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Quiz

Kernel function for polynomials of degree q is

Find the mapping function Φ(x) for 2 dimensional input space and 
linear kernel function (q=1)
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Learning methods

• Unsupervised learning: Learn clusters/groups without any label
• K-means, mixture of gaussians...
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Learning methods

• Supervised learning: Given labeled examples, learn to predict 
label of new example.

• Neural networks, decision trees, SVMs...
• Classification or regression
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Learning methods

• Reinforcement learning: 
• Given rewards
• Learn which actions to take in which situations
• in order to maximize future cumulative reward
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Learning methods

• Reinforcement learning: 
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• Learn which actions to take in which situations
• in order to maximize future cumulative reward
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Reinforcement Learning

Given a sequence of examples/states and a reward after completing that 
sequence, learn to predict the action to take in for an individual 
example/state
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Reinforcement Learning

Given a sequence of examples/states and a reward after completing that 
sequence, learn to predict the action to take in for an individual 
example/state
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Atari example: 
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Reinforcement learning


 Environment

actionstate

reward
Agent
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Reinforcement learning

• Action
• Robot in 2d grid world: up, down, left, right
• Backgammon agent: select a piece to move
• Chess: select a piece+select movement
• Autonomous car: steer left, steer right, accelerate, break


 Environment

actionstate

reward
Agent
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Reinforcement learning

• State
• Robot in 2d grid world: grid index
• Backgammon agent: piece configuration
• Chess: piece configuration
• Autonomous car: more complicated. 

• Position in the lane, velocity, cars around, pedestrians around
• Raw camera image


Environment

actionstate

reward
Agent
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Reinforcement learning

• Reward
• Robot in 2d grid world: gold grid:+10, other grids:0
• Backgammon agent: win:+1, lose:-1
• Chess: win:+1, lose:-1
• Autonomous car: crash:-10000, reach-target:10, other:0


 Environment

actionstate

reward
Agent



RL solves Markov Decision Process

P(s'|s,a) : Transition prob

R(s'|s,a) : Reward

Next state depends only to the current state and 
action
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Racing search tree
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Search tree
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Major components of RL agent

• An RL agent may include one or more of these components:
• Model: agent's representation of the environment
• Value function: how good is each state and/or action
• Policy: agent's behavior function
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Major components of RL agent

• A model predicts what the environment will do next
• P predicts the next state
• R predicts the next (immediate) reward, e.g.

slow

p=0.5

cool

p=0.5p=1
cool cool warm
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fast
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Major components of RL agent

• A policy is the agent's behaviour
• It is a map from state to action, e.g.
• Deterministic policy: a = π(s)

• e.g.: if this patch of room is dirty, I clean it. 
• Stochastic policy: π(a|s) = P(At = a | St = s)

• if this patch is dirty, I clean it with 90%, or look for dirtier patches with 10%

slow, p=0.5 fast, p=0.5

cool
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Major components of RL agent

• Value function is a prediction of future reward – cumulative reward
• Used to evaluate the goodness/badness of states
• And therefore to select between actions, 
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A good policy
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Maze Example
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Maze Example: Policy
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Maze Example: Policy

Reward = -1 at each step, i.e. 
r(s,a)=-1
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Maze example: value function
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Optimal qualities
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Robot in a stochastic room

+1

-1

START

actions: UP, DOWN, LEFT, 
RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
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Robot if not stochastic

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

100% move UP

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

What is the solution?
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Robot if not stochastic
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Robot in a stochastic room

+1

-1

START

actions: UP, DOWN, LEFT, 
RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
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Robot in stochastic room
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Values of states

• Recursive definition of (optimal value)

“Bellman equation”
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Gridworld Example: Prediction
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Gridworld Example: Control
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Learning utility, i.e. V(s) or Q(s,a)

• If the model is known
• Dynamic Programming: solve a set of equations

• If the model is not known
• Learn the model

• Dynamic programming
• Do not learn the model

• From samples: Directly evaluate Q values from runs
• From samples and policy: Use Temporal Difference to learn Q 

values
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Example to Illustrate Model-Based vs.
Model-Free: Expected Age
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Known Model: 
Known transition probabilities and reward

• Transition probabilities and rewards are known.

V*(s0)= ...
V*(s1)= ...
V*(s2)= …
...
V*(sn)= ...

• Solve the set of equations with n equations and n unknowns



54

Unknown model: Learn the model
Estimate transition probability from samples
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Unknown model: do not learn the model:
Direct evalution of Value function

• Repeatedly execute the policy π
• Estimate the value of the state s as the average over all times the 

state s was visited of the sum of discounted rewards accumulated 
from state s onwards



56

Unknown model :Sample-Based Policy Evaluation
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Unknown model :Sample-Based Policy Evaluation
Temporal Difference Learning
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Q-learning
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Q-learning algorithm
Q  s  a
?   0  0
?   0  1
?   1  0 
?   …..

a = π (s)
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Q-learning algorithm
Q  s  a
?   0  0
?   0  1
?   1  0 
?   …..

a = π (s)

Always executes the action that it thinks 
“best”
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Q-learning algorithm
Q  s  a
?   0  0
?   0  1
?   1  0 
?   …..

or softmax:
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Exploration Strategies

• ε-greedy: With pr ε,choose one action at random uniformly; and 
choose the best action with pr 1-ε

• Probabilistic:










