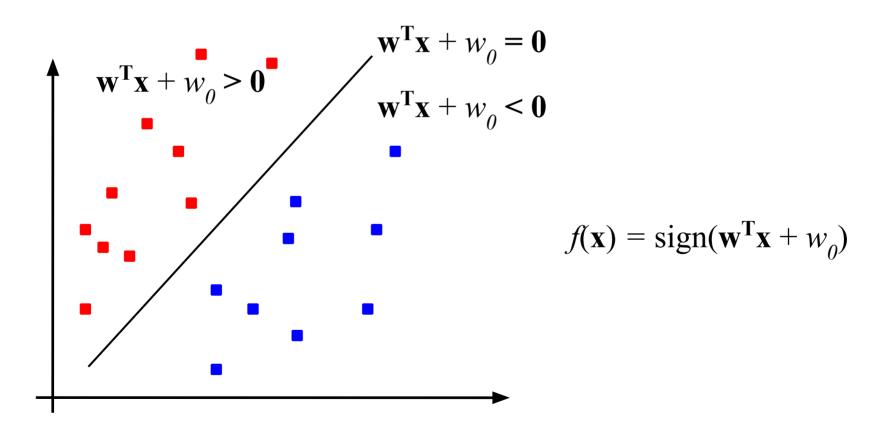
Machine Learning - CMPE462

Support Vector Machines

Emre Ugur, BM 33
emre.ugur@boun.edu.tr
http://www.cmpe.boun.edu.tr/~emre/courses/cmpe462
cmpe462@listeci.cmpe.boun.edu.tr

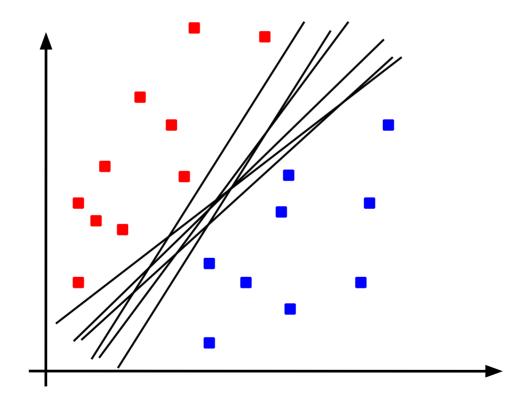
Perceptron Revisited: Linear Separators

 Binary classification can be viewed as the task of separating classes in feature space:



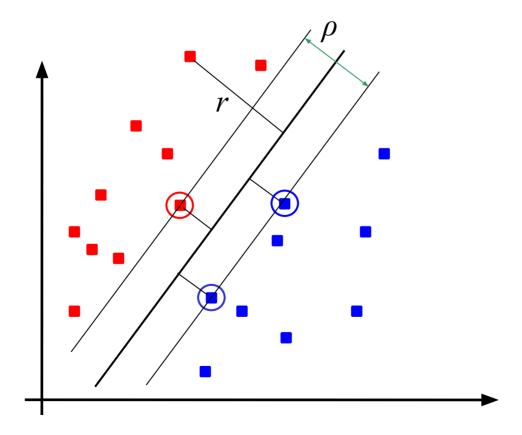
Linear Separators

- Which of the linear separators is optimal?
- Perceptron?



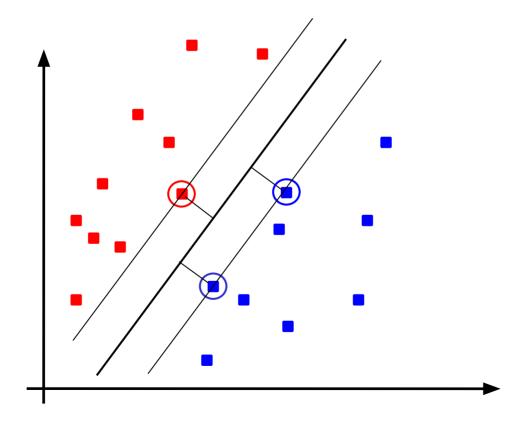
Margin, support vectors

- Margin: the smallest distance between the decision boundary and any of the samples
 - Choose decision boundary to maximize the margin
- Location determined by a set of data points: support vectors



Maximum Margin Classification

- Maximizing the margin is the aim.
- Implies that only support vectors matter; other training examples are ignorable.



