Machine Learning - CMPE462

Reinforcement Learning

Emre Ugur, BM 33
emre.ugur@boun.edu.tr
http://www.cmpe.boun.edu.tr/~emre/courses/cmpe462

cmped62@listeci.cmpe.boun.edu.tr

Quiz

Kernel function for polynomials of degree q is
Kx v = by 1)

Find the mapping function @(x) for 2 dimensional input space and

linear kernel function (q=1)

L —ZO(——ZZO(Sririg (x

E &

Za (K (x!, x)

gx) = w' (x)zzo(frtd)(xt)ir

) p(x%)

d—za ——ZZO(o KX, x")
¢ (x)

Acknowledgements

* These slides are adapted from lecture/textbook slides of

Dan Klein and Pieter Abbeel, CS188 Intro to Al at UC Berkeley.
David Silver, UCL Course on RL

Ethem Alpaydin, Introduction to Machine Learning

Sutton and. Barto, An Introduction to Reinforcement Learning,
Scott Niekum, CS 343: Al, The University of Texas at Austin

Learning methods

« Unsupervised learning: Learn clusters/groups without any label

. K-means, mixture of gaussians...

Learning methods

« Supervised learning: Given labeled examples, learn to predict
label of new example.

 Neural networks, decision trees, SVMs...
« Classification or regression

Training Info = desired (target) outputs

}

WA
Inputs P> Supewés;'sterzammg H> Outputs

Error = (target output — actual output)

Learning methods

« Reinforcement learning:

. Given rewards

. Learn which actions to take in which situations

. in order to maximize future cumulative reward

Training Info = evaluations (“rewards” / “penalties”)

}

Inputs P>

RL
System

HlP> Outputs (“actions”)

Objective: get as much reward as possible

Learning methods

« Reinforcement learning:

 Given rewards
* Learn which actions to take in which situations
* in order to maximize future cumulative reward
Training Info = evaluations (“rewards” / “penalties”) Training Info = evaluations (“rewards” / “penalties”) Training Info = evaluations (“rewards” / “penalties”)
Inputs ’ Syl:t:m P Outputs (“actior

hputs Syl:{;m P Outputs (“action

RL (3 > 9
nputs [P P P Outputs (“actions”)

Cumulative reward = Utility/Value = Q@ = R1 + R + Rz + Ry...
Cumulative discounted reward = Utility/Value = Q = R, + YR + Y Rs + v’ Ry...

Reinforcement Learning

left, right, straight, left, left, left, straight GOOD
left, straight, straight, left, right, straight, straight BAD

left, right, straight, left, left, left, straight 18.5
left, straight, straight, left, right, straight, straight -3

Given a sequence of examples/states and a reward after completing that
sequence, learn to predict the action to take in for an individual
example /state

Reinforcement Learning

Given a sequence of examples/states and a reward after completing that
sequence, learn to predict the action to take in for an individual
example /state

Atari example:

‘ action

y
observation 4
' F

m Rules of the game are

At \
unknown
m Learn directly from
interactive game-play
| m Pick actions on

y ~F’¥'—‘4_
\

joystick, see pixels
and scores

1 4 g \
\ g ")
s. ,I‘ ' “ , “\
y Tl N
" i, T
Ve
Rt

Reinforcement learning

L1 [

Environment

Reinforcement learning

* Action
. Robot in 2d grid world: up, down, left, right
« Backgammon agent: select a piece to move
 Chess: select a piece+select movement
 Autonomous car: steer left, steer right, accelerate, break

]

Environment

[]

Reinforcement learning

« State
 Robot in 2d grid world: grid index
« Backgammon agent: piece configuration
« Chess: piece configuration

« Autonomous car: more complicated.
. Position in the lane, velocity, cars around, pedestrians around
« LI Raw camera image

Environment

on

Reinforcement learning

 Reward
 Robot in 2d grid world: gold grid:+10, other grids:0
« Backgammon agent: win:+1, lose:-1
e Chess: win:+1, lose:-1
« Autonomous car: crash:-10000, reach-target:10, other:0

]

Environment

[]

RL solves Markov Decision Process

Next state depends only to the current state and
action

» A robot car wants to travel far, quickly
» Three states: Cool, Warm, Overheated
» Two actions: Slow, Fast

» Going faster gets double reward

P(s'|s,a) : Transition prob |

Slow

Cool 0.5

Overheated

+
1.0 .

