Machine Learning - CMPE462

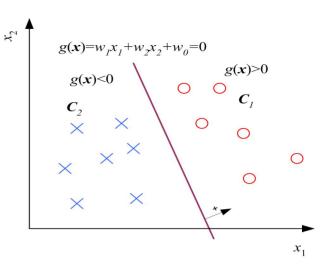
Decision Trees

Emre Ugur, BM 33 emre.ugur@boun.edu.tr http://www.cmpe.boun.edu.tr/~emre/courses/cmpe462 cmpe462@listeci.cmpe.boun.edu.tr

Previously on CMPE462

Linear discriminants

$$g_i(\mathbf{x} | \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0}$$



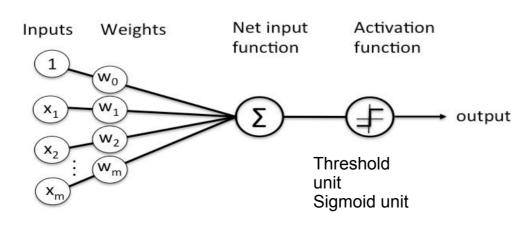
Logistic discrimination

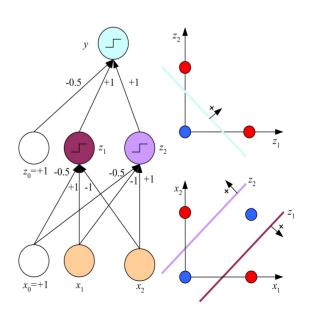
$$y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \text{ and choose} C_1 \text{ if } y > 0.5$$

Gradient descent

$$\Delta w_j = \eta \sum_t (r^t - y^t) x_j^t$$

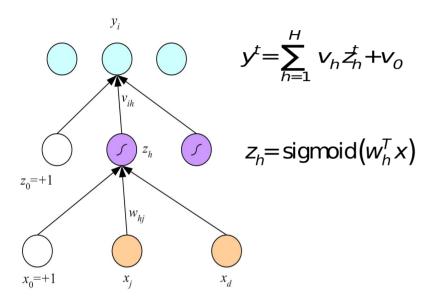
Perceptrons





Previously on CMPE462

Multilayer perceptron



$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$-\eta \sum_{t} \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$-\eta \sum_{t} -(r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

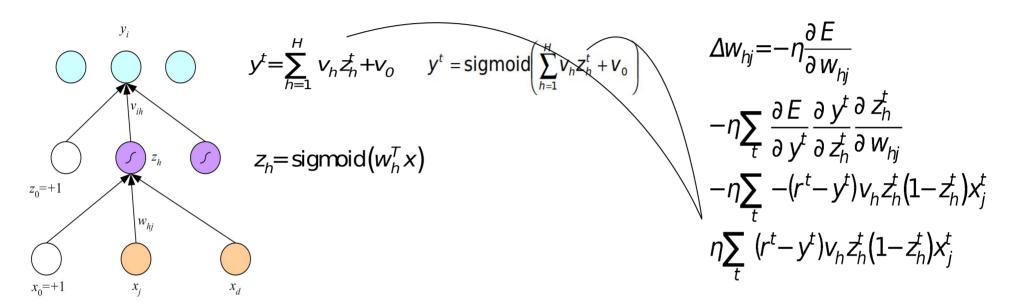
$$\eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Quiz

• Build a perceptron that calculates NOT of its one input.

Previously on CMPE462: A paranthesis

Multilayer perceptron



Logistic discrimination

 $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \text{ and choose} C_1 \text{ if } y > 0.5$

$$\Delta W_j = \eta \sum_t (r^t - y^t) x_j^t$$

Logistic Discrimination Logistic Regression: Target is categorical

- Do not model class-conditional densities, but their ratio
- Two classes: Assume log likelihood ratio is linear

$$\log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} = \mathbf{w}^T \mathbf{x} + w_0^o$$

$$\log \operatorname{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)}$$

$$= \mathbf{w}^T \mathbf{x} + w_0$$

$$\operatorname{where} w_0 = w_0^o + \log \frac{P(C_1)}{P(C_2)}$$

$$y = \hat{P}(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

Logistic Discrimination Logistic Regression: Target is categorical

- Do not model class-conditional densities, but their ratio
- Two classes: Assume log likelihood ratio is linear

Training: Two Classes

$$X = \{\mathbf{x}^{t}, r^{t}\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text{Bernoulli}(y^{t})$$

$$y = P(C_{1} \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^{T}\mathbf{x} + w_{0})]}$$

$$I(\mathbf{w}, w_{0} \mid X) = \prod_{t} (y^{t})^{(r^{t})} (1 - y^{t})^{(1 - r^{t})}$$

$$E = -\log I$$

$$E(\mathbf{w}, w_{0} \mid X) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

Training: Gradient-Descent

$$E(\mathbf{w}, \mathbf{w}_{0} \mid \mathbf{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$\text{If } \mathbf{y} = \text{sigmoid}(\mathbf{a}) \quad \frac{d\mathbf{y}}{d\mathbf{a}} = \mathbf{y}(1 - \mathbf{y})$$

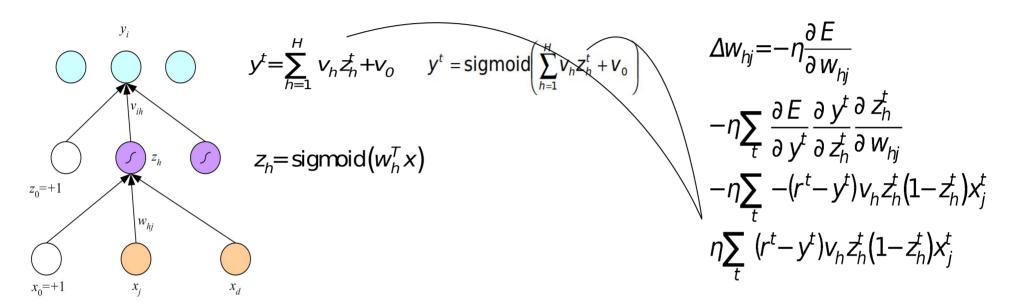
$$\Delta \mathbf{w}_{j} = -\eta \frac{\partial E}{\partial \mathbf{w}_{j}} = \eta \sum_{t} \left(\frac{r^{t}}{\mathbf{y}^{t}} - \frac{1 - r^{t}}{1 - \mathbf{y}^{t}} \right) \mathbf{y}^{t} (1 - \mathbf{y}^{t}) \mathbf{x}_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - \mathbf{y}^{t}) \mathbf{x}_{j}^{t}, j = 1, \dots, d$$

$$\Delta \mathbf{w}_{0} = -\eta \frac{\partial E}{\partial \mathbf{w}_{0}} = \eta \sum_{t} (r^{t} - \mathbf{y}^{t})$$

Previously on CMPE462: A paranthesis

Multilayer perceptron

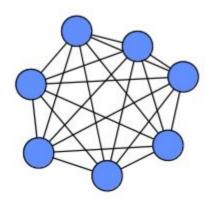


Logistic discrimination

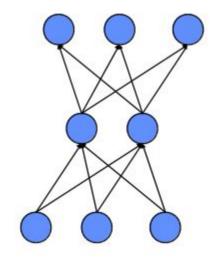
 $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) \text{ and choose} C_1 \text{ if } y > 0.5$

$$\Delta W_j = \eta \sum_t (r^t - y^t) x_j^t$$

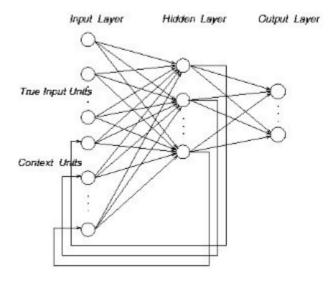
Topologies of Neural Networks



completely connected



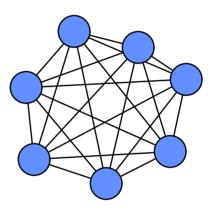
feedforward (directed, a-cyclic)



recurrent (feedback connections)

