delta W_j = \eta \sum_t (r^t - y^t) x_j^t$$

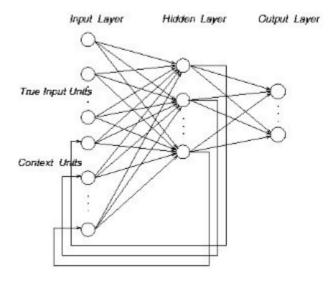
## **Topologies of Neural Networks**



completely connected



feedforward (directed, a-cyclic)

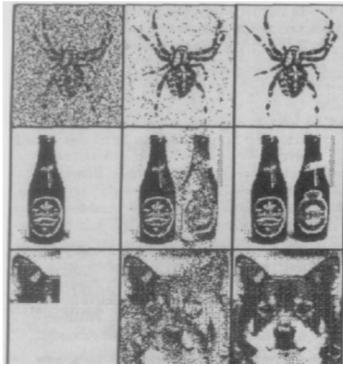


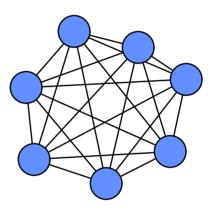
recurrent (feedback connections)

## Hopfield Networks

- Act as "autoassociative" memories to store patterns
- Network converges to local minima which store different patterns.