Margin

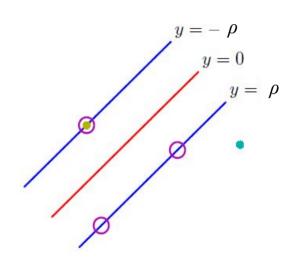
- The smallest distance between the decision boundary and any of the samples
- Optimal separating hyperplane?

$$\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}$$

$$\begin{array}{ll} \text{Not} & \geq 0 \\ \text{only} & \end{array}$$

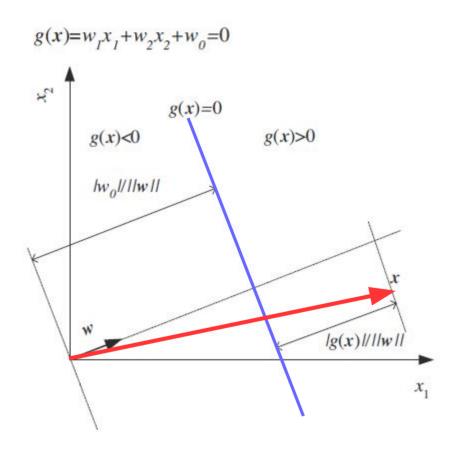
$$\mathbf{w}^T \mathbf{x}^t + w_0 \ge +\rho$$
 for $\mathbf{r}^t = +1$
 $\mathbf{w}^T \mathbf{x}^t + w_0 \le -\rho$ for $\mathbf{r}^t = -1$

$$r^t(\mathbf{w}^T\mathbf{x}^t + w_0) \ge + \rho$$



Reminder

Distance to decision boundary



$$\frac{|\boldsymbol{w}^T\boldsymbol{x}^t + w_0|}{\|\boldsymbol{w}\|}$$

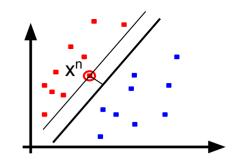
For all data points, at least some value:

$$\frac{r^t(\boldsymbol{w}^T\boldsymbol{x}^t + w_0)}{\|\boldsymbol{w}\|} \ge \rho, \forall t$$

Maximize ρ

Minimization method

$$\frac{\mathbf{r}^t(\mathbf{w}^T\mathbf{x}^t + w_0)}{\|\mathbf{w}\|} \ge \rho, \forall t$$

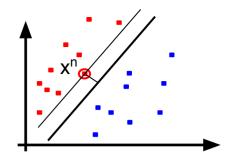


Minimization method

subject to

constraints:

$$\frac{r^t(\boldsymbol{w}^T\boldsymbol{x}^t + w_0)}{\|\boldsymbol{w}\|} \ge \rho, \forall t$$



Scale w for a unique solution. Fix $\|\rho\| \|w\| = 1$, minimize $\|\mathbf{w}\|$ to maximize $\|\rho\|$

$$\min \frac{1}{2} ||\boldsymbol{w}||^2 \text{ subject to } r^t (\boldsymbol{w}^T \boldsymbol{x}^t + w_0) \ge +1, \forall t$$

New formulation using Lagrange multipliers.

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{t=1}^{N} \alpha^{t} [r^{t} (\mathbf{w}^{T} \mathbf{x}^{t} + w_{0}) - 1]$$

$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{t} \alpha^{t} r^{t} (\mathbf{w}^{T} \mathbf{x}^{t} + w_{0}) + \sum_{t} \alpha^{t}$$

$$L_{d} = \frac{1}{2} (\mathbf{w}^{T} \mathbf{w}) - \mathbf{w}^{T} \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t} - w_{0} \sum_{t} \alpha^{t} r^{t} + \sum_{t} \alpha^{t}$$

$$= -\frac{1}{2} (\mathbf{w}^{T} \mathbf{w}) + \sum_{t} \alpha^{t}$$

$$= -\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s} (\mathbf{x}^{t})^{T} \mathbf{x}^{s} + \sum_{t} \alpha^{t}$$