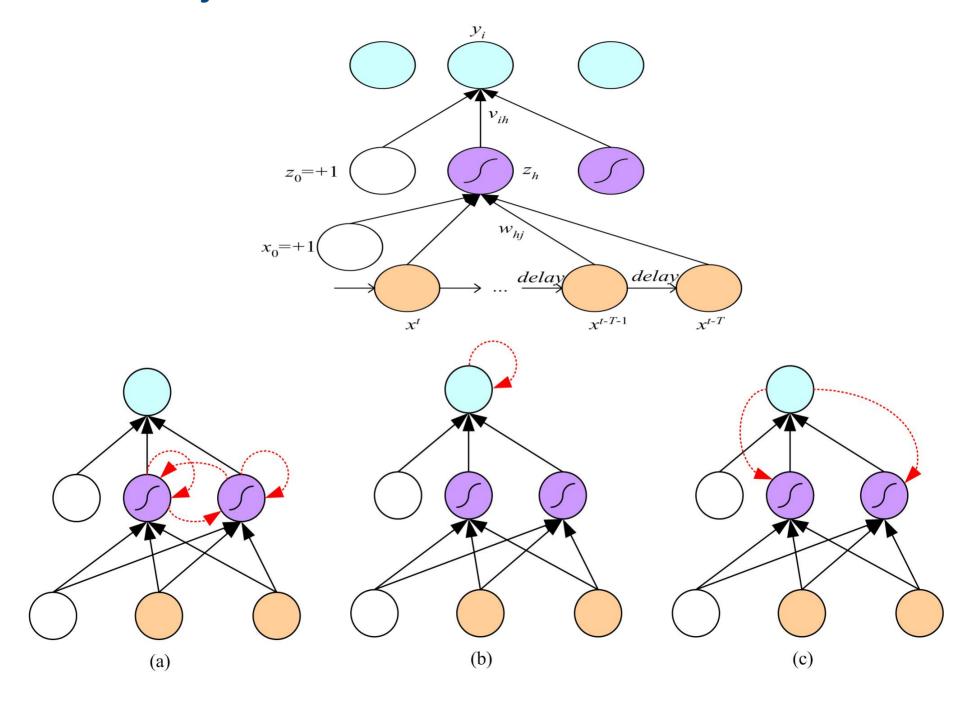
Hopfield Networks

- Act as "autoassociative" memories to store patterns
- Network converges to local minima which store different patterns.