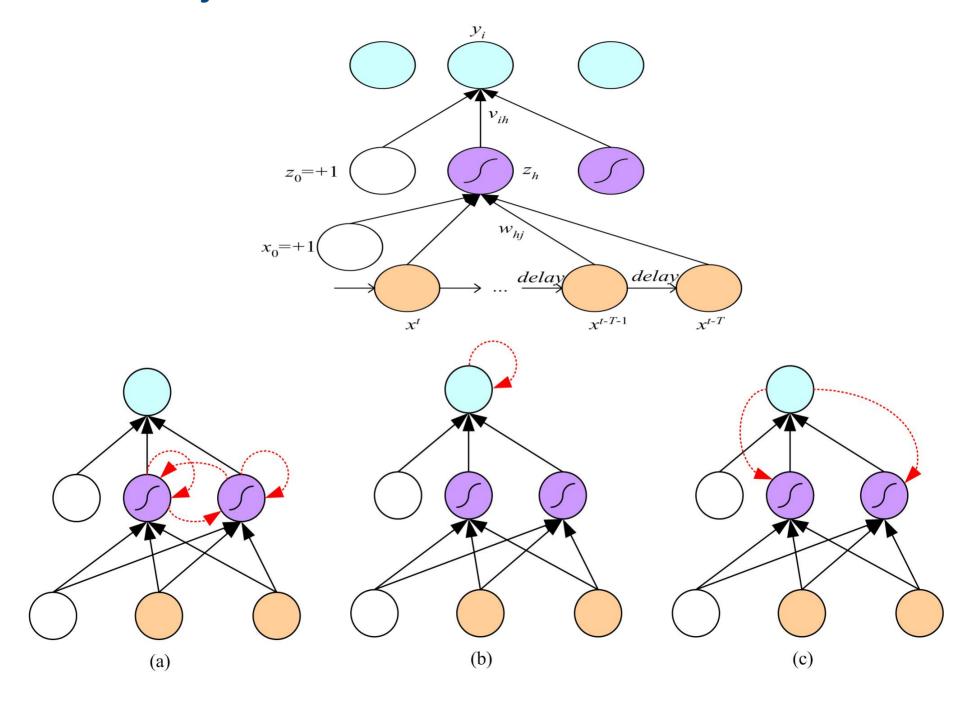




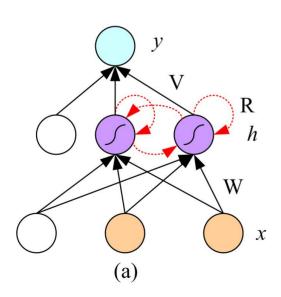


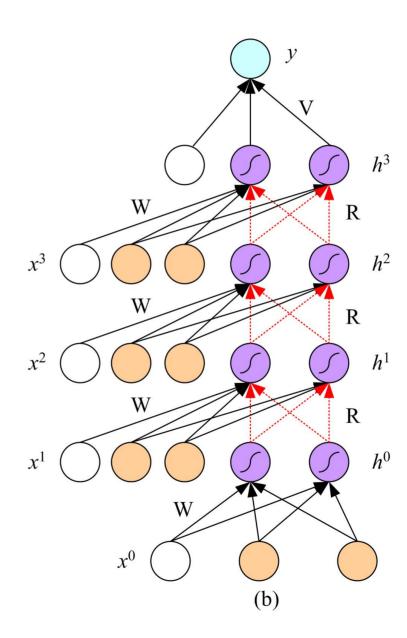
completely connected

## Time-delay Neural Networks



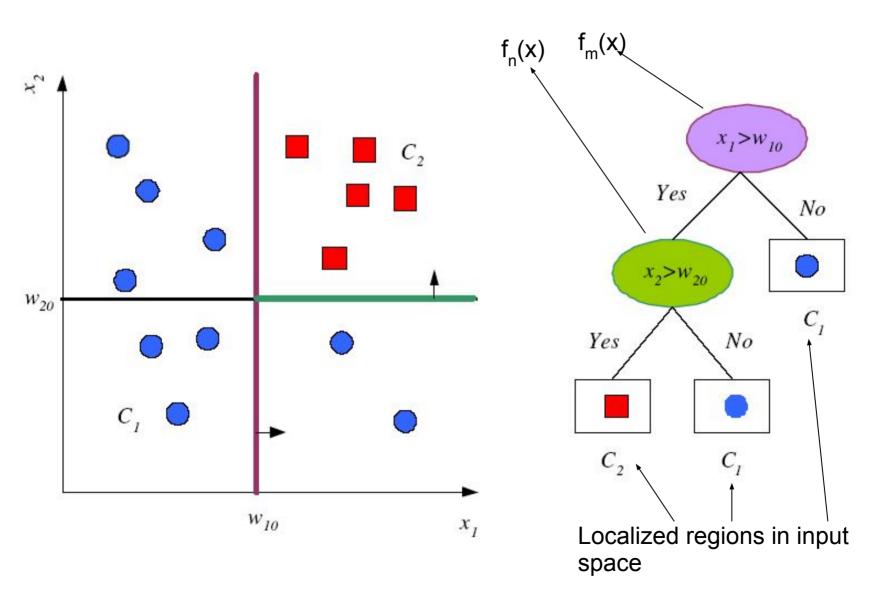
### Recurrent Networks





#### **Decision Trees**

### Tree Uses Nodes, and Leaves

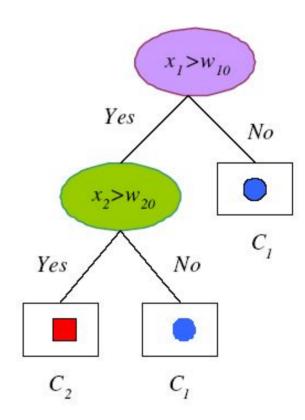


Both for classication and regression

Internal decision nodes

## **Properties**

- Structure not fixed
- Fast localization
- Interpretability
  - IF-THEN rules
- Many correct trees
  - Which one to choose?
  - Learning is greedy
    - find the best split recursively



## **Training: Two Classes**

$$X = \{\mathbf{x}^{t}, r^{t}\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text{Bernoulli}(y^{t})$$

$$y = P(C_{1} \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^{T}\mathbf{x} + w_{0})]}$$

$$I(\mathbf{w}, w_{0} \mid X) = \prod_{t} (y^{t})^{(r^{t})} (1 - y^{t})^{(1 - r^{t})}$$

$$E = -\log I$$

$$E(\mathbf{w}, w_{0} \mid X) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

## Likelihood, Bernoulli

- Assume each x<sub>i</sub> is a different variable from Bernoulli distribution with same p
  - Joint probability distribution
- Same variable, y times out of n
  - Binomial distribution
- For finding parameters, maximum likelihood
  - Coefficient drops
- For making inference, take ratio
  - Coefficient drops

