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Perceptron Revisited:  Linear Separators 

• Binary classification can be viewed as the task of 
separating classes in feature space:

wTx + w0 = 0

wTx + w0 < 0
wTx + w0 > 0

f(x) = sign(wTx + w0)
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Linear Separators

• Which of the linear separators is optimal? 
• Perceptron?
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Margin, support vectors

• Margin: the smallest distance between the decision boundary and 
any of the samples

• Choose decision boundary to maximize the margin

• Location determined by a set of data points: support vectors

r

ρ
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Maximum Margin Classification

• Maximizing the margin is the aim.
• Implies that only support vectors matter; other training 

examples are ignorable. 
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Margin

• The smallest distance between the decision boundary and any of 
the samples

• Optimal separating hyperplane? 

Not 
only

ρ

ρ

ρ

ρ
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Reminder

• Distance to decision boundary

For all data points, at least some 
value:

Maximize 
ρ
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Minimization 
method xn
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Minimization 
method xn

Scale w for a unique solution. Fix                    , minimize ||w|| to maximize  ρ

New formulation using Lagrange multipliers. 

subject to 
constraints:
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Minimization 
method xn
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Minimization 
method xn

We solve for αt , we see that though there are N of them, most vanish with αt = 0
Only a small percentage have αt > 0. The set of xt whose αt > 0 are the support 
vectors.

Each support vector should satisfy 

Therefore, find w0 from each support vector and take average.

Discriminant: 

Class of any point/instance x:
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Hyperplane and support vectors

support vectors...
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Non-separable case: soft margin hyperplane

• Define slack variable

ξt = 0 
0 < ξt < 1
ξt >= 1 

Define soft error add as penalty

            subject to

→ no problem with xt

→ within the margin
→ xt is misclassified
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Non-separable case: soft margin hyperplane

• Lagrangian equation (enforcing positive slack variables)
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Non-separable case: soft margin hyperplane

• αt = 0, vanished
• 0 < αt, support vectors

• 0 < αt  < C , on the margin
• αt  = C, in the margin or misclassified
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Non-separable case: soft margin hyperplane

• C is the hyper-parameter
• Margin maximization vs. error minimization
• Too large?
• Too small?
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Kernel trick – linear separability

• Datasets that are linearly separable with some noise work out 
great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:
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Kernel trick : change feature space

• General idea:   the original feature space can always be mapped 
to some higher-dimensional feature space where the training set 
is separable:

Φ:  x → φ(x)
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Kernel Trick

If every datapoint is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x)

The new discriminant:

k is much larger than d (and may be larger than N).

Problem is same:

constraints in new space
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Kernel Trick

Kernel 
trick:
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Kernel Trick

• We do not map the feature space at all!
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Kernel functions

• Polynomial 

• Radial-basis functions

• Sigmoidal functions
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Time for demo?