+2
|R(s'[s,a) : Reward |

Racing search tree

slow, p=05 fast, p=05

Search tree

s ___.———' s is a state

S, a

7
/__> (s,a,s’) called a transition
T(s;a,5°) = P{s'|s.a)

R(s,a,s’)

Major components of RL agent

« An RL agent may include one or more of these components:
* Model: agent's representation of the environment
« Value function: how good is each state and/or action
- Policy: agent's behavior function

Major components of RL agent

« A model predicts what the environment will do next

« P predicts the next state

R predicts the next (immediate) reward, e.g.
Psasl = P[St+1 B 5, | St == S.At — 3]
R? :E[Rt+1 | St :S.At — 3]

Major components of RL agent

* A policy is the agent's behaviour
« Itis a map from state to action, e.g.
« Deterministic policy: a = 11(s)
e.g.: if this patch of room is dirty, | clean it.
« Stochastic policy: Ti(als) = P(A,=a | S, = s)
if this patch is dirty, | clean it with 90%, or look for dirtier patches with 10%

slow, p=0.5 fast, p=0.5

Major components of RL agent

* Value function is a prediction of future reward — cumulative reward
« Used to evaluate the goodness/badness of states
 And therefore to select between actions,

th—(S) = EW [Rt+1 I "/‘“Rt+2 i ’)"’2Rt_|_3 = g l St — S]

A good policy

Maze Example

Start
m Rewards: -1 per time-step

m Actions: N, E, S W

m States: Agent's location

Goal

Maze Example: Policy

Start

EEEEEE
H H I
—

s

— > } <o

m Arrows represent policy 7(s) for each state s

Maze Example: Policy

i=1

T
Vn(st): E[rt+l +rt+2 +|:| +rt+T]: E|:Zrt+i:|

EEEEE

Start

Reward = -1 at each step, i.e.
r(s,a)=-1

m Arrows represent policy 7(s) for each state s

Maze example: value function

Start | -16

EIEIDEE

B

gk
oo B

ﬂ n

m Numbers represent value v;(s) of each state s

Optimal qualities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

= The optimal policy:
" (s) = optimal action from state s

sisa
state

(s,a)isag-
state

(s,a,5')is a
transition

Robot in a stochastic room

actions: UP, DOWN, LEFT,
+1 RIGHT

UP
-1

80% move UP
10% move LEFT
START 10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Robot if not stochastic

actions: UP, DOWN, LEFT, RIGHT
+1
UpP
-1 100% move UP
reward +1 at [4,3], -1 at [4,2]
START reward -0.04 for each step

What is the solution?

Robot if not stochastic

actions: UP, DOWN, LEFT, RIGHT

ok UP

1] 100% move UP

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

—)
I
—)

Robot in a stochastic room

actions: UP, DOWN, LEFT,
+1 RIGHT

UP
-1

80% move UP
10% move LEFT
START 10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Robot in stochastic room

' +1 actions: UP, DOWN, LEFT, RIGHT

UpP

1 1 1 80% move UP
10% move LEFT

1 10% move RIGHT

reward +1 at [4,3], -1 at [4,2]

reward -0.04 for each step

Gridworld V Values

VALUES AFTER 100 ITERATIONS

Gridworld Q Values

=
s
V2

2PPEp|

ER 100 ITERATIONS

Values of states

« Recursive definition of (optimal value)

s = max Q*(s,a)

Q(s,a) = _: '/'(.\'.11..\'/) '/1’(5‘.(1..\'/) -+ ‘,\”(.\'/)

VTle) = max Z T(s,a,s’) [R(S. a,s') +~ \"*(s’)]

“‘Bellman equation”

stat |V

D
*

R(s,a,s’) 4+~ \(\/)

V*(s) = max Y T(s,a,s)

k=0

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

stat |V

D
*

R(s,a,s’) 4+~ \(\/)