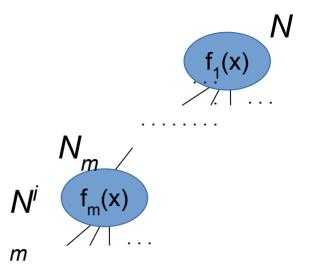
$$\prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$\binom{n}{y}p^y(1-p)^{n-y}$$

## Classification Trees – Impurity (ID3, CART, C4.5)

• For node m,  $N_m$  instances reach m,  $N_m^i$  belong to  $C_i$ 

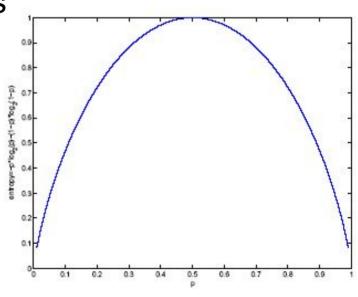
$$\hat{P}(C_i|\mathbf{x},m) \equiv p_m^i = \frac{N_m^i}{N_m}$$



- Node m is pure if all instances same class
- Node m is pure if  $p_m^i$  is 0 or 1
- · Measure of impurity is entropy

$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$

= uncertainty



## Simple Example

Training Set: 3 features and 2 classes

| X | Y | $\mathbf{Z}$ | C        |
|---|---|--------------|----------|
| 1 | 1 | 1            | I        |
| 1 | 1 | 0            | I        |
| 0 | 0 | 1            | II       |
| 1 | 0 | O            | II<br>II |

How would you distinguish class I from class II?

| X | Y | Z | C  |
|---|---|---|----|
| 1 | 1 | 1 | I  |
| 1 | 1 | 0 | I  |
| 0 | 0 | 1 | II |
| 1 | 0 | 0 | II |

#### Split on attribute X

X=1 II II X=0 II

If X is the best attribute, this node would be further split.