 $\sum_{t} \alpha^{t} r^{t} = 0, \text{ and } \alpha^{t} \ge 0, \forall t$

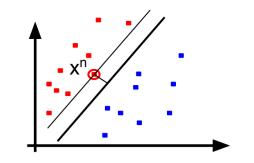
$$\frac{\partial L_p}{\partial w_0}$$

$$\frac{\partial L_p}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_t \alpha^t r^t x^t$$

$$\frac{\partial L_p}{\partial w_0} = 0 \quad \Rightarrow \quad \sum_t \alpha^t r^t = 0$$

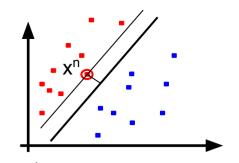
method

Minimization
$$-\frac{1}{2}\sum_{t}\sum_{s}\alpha^{t}\alpha^{s}r^{t}r^{s}(\mathbf{x}^{t})^{T}\mathbf{x}^{s} + \sum_{t}\alpha^{t}$$



method

Minimization
$$-\frac{1}{2}\sum_{t}\sum_{s}\alpha^{t}\alpha^{s}r^{t}r^{s}(\mathbf{x}^{t})^{T}\mathbf{x}^{s} + \sum_{t}\alpha^{t}$$
 method



We solve for α^t , we see that though there are N of them, most vanish with $\alpha^t = 0$ Only a small percentage have $\alpha^t > 0$. The set of x^t whose $\alpha^t > 0$ are the support vectors.

$$\mathbf{w} = \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t}$$
$$r^{t} (\mathbf{w}^{T} \mathbf{x}^{t} + \mathbf{w}_{0}) = 1$$

Each support vector should satisfy

$$w_0 = r^t - \mathbf{w}^T \mathbf{x}^t$$

Therefore, find w_0 from each support vector and take average.

Wo

Discriminant:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} +$$

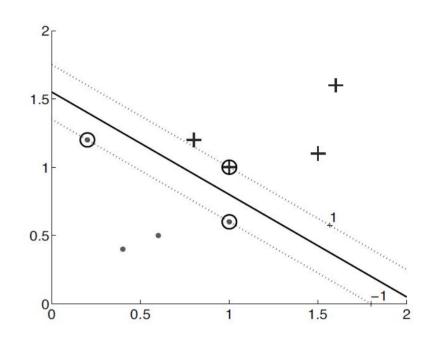
Class of any point C Choose C_1 if g(x) > 0 and C_2 otherwise

Hyperplane and support vectors

$$w = \sum_{t} \alpha^{t} r^{t} x^{t}$$
 support vectors...

$$r^t(\boldsymbol{w}^T\boldsymbol{x}^t + w_0) = 1$$

$$w_0 = r^t - \boldsymbol{w}^T \boldsymbol{x}^t$$



$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

Choose C_1 if $g(\mathbf{x}) > 0$ and C_2 otherwise

• Define slack variable $r^t(\mathbf{w}^T\mathbf{x}^t + \mathbf{w}_0) \ge 1 - \xi^t$

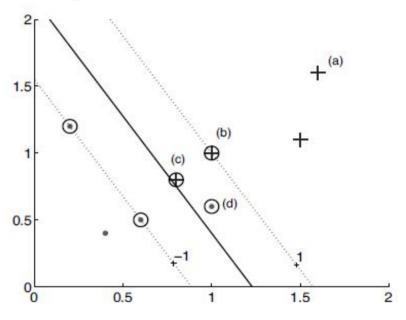
$$\xi^t = 0$$
 \rightarrow no problem with x^t
 $0 < \xi^t < 1 \rightarrow$ within the margin
 $\xi^t >= 1$ $\rightarrow x^t$ is misclassified

Define soft error add as penalty

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t} \xi^{t}$$

subject to

$$r^t(\boldsymbol{w}^T\boldsymbol{x}^t + w_0) \ge 1 - \boldsymbol{\xi}^t$$



Lagrangian equation (enforcing positive slack variables)