V*(s) = max Y T(s,a,s)

k=1

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

stat |V

D
*

R(s,a,s’) 4+~ ‘(s/)“

V*(s) = max>_ T(s,a,s")

k=2

-1

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

R(s,a,s’) 4+~ \"'"‘(.s'/)ﬂ

\'*(.s‘) = m'ax X '/‘(.s'. a, .s',)

k=3

“

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(a) = max X T(s,a,s’) W‘)(”- a,s’) +1 ‘(“/)‘

k=4

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(s) = max > T(s,a,s) [R(s,a,s") +vV*(s)]

k=5

0.72 »| 0.84)»

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

Vile)= m(,ax Z Tis,a, 5‘/) [[‘)(“- a, ”,) 9 ":&(H/ﬂ

k=6

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(s) = max X T(s,a,') [R(s,a,8") +7V*(s)]

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(a) = max Z Tis,a, .’s‘l) {I?(s. a, .s*,) + v\ (s/)]

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(a) = max Z T(s,a,s’) [R(s. a,s') +~ ‘*(“/)]

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(a) = max Z T(s,a,s’) [R(s. a,s') +~ ‘*(“/)]

k=10

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

stat |V

D
*

V*(a) = max Z T(s,a,s’) [R(s. a,s') +~ ‘*(“/)]

k=100

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Gridworld: Q*

B i

S

o1

o

TER 100 ITERATIONS

Gridworld Example: Prediction

N

+5

+ O)

3

/

o

(@)

<_I_.

Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-04

-0.4

-0.6

1.2

-1.9

-1.3

-1.2

1.4

-2.0

(0)

What is the value function for the uniform random policy?

Gridworld Example: Control

A B | 22.0/24.4(22.0119.4{17.5

\\ +5 19.8|22.0/19.8/17.8|16.0

+10) B’ 17.8/19.8/17.8/16.0|14.4

/ 16.0/17.8/16.0114.4{13.0

A’x 14.4|/16.0|14.4/13.0(11.7
a) gridworlc b) V4

Lt T |
Lt |JSS
R O O
Lt g d
C) T«

What is the optimal value function over all possible policies?

What is the optimal policy?

Learning utility, i.e. V(s) or Q(s,a)

* If the model is known
Dynamic Programming: solve a set of equations

* |f the model is not known
. Learn the model

Dynamic programming
Do not learn the model

From samples: Directly evaluate Q values from runs

« From samples and policy: Use Temporal Difference to learn Q
values

Example to lllustrate Model-Based vs.
Model-Free: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a\]

o

Unknown P(A): “Model Based” Unknown P(A): “Model Free”
A num(a)
P =
@)=—x

E[Al~ Y P(a)-a z

AN

Known Model:
Known transition probabilities and reward

* Transition probabilities and rewards are known.

') = m{gx()’*’(s.u)

Q*(s,a) =Y T(s,a,s)|R(s,a,s)+~V*(s)

V*(s) = mlaxz: T(s,a,s) ’rlt’(ﬁ-”- s') +1 ‘.;..(5_/)“

VA(S,)= ...
VA(s,)= ...
VA(s,)= ...

V(s)= ...
» Solve the set of equations with n equations and n unknowns

Unknown model: Learn the model

Estimate transition probability from samples

= Episodes: — +100
(1,1) up -1 (1,1) up -1 E
(1,2) up -1 (1,2) up -1 —_—
(1,2) up -1 (1,3) right -1 -
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1)
(3,3) right -1 (3,2) up -1 Y=
(3,2) up -1 (4,2) exit -100
(3.3) right -1 (done) T(<3,3>, right, <4,3>) =1/ 3
(4,3) exit +100 T(<2,3>, right, <3,3>)=2/2

(done)

Unknown model: do not learn the model:
Direct evalution of Value function

* Repeatedly execute the policy 1T

« Estimate the value of the state s as the average over all times the
state s was visited of the sum of discounted rewards accumulated

from state s onwards

y
* Episodes: = == | = [|+100
1,1) up -1 1,1) up -1
(1,1) up (1.1 up | e
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 i | § ||]|=
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 ‘ 2 3 40X
(3,3) right -1 (3,2) up -1 y=1 R=-1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done)
(4,3) exit +100 V(2,3)~ (96 +-103) /2=-3.5