$$E_{child1} = -(1/3)log_2(1/3)-(2/3)log_2(2/3)$$
  
= .5284 + .39  
= .9184  
 $E_{child2} = 0$ 

$$E_{parent} = 1$$
  
 $GAIN = 1 - (3/4)(.9184) - (1/4)(0) = .3112$ 

#### Split on attribute Y

$$Y=1 \qquad I \qquad I$$

$$II \qquad II$$

$$X=0 \qquad II$$

$$E_{child1}=0$$

$$E_{child2}=0$$

$$E_{parent} = 1$$
  
 $GAIN = 1 - (1/2) 0 - (1/2)0 = 1$ ; BEST ONE

#### Split on attribute Z

$$Z=1$$

$$II$$

$$IIII$$

$$Z=0$$

$$III$$

$$E_{child1}=1$$

$$E_{child2}=1$$

$$E_{parent} = 1$$
  
 $GAIN = 1 - (1/2)(1) - (1/2)(1) = 0$  ie. NO GAIN; WORST

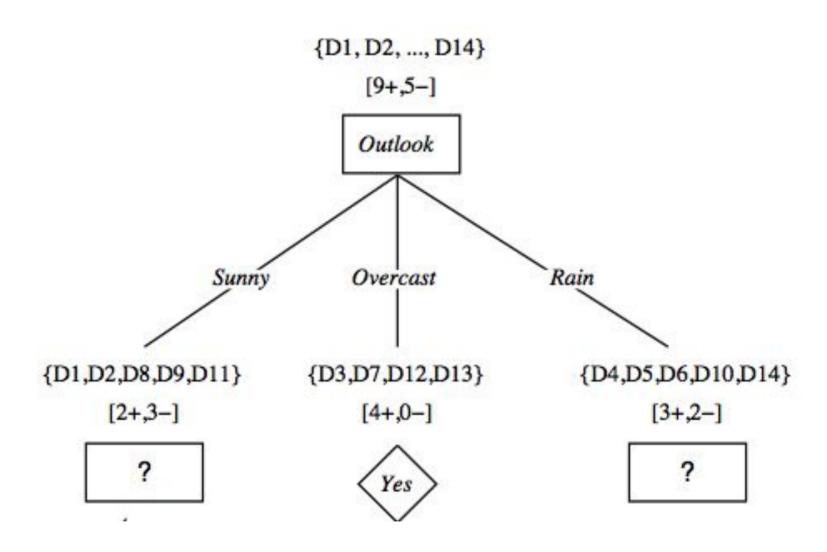
## Example

| Day | Outlook  | Temperature    | Humidity | Wind   | PlayTennis |
|-----|----------|----------------|----------|--------|------------|
| D1  | Sunny    | $\mathbf{Hot}$ | High     | Weak   | No         |
| D2  | Sunny    | $\mathbf{Hot}$ | High     | Strong | No         |
| D3  | Overcast | Hot            | High     | Weak   | Yes        |
| D4  | Rain     | Mild           | High     | Weak   | Yes        |
| D5  | Rain     | Cool           | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool           | Normal   | Strong | No         |
| D7  | Overcast | Cool           | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild           | High     | Weak   | No         |
| D9  | Sunny    | Cool           | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild           | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild           | Normal   | Strong | Yes        |
| D12 | Overcast | Mild           | High     | Strong | Yes        |
| D13 | Overcast | Hot            | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild           | High     | Strong | No         |

## First step: which attribute to test at the root?

- Which attribute should be tested at the root?
- Gain(S, Outlook) = 0.246
- Gain(S, Humidity) = 0.151
- Gain(S, Wind) = 0.084
- Gain(S, Temperature) = 0.029
- Outlook provides the best prediction for the target
- Lets grow the tree:
- add to the tree a successor for each possible value of *Outlook*
- partition the training samples according to the value of Outlook

## After first step



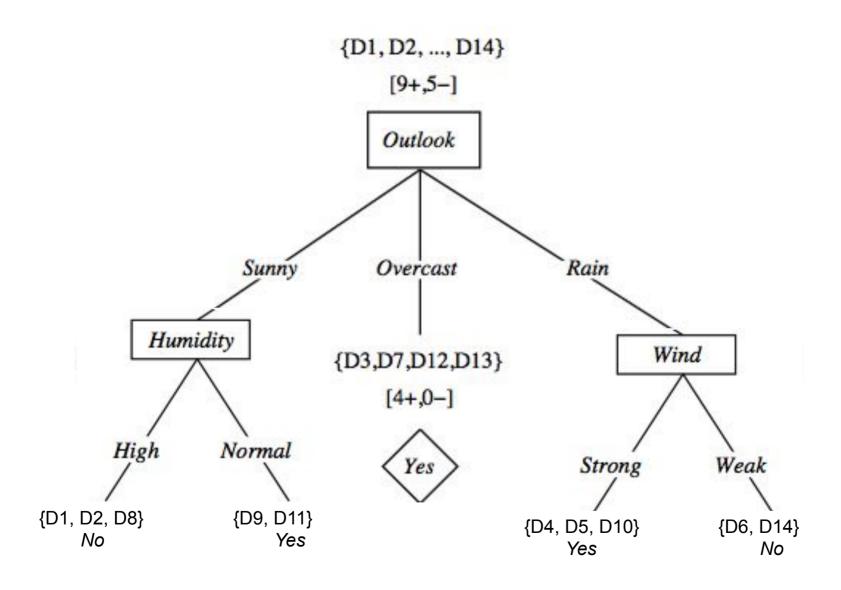
## Second step

• Working on *Outlook=Sunny* node:

$$Gain(S_{Sunny}, Humidity) = 0.970 - 3/5 \times 0.0 - 2/5 \times 0.0 = 0.970$$
  
 $Gain(S_{Sunny}, Wind) = 0.970 - 2/5 \times 1.0 - 3.5 \times 0.918 = 0.019$   
 $Gain(S_{Sunny}, Temp.) = 0.970 - 2/5 \times 0.0 - 2/5 \times 1.0 - 1/5 \times 0.0 = 0.570$ 

- *Humidity* provides the best prediction for the target
- Lets grow the tree:
  - add to the tree a successor for each possible value of *Humidity*
  - partition the training samples according to the value of Humidity

