Exam: 22.05.2019, 10:00-13:00, Wednesday OBIKAS course evaluation Project presentations: 31 May, Friday, 9:00-12:00, A2

Machine Learning - CMPE462

Design and Analysis of Machine Learning Experiments

Emre Ugur, BM 33 emre.ugur@boun.edu.tr http://www.cmpe.boun.edu.tr/~emre/courses/cmpe462 cmpe462@listeci.cmpe.boun.edu.tr

Quiz

```
Initialize all Q(s,a) arbitrarily

For all episodes

Initalize s

Repeat

Choose a using policy derived from Q, e.g., \epsilon-greedy

Take action a, observe r and s'

Update Q(s,a):

Q(s,a) \leftarrow Q(s,a) + \eta(r + \gamma \max_{a'} Q(s',a') - Q(s,a))
s \leftarrow s'

Until s is terminal state
```

Figure 18.5 *Q* learning, which is an off-policy temporal difference algorithm.

Which action selection method you use to learn the optimal policy in the following problem? Why?

+10	+10	+10	+5	10	10	10	100
+10		+20		+50			
S	-10	-15	-20	-30	-40	-50	+1000 00000

Performance

- Aim of Machine Learning studies:
 - Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%?
 - Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP?
- Training error?
 - For comparison? More complex always...
- Validation set
 - One run?
 - Small sets, exceptions, outliers
 - Randomness.
- Use a distribution of validation errors.
 - Generate multiple learners, test on multiple validation sets.

Keep in mind

- Free lunch theorem: There is no one best learner for all problems.
- Split into training and validation is for selecting the best. After selecting best hyper-parameters, learning method..
- 3 subsets:
 - Training: optimize the parameters
 - Validation: optimize the method and its hyper-parameters
 - Test: report the error
- Not only error-rate base, what are the other metrics?
 - Risks that depend on loss function
 - Training time and space complexity
 - Testing time and space complexity
 - Interpretability
 - Easy programmability

Cross-Validation and Resampling Methods

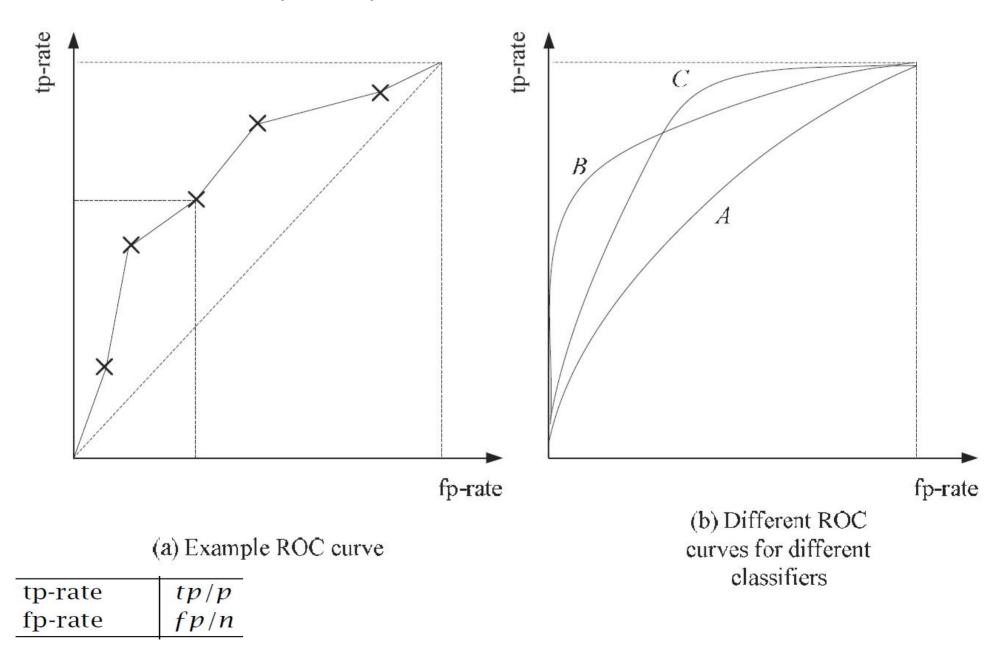
- Repeatedly use the same data split differently. K training/validation set pairs: $\{\mathcal{T}_i, \mathcal{V}_i\}_{i=1}^K$
- Ensure stratification: class prior probabilities.
- K-fold cross-validation: K equal sized sets: $\chi_{i,i} = 1, \dots, K$