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_t \xi^t - \sum_t \alpha^t [r^t (\mathbf{w}^T \mathbf{x}^t + w_0) - 1 + \xi^t] - \sum_t \mu^t \xi^t$$

$$\frac{\partial L_p}{\partial \mathbf{w}} = \mathbf{w} - \sum_t \alpha^t r^t \mathbf{x}^t = 0 \Rightarrow \mathbf{w} = \sum_t \alpha^t r^t \mathbf{x}^t$$

$$\frac{\partial L_p}{\partial w_0} = \sum_t \alpha^t r^t = 0$$

$$\frac{\partial L_p}{\partial \xi^t} = C - \alpha^t - \mu^t = 0$$

$$L_d = \sum_t \alpha^t - \frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s (\mathbf{x}^t)^T \mathbf{x}^s$$

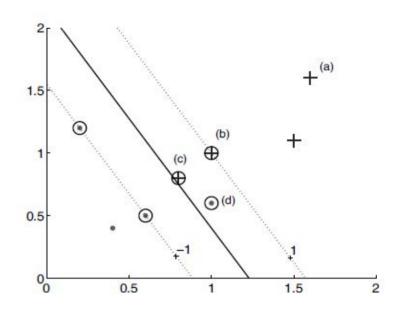
subject to

$$\sum_{t} \alpha^{t} r^{t} = 0 \text{ and } 0 \le \alpha^{t} \le C, \forall t$$

$$L_d = \sum_t \alpha^t - \frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s (\mathbf{x}^t)^T \mathbf{x}^s$$

subject to

$$\sum_{t} \alpha^{t} r^{t} = 0 \text{ and } 0 \le \alpha^{t} \le C, \forall t$$



- $\alpha^t = 0$, vanished
- 0 < α^t, support vectors
 - $0 < \alpha^t < C$, on the margin
 - $\alpha^t = C$, in the margin or misclassified

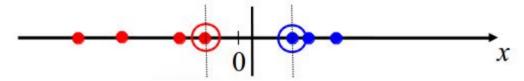
$$\mathbf{w} = \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t}$$
$$\mathbf{r}^{t} (\mathbf{w}^{T} \mathbf{x}^{t} + \mathbf{w}_{0}) = 1$$

$$L_p = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{t} \xi^{t}$$

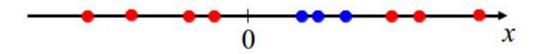
- C is the hyper-parameter
 - Margin maximization vs. error minimization
 - Too large?
 - Too small?

Kernel trick – linear separability

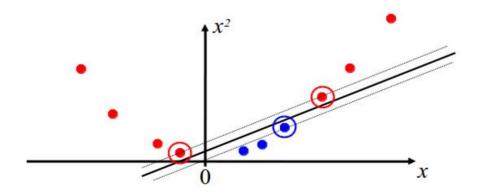
 Datasets that are linearly separable with some noise work out great:



But what are we going to do if the dataset is just too hard?

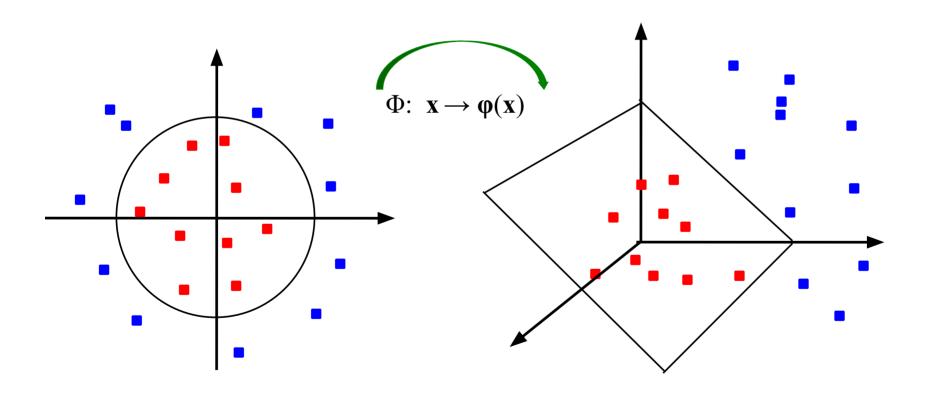


How about... mapping data to a higher-dimensional space:



Kernel trick : change feature space

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



Kernel Trick

If every datapoint is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \to \phi(\mathbf{x})$

$$z = \phi(x)$$
 where $z_j = \phi_j(x), j = 1, ..., k$

The new discriminant:

$$g(\mathbf{z}) = \mathbf{w}^T \mathbf{z}$$
$$g(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

k is much larger than d (and may be larger than N).

Problem is same:

$$L_p = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{t} \xi^{t}$$

constraints in new space

$$r^t \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}^t) \ge 1 - \boldsymbol{\xi}^t$$

Kernel Trick

$$L_p = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{t} \xi^{t}$$

$$r^t \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}^t) \ge 1 - \xi^t$$

The Lagrangian is

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{t} \xi^{t} - \sum_{t} \alpha^{t} \left[r^{t} \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}^{t}) - 1 + \xi^{t} \right] - \sum_{t} \mu^{t} \xi^{t}$$

The dual is now

$$L_d = \sum_t \alpha^t - \frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s \boldsymbol{\phi}(\boldsymbol{x}^t)^T \boldsymbol{\phi}(\boldsymbol{x}^s)$$

subject to

$$\sum_{t} \alpha^{t} r^{t} = 0 \text{ and } 0 \le \alpha^{t} \le C, \forall t$$

Kernel trick:

$$K(\mathbf{x}^t, \mathbf{x}^s)$$

Kernel Trick

$$L_d = \sum_t \alpha^t - \frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s \boldsymbol{\phi}(\boldsymbol{x}^t)^T \boldsymbol{\phi}(\boldsymbol{x}^s)$$

$$L_d = \sum_t \alpha^t - \frac{1}{2} \sum_t \sum_s \alpha^t \alpha^s r^t r^s K(\mathbf{x}^t, \mathbf{x}^s)$$

$$g(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) = \sum_t \alpha^t r^t \boldsymbol{\phi}(\mathbf{x}^t)^T \boldsymbol{\phi}(\mathbf{x})$$
$$= \sum_t \alpha^t r^t K(\mathbf{x}^t, \mathbf{x})$$

· We do not map the feature space at all!

Kernel functions

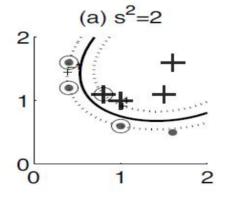
Polynomial $K(\mathbf{x}^t, \mathbf{x}) = (\mathbf{x}^T \mathbf{x}^t + 1)^q$ $= (x_1 y_1 + x_2 y_2 + 1)^2$ $= 1 + 2x_1 y_1 + 2x_2 y_2 + 2x_1 x_2 y_1 y_2 + x_1^2 y_1^2 + x_2^2 y_2^2$ $\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1 x_2, x_1^2, x_2^2]^T$

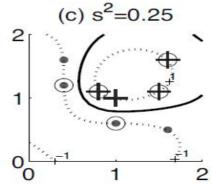
Radial-basis functions

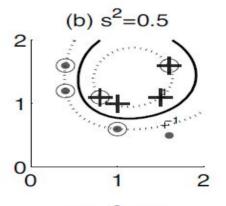
$$K(\mathbf{x}^t, \mathbf{x}) = \exp\left[-\frac{\|\mathbf{x}^t - \mathbf{x}\|^2}{2s^2}\right]$$

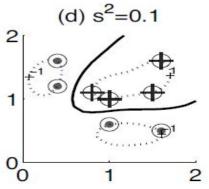
Sigmoidal functions

$$K(\mathbf{x}^t, \mathbf{x}) = \tanh(2\mathbf{x}^T\mathbf{x}^t + 1)$$









Time for demo?