(done) V(3,3)~ (99 + 97 +-102) / 3=31.3

Unknown model :Sample-Based Policy Evaluation

Vi1(s) « 2T (s, m(s), sH[R(s, m(s),8") + V] ()]

= Who needs T and R? Approximate the
expectation with samples of s” (drawn from T!)

samples = R(s,m(s),s5) + vV (s5) " As,

sampley, = R(s,7(s), s},) + vV (s},)

1. ’

T s _ Almost! But we can 't
V;J-I-l () I Z sample; rewind time to get sample
i

after sample from state s.

Unknown model :Sample-Based Policy Evaluation
Temporal Difference Learning

» Big idea: learn from every experience!
= Update V(s) each time we experience (s,a,s’ ,r)
= Likely s’ will contribute updates more often

= Temporal difference learning
= Policy still fixed!
= Move values toward value of whatever
successor occurs: running average!

Sample of V(s): sample = R(s,7(s), 5/) e ’YVW(S/)
Update to V(s): VT(s) «— (1 —a)V"™(s) + (a)sample

Same update: VT(s) «— V" (s) + a(sample — V" (s))

Q-learning

» Q-Learning: sample-based Q-value iteration

» | earn Q*(s,a) values
» Receive a sample (s,a,s’ ,r)
= Consider your old estimate: Q(s,a)
» Consider your new sample estimate:

Q*(s,a) = L. T(s,0,5) [R(s,,5) +ymax Q*(s',)

sample = R(s,a,s’) +~ max Q(s,d)
@

» |ncorporate the new estimate into a running average:
Q(s,a) — (1 — a)Q(s,a) + (a) [sample]

Q-learning algorithm

ICSIENIEN]g)
0O Oln
o -~ Om

Initialize all Q (s, a) arbitrarily
For all episodes
Initalize s
Repeat
Choose a using policy derived from Q, a =11 (s)
Take action a, observe r and s’
Update Q (s, a):

Q(s,a) — Q(s,a) + n(r + ymaxy Q(s',a’) — Q(s,a))
s — S’
Until s is terminal state

Figure 18.5 Q learning, which is an off-policy temporal difference algorithm.

Q-learning algorithm

ICSIENIEN]g)
0O Oln
o -~ Om

Always executes the action that it thinks
“best”

Initialize all Q (s, a) arbitrarily
For all episodes

Initalize s

Repeat

Choose a using policy derived from Q, a=1r(s)
Take action a, observe r and s’

Update Q (s, a):

Q(s,a) — Q(s,a) + n(r + ymaxy Q(s’,a’) — Q(s,a))
s — S’

Until s is terminal state

Figure 18.5 Q learning, which is an off-policy temporal difference algorithm.

Q-learning algorithm

0 O
Y e Nel 2
O o

Initialize all Q (s, a) arbitrarily
For all episodes

Initalize s

Repeat

Choose a using policy derived from Q, e.qg., e-greedy

Take action a, observe r and s’ or softmax: |p(als) - — 2228,
Update Q (s, a): SpeaexpQ(s,b)

Q(s,a) — Q(s,a) + n(r + ymaxy Q(s’,a’) — Q(s,a))
s — S’

Until s is terminal state

Figure 18.5 Q learning, which is an off-policy temporal difference algorithm.

Exploration Strategies

« g-greedy: With pr €,choose one action at random uniformly; and
choose the best action with pr 1-¢

 Probabilistic:

Pa|s)= prQ(S’a)
Y., . expQ(s,b)

Can tabular methods scale?

m Discrete environments

........

]
B aaEan | |
mm [
mm [] (] =l
(ERET0 \
Gridworld Tetris Atari

10M 10760 107308 (ram) 10716992 (pixels)

Can tabular methods scale?

= Continuous environments (by crude discretization)

Crawler
1072

Humanoid
10700

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and
we’ll see it over and over again

Deep Reinforcement Learning

0000(

Pong Enduro Beamrider

From pixels to actions
Same algorithm (with effective tricks)
CNN function approximator, w/ 3M free parameters