## Second and third steps



## Impurity metrics

Impurity

$$\phi(p, 1-p)$$

- $\phi(1/2, 1/2) \ge \phi(p, 1-p)$ , for any  $p \in [0, 1]$ .
- $\phi(p, 1-p)$  is increasing in p on [0, 1/2] and decreasing in p on [1/2, 1].
- Entropy

$$\phi(p, 1-p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

Gini-index

$$\phi(p, 1 - p) = 2p(1 - p)$$

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

• Misclassication error  $\phi(p, 1-p)$ 

$$\phi(p, 1 - p) = 1 - \max(p, 1 - p)$$

## **Best Split**

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively
- Impurity after split:  $N_{mj}$  of  $N_m$  take branch j.  $N_{mj}^i$  belong to  $C_i$

$$\hat{P}(C_i \mid \mathbf{x}, m, j) \equiv p_{mj}^i = \frac{N_{mj}^i}{N_{mj}}$$

 Find the variable and split that min impurity (among all variables -- and split positions for numeric variables)

$$I'_{m} = -\sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p_{mj}^{i} \log_{2} p_{mj}^{i}$$

#### Classification tree construction

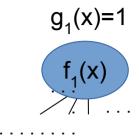
• When to stop the construction? GenerateTree(X)

```
If Pure (X) equation 9.3 */
Create leaf labelled by majority class in X
Return
i \leftarrow \text{SplitAttribute}(X)
For each branch of x_i
Find X_i falling in branch
GenerateTree(X_i)
```

## Regression Trees

· For each instance, define

$$b_m(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{X}_m : \mathbf{x} \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases}$$



Use mean to compute output

$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

• Error at node m:

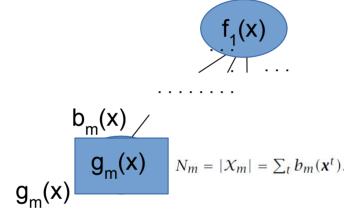
$$E_m = \frac{1}{N_m} \sum_{t} (r^t - g_m)^2 b_m(\mathbf{x}^t)$$

$$\mathbf{g}_{\mathbf{m}}(\mathbf{x}) / \mathbf{g}_{\mathbf{m}}(\mathbf{x})$$

$$N_{m} = |\mathcal{X}_{m}| = \sum_{t} b_{m}(\mathbf{x}^{t}).$$

## Regression Trees

- Constructed in a similar way
- Goodness of split: mean square error  $E_m = \frac{1}{N_m} \sum_t (r^t g_m)^2 b_m(\mathbf{x}^t)$
- If at a node, the error is acceptable, create a leaf node



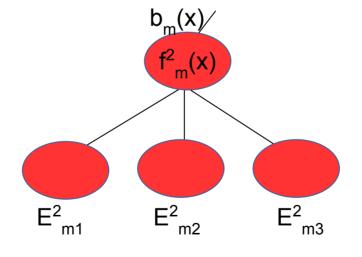
$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

## Regression Trees

- Constructed in a similar way
- Goodness of split: mean square error  $E_m = \frac{1}{N_m} \sum_t (r^t g_m)^2 b_m(\mathbf{x}^t)$
- If error is not acceptable, split m further such that sum of errors

is minimum

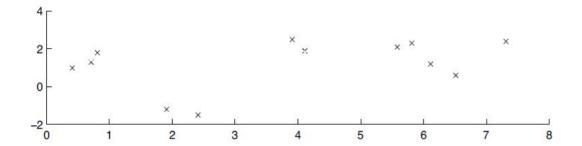
 $b_{m}(x)$   $b_{m_{1}}(x)$   $b_{m_{2}}(x)$   $b_{m_{3}}(x)$   $E^{1}_{m_{1}}$   $E^{1}_{m_{2}}$   $E^{1}_{m_{3}}$ 



$$E'_{m} = \frac{1}{N_{m}} \sum_{i} \sum_{t} (r^{t} - g_{mj})^{2} b_{mj}(\mathbf{x}^{t})$$

$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

#### Model Selection in Trees:

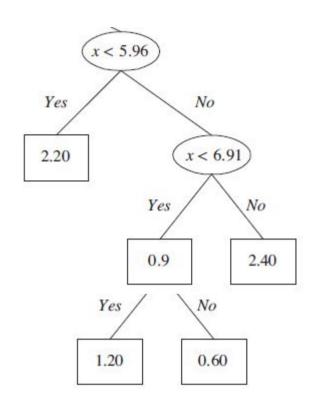


$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

What can you do instead of mean?