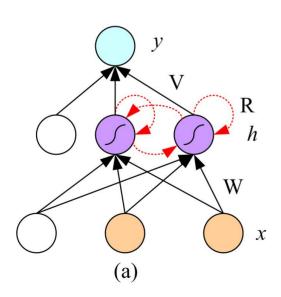


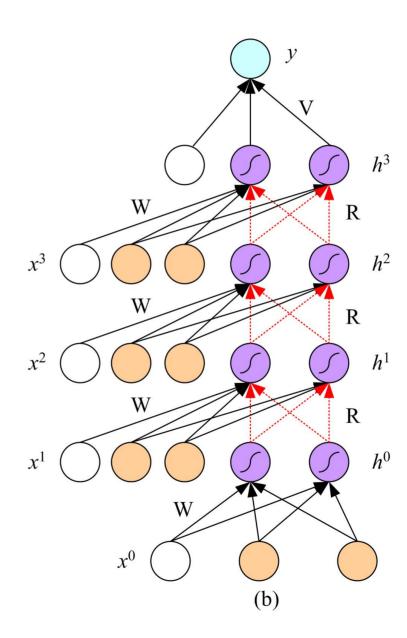
completely connected

Time-delay Neural Networks



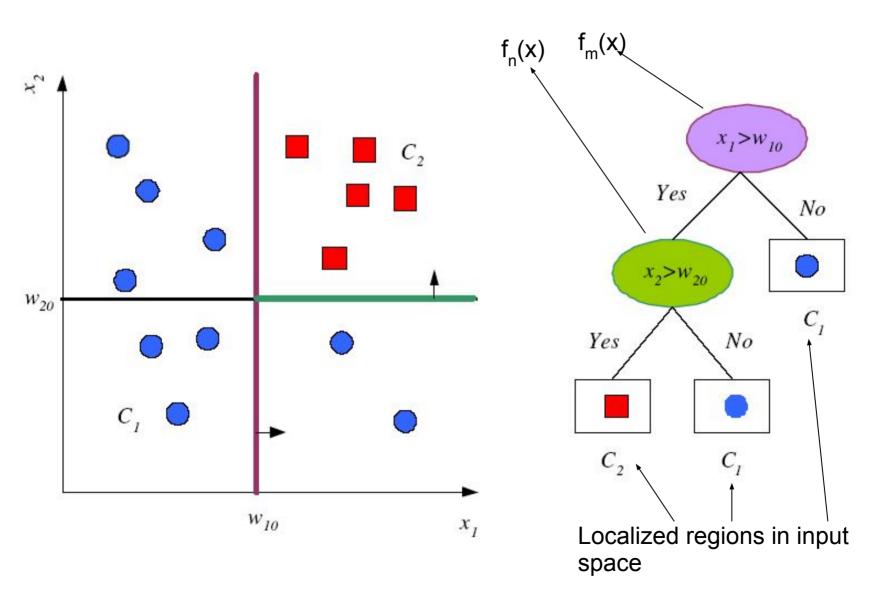
Recurrent Networks





Decision Trees

Tree Uses Nodes, and Leaves

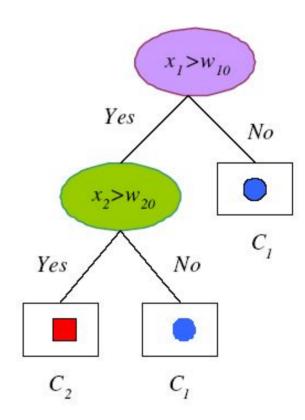


Both for classication and regression

Internal decision nodes

Properties

- Structure not fixed
- Fast localization
- Interpretability
 - IF-THEN rules
- Many correct trees
 - Which one to choose?
 - Learning is greedy
 - find the best split recursively



Training: Two Classes

$$X = \{\mathbf{x}^{t}, r^{t}\}_{t} \quad r^{t} \mid \mathbf{x}^{t} \sim \text{Bernoulli}(y^{t})$$

$$y = P(C_{1} \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^{T}\mathbf{x} + w_{0})]}$$

$$I(\mathbf{w}, w_{0} \mid X) = \prod_{t} (y^{t})^{(r^{t})} (1 - y^{t})^{(1 - r^{t})}$$

$$E = -\log I$$

$$E(\mathbf{w}, w_{0} \mid X) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

Likelihood, Bernoulli

- Assume each x_i is a different variable from Bernoulli distribution with same p
 - Joint probability distribution
- Same variable, y times out of n
 - Binomial distribution
- For finding parameters, maximum likelihood
 - Coefficient drops
- For making inference, take ratio
 - Coefficient drops

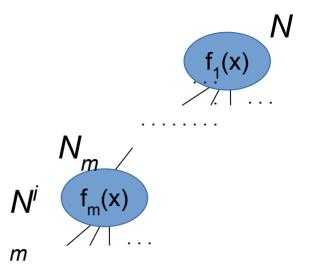
$$\prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$\binom{n}{y}p^y(1-p)^{n-y}$$

Classification Trees – Impurity (ID3, CART, C4.5)

• For node m, N_m instances reach m, N_m^i belong to C_i

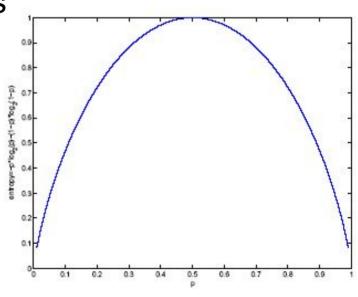
$$\hat{P}(C_i|\mathbf{x},m) \equiv p_m^i = \frac{N_m^i}{N_m}$$



- Node m is pure if all instances same class
- Node m is pure if p_m^i is 0 or 1
- · Measure of impurity is entropy

$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$

= uncertainty



Simple Example

Training Set: 3 features and 2 classes

X	Y	\mathbf{Z}	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	O	II II

How would you distinguish class I from class II?

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

Split on attribute X

X=1 II II X=0 II

If X is the best attribute, this node would be further split.

$$E_{child1} = -(1/3)log_2(1/3)-(2/3)log_2(2/3)$$

= .5284 + .39
= .9184
 $E_{child2} = 0$

$$E_{parent} = 1$$

 $GAIN = 1 - (3/4)(.9184) - (1/4)(0) = .3112$

Split on attribute Y

$$Y=1 \qquad I \qquad I$$

$$II \qquad II$$

$$X=0 \qquad II$$

$$E_{child1}=0$$

$$E_{child2}=0$$

$$E_{parent} = 1$$

 $GAIN = 1 - (1/2) 0 - (1/2)0 = 1$; BEST ONE

Split on attribute Z

$$Z=1$$

$$II$$

$$IIII$$

$$Z=0$$

$$III$$

$$E_{child1}=1$$

$$E_{child2}=1$$

$$E_{parent} = 1$$

 $GAIN = 1 - (1/2)(1) - (1/2)(1) = 0$ ie. NO GAIN; WORST

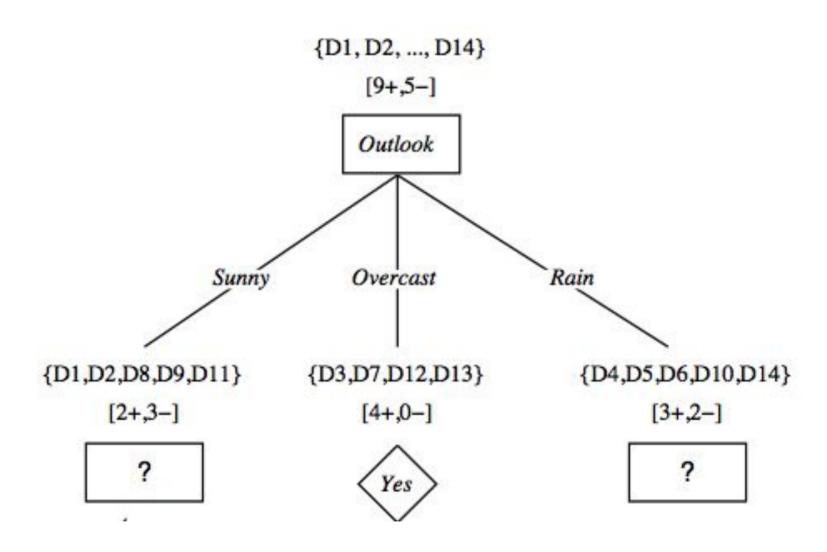
Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	\mathbf{Hot}	High	Weak	No
D2	Sunny	\mathbf{Hot}	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

First step: which attribute to test at the root?

- Which attribute should be tested at the root?
- Gain(S, Outlook) = 0.246
- Gain(S, Humidity) = 0.151
- Gain(S, Wind) = 0.084
- Gain(S, Temperature) = 0.029
- Outlook provides the best prediction for the target
- Lets grow the tree:
- add to the tree a successor for each possible value of *Outlook*
- partition the training samples according to the value of Outlook

After first step



Second step

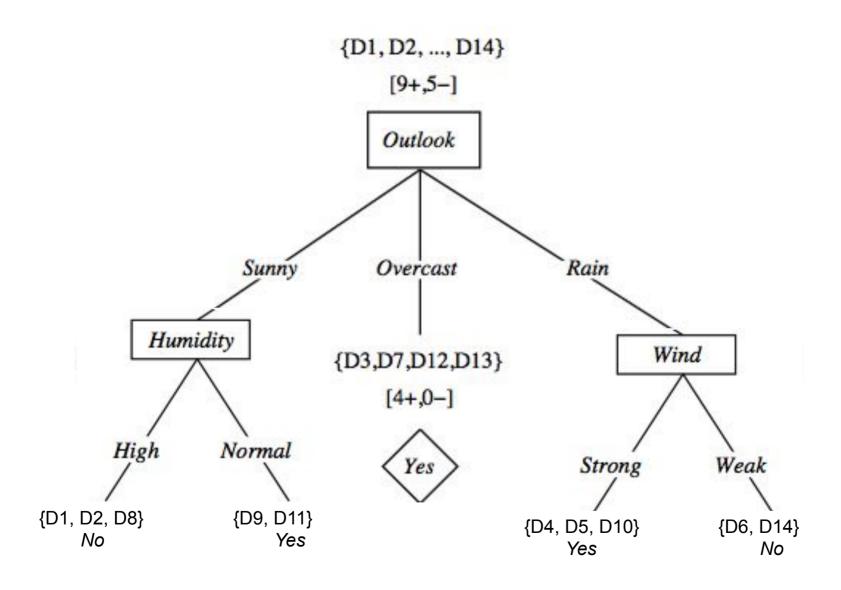
• Working on *Outlook=Sunny* node:

$$Gain(S_{Sunny}, Humidity) = 0.970 - 3/5 \times 0.0 - 2/5 \times 0.0 = 0.970$$

 $Gain(S_{Sunny}, Wind) = 0.970 - 2/5 \times 1.0 - 3.5 \times 0.918 = 0.019$
 $Gain(S_{Sunny}, Temp.) = 0.970 - 2/5 \times 0.0 - 2/5 \times 1.0 - 1/5 \times 0.0 = 0.570$

- *Humidity* provides the best prediction for the target
- Lets grow the tree:
 - add to the tree a successor for each possible value of *Humidity*
 - partition the training samples according to the value of Humidity

Second and third steps



Impurity metrics

Impurity

$$\phi(p, 1-p)$$

- $\phi(1/2, 1/2) \ge \phi(p, 1-p)$, for any $p \in [0, 1]$.
- $\phi(p, 1-p)$ is increasing in p on [0, 1/2] and decreasing in p on [1/2, 1].
- Entropy

$$\phi(p, 1-p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

Gini-index

$$\phi(p, 1 - p) = 2p(1 - p)$$

$$Gini(t) = 1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

• Misclassication error $\phi(p, 1-p)$

$$\phi(p, 1 - p) = 1 - \max(p, 1 - p)$$

Best Split

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively
- Impurity after split: N_{mj} of N_m take branch j. N_{mj}^i belong to C_i

$$\hat{P}(C_i \mid \mathbf{x}, m, j) \equiv p_{mj}^i = \frac{N_{mj}^i}{N_{mj}}$$

 Find the variable and split that min impurity (among all variables -- and split positions for numeric variables)

$$I'_{m} = -\sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p_{mj}^{i} \log_{2} p_{mj}^{i}$$

Classification tree construction

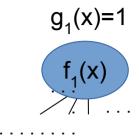
• When to stop the construction? GenerateTree(X)

```
If Pure (X) equation 9.3 */
Create leaf labelled by majority class in X
Return
i \leftarrow \text{SplitAttribute}(X)
For each branch of x_i
Find X_i falling in branch
GenerateTree(X_i)
```

Regression Trees

· For each instance, define

$$b_m(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{X}_m : \mathbf{x} \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases}$$



Use mean to compute output

$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

• Error at node m:

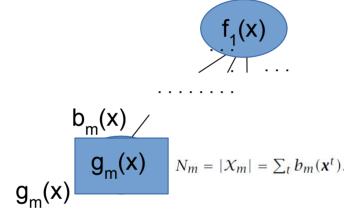
$$E_m = \frac{1}{N_m} \sum_{t} (r^t - g_m)^2 b_m(\mathbf{x}^t)$$

$$\mathbf{g}_{\mathbf{m}}(\mathbf{x}) / \mathbf{g}_{\mathbf{m}}(\mathbf{x})$$

$$N_{m} = |\mathcal{X}_{m}| = \sum_{t} b_{m}(\mathbf{x}^{t}).$$

Regression Trees

- Constructed in a similar way
- Goodness of split: mean square error $E_m = \frac{1}{N_m} \sum_t (r^t g_m)^2 b_m(\mathbf{x}^t)$
- If at a node, the error is acceptable, create a leaf node



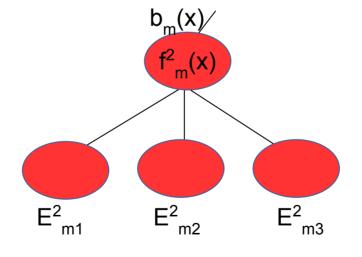
$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

Regression Trees

- Constructed in a similar way
- Goodness of split: mean square error $E_m = \frac{1}{N_m} \sum_t (r^t g_m)^2 b_m(\mathbf{x}^t)$
- If error is not acceptable, split m further such that sum of errors

is minimum

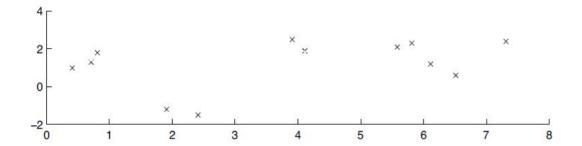
 $b_{m}(x)$ $b_{m_{1}}(x)$ $b_{m_{2}}(x)$ $b_{m_{3}}(x)$ $E^{1}_{m_{1}}$ $E^{1}_{m_{2}}$ $E^{1}_{m_{3}}$



$$E'_{m} = \frac{1}{N_{m}} \sum_{i} \sum_{t} (r^{t} - g_{mj})^{2} b_{mj}(\mathbf{x}^{t})$$

$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

Model Selection in Trees:

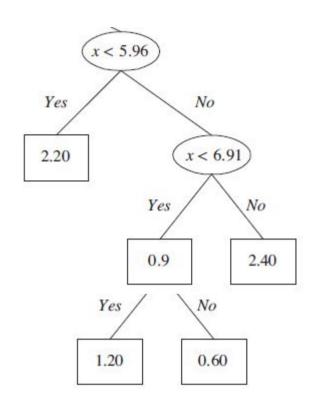


$$g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}$$

What can you do instead of mean?