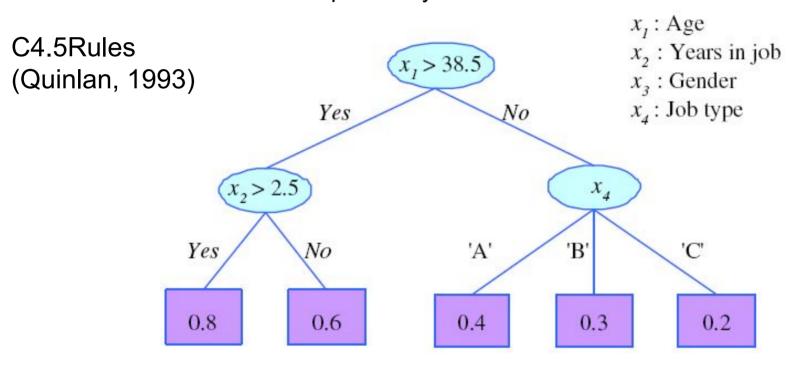
## **Pruning Trees**

- Remove subtrees for better generalization (decrease variance)
- Prepruning: Early stopping
  - If  $N_m < 5\%$
- Postpruning:
  - Grow the whole tree (pure leaves)
  - Overfitting subtrees pruning set
    - Each subtree replaced by a leaf node
- Prepruning is faster,
- Postpruning is more accurate (requires a separate pruning set)



#### Rule Extraction from Trees

Feature extraction – interpretability



R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8

R2: IF (age>38.5) AND (years-in-job  $\leq$  2.5) THEN y = 0.6

R3: IF (age  $\leq$  38.5) AND (job-type='A') THEN y = 0.4

R4: IF (age  $\leq$  38.5) AND (job-type='B') THEN y = 0.3

R5: IF (age  $\leq$  38.5) AND (job-type='C') THEN y = 0.2

## Learning Rules

- Rule induction is similar to tree induction but
- tree induction is breadth-first,
- rule induction is depth-first; one rule at a time
- Rule set contains rules; rules are conjunctions of terms
- Rule covers an example if all terms of the rule evaluate to true for the example
- Sequential covering: Generate rules one at a time until all positive examples are covered
- IREP (Fürnkrantz and Widmer, 1994), Ripper (Cohen, 1995)

```
Ripper(Pos, Neg, k)
  RuleSet \leftarrow LearnRuleSet(Pos,Neg)
  For k times
    RuleSet ← OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
  RuleSet \leftarrow \emptyset
  DL ← DescLen(RuleSet,Pos,Neg)
  Repeat
    Rule ← LearnRule(Pos,Neg)
    Add Rule to RuleSet
    DL' ← DescLen(RuleSet, Pos, Neg)
    If DL'>DL+64
       PruneRuleSet(RuleSet, Pos, Neg)
       Return RuleSet
    If DL' < DL DL \leftarrow DL'
       Delete instances covered from Pos and Neg
  Until Pos = \emptyset
  Return RuleSet
```

```
PruneRuleSet(RuleSet, Pos, Neg)
  For each Rule ∈ RuleSet in reverse order
    DL ← DescLen(RuleSet, Pos, Neg)
    DL' ← DescLen(RuleSet-Rule, Pos, Neg)
    IF DL'<DL Delete Rule from RuleSet
  Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)
  For each Rule ∈ RuleSet
      DL0 ← DescLen(RuleSet,Pos,Neg)
      DL1 ← DescLen(RuleSet-Rule+
       ReplaceRule(RuleSet, Pos, Neg), Pos, Neg)
      DL2 ← DescLen(RuleSet-Rule+
       ReviseRule(RuleSet, Rule, Pos, Neg), Pos, Neg)
     If DL1=min(DL0,DL1,DL2)
       Delete Rule from RuleSet and
         add ReplaceRule(RuleSet,Pos,Neg)
      Else If DL2=min(DL0,DL1,DL2)
       Delete Rule from RuleSet and
         add ReviseRule(RuleSet,Rule,Pos,Neg)
  Return RuleSet
```

## **Multivariate Trees**