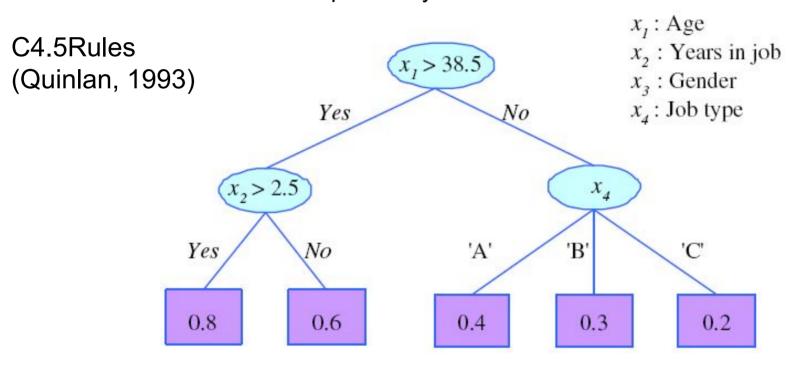
Pruning Trees

- Remove subtrees for better generalization (decrease variance)
- Prepruning: Early stopping
 - If $N_m < 5\%$
- Postpruning:
 - Grow the whole tree (pure leaves)
 - Overfitting subtrees pruning set
 - Each subtree replaced by a leaf node
- Prepruning is faster,
- Postpruning is more accurate (requires a separate pruning set)



Rule Extraction from Trees

Feature extraction – interpretability



R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8

R2: IF (age>38.5) AND (years-in-job \leq 2.5) THEN y = 0.6

R3: IF (age \leq 38.5) AND (job-type='A') THEN y = 0.4

R4: IF (age \leq 38.5) AND (job-type='B') THEN y = 0.3

R5: IF (age \leq 38.5) AND (job-type='C') THEN y = 0.2

Learning Rules

- Rule induction is similar to tree induction but
- tree induction is breadth-first,
- rule induction is depth-first; one rule at a time
- Rule set contains rules; rules are conjunctions of terms
- Rule covers an example if all terms of the rule evaluate to true for the example
- Sequential covering: Generate rules one at a time until all positive examples are covered
- IREP (Fürnkrantz and Widmer, 1994), Ripper (Cohen, 1995)

```
Ripper(Pos, Neg, k)
  RuleSet \leftarrow LearnRuleSet(Pos,Neg)
  For k times
    RuleSet ← OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
  RuleSet \leftarrow \emptyset
  DL ← DescLen(RuleSet,Pos,Neg)
  Repeat
    Rule ← LearnRule(Pos,Neg)
    Add Rule to RuleSet
    DL' ← DescLen(RuleSet, Pos, Neg)
    If DL'>DL+64
       PruneRuleSet(RuleSet, Pos, Neg)
       Return RuleSet
    If DL' < DL DL \leftarrow DL'
       Delete instances covered from Pos and Neg
  Until Pos = \emptyset
  Return RuleSet
```

```
PruneRuleSet(RuleSet, Pos, Neg)
  For each Rule ∈ RuleSet in reverse order
    DL ← DescLen(RuleSet, Pos, Neg)
    DL' ← DescLen(RuleSet-Rule, Pos, Neg)
    IF DL'<DL Delete Rule from RuleSet
  Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)
  For each Rule ∈ RuleSet
      DL0 ← DescLen(RuleSet,Pos,Neg)
      DL1 ← DescLen(RuleSet-Rule+
       ReplaceRule(RuleSet, Pos, Neg), Pos, Neg)
      DL2 ← DescLen(RuleSet-Rule+
       ReviseRule(RuleSet, Rule, Pos, Neg), Pos, Neg)
     If DL1=min(DL0,DL1,DL2)
       Delete Rule from RuleSet and
         add ReplaceRule(RuleSet,Pos,Neg)
      Else If DL2=min(DL0,DL1,DL2)
       Delete Rule from RuleSet and
         add ReviseRule(RuleSet,Rule,Pos,Neg)
  Return RuleSet
```

Multivariate Trees