$$\mathcal{V}_1 = \mathcal{X}_1$$
 $\mathcal{T}_1 = \mathcal{X}_2 \cup \mathcal{X}_3 \cup \cdots \cup \mathcal{X}_K$
 $\mathcal{V}_2 = \mathcal{X}_2$ $\mathcal{T}_2 = \mathcal{X}_1 \cup \mathcal{X}_3 \cup \cdots \cup \mathcal{X}_K$
 \vdots
 $\mathcal{V}_K = \mathcal{X}_K$ $\mathcal{T}_K = \mathcal{X}_1 \cup \mathcal{X}_2 \cup \cdots \cup \mathcal{X}_{K-1}$

- allow small validation sets, significant overlap between training sets.
- 5 x 2 cross-validation: same sized training & validation sets.
 Divide into two, then swap. Shuffle, divide into two, then swap...

Measuring classifier performance

• Four possible cases in two class problems:

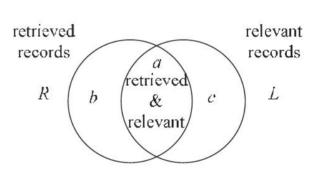

	Predicted class				
True Class	Positive	Negative	Total		
Positive	<i>tp</i> : true positive	fn: false negative	p		
Negative	fp: false positive	<i>tn</i> : true negative	n		
Total	p'	n'	N		

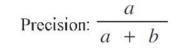
e.g. Voiceauthenticationhigh fp or fn?

Different measures in two class:

Name	Formula
error	(fp+fn)/N
accuracy	(tp + tn)/N = 1 - error
tp-rate	tp/p
fp-rate	fp/n
precision	tp/p'
recall	tp/p = tp-rate
sensitivity	tp/p = tp-rate
specificity	tn/n = 1 - fp-rate

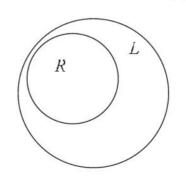
Fine-tune classifier: plot Receiver Operating Characteristics (ROC) curve

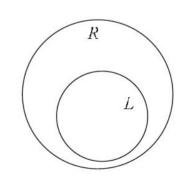



http://www.navan.name/roc/

Information retrieval

- Bring particular records:
 - True positives: Correctly retrieved relevant
 - False negatives: No retrieved but relevant
 - False positives: Retrieved irrelevant


Name	Formula
error	(fp+fn)/N
accuracy	(tp + tn)/N = 1 - error
tp-rate	tp/p
fp-rate	fp/n
precision	tp/p'
recall	tp/p = tp-rate
sensitivity	tp/p = tp-rate
specificity	tn/n = 1 - fp-rate



Recall:
$$\frac{a}{a + c}$$

(a) Precision and recall

(b) Precision = 1

(c) Recall = 1

Measuring classifier performance

Four possible cases in two class problems:

	Predicted class				
True Class	Positive	Negative	Total		
Positive	<i>tp</i> : true positive	fn: false negative	р		
Negative	fp: false positive	<i>tn</i> : true negative	n		
Total	p'	n'	N		

Different measures in two class:

Name	Formula
error	(fp+fn)/N
accuracy	(tp + tn)/N = 1 - error
tp-rate	tp/p
fp-rate	fp/n
precision	tp/p'
recall	tp/p = tp-rate
sensitivity	tp/p = tp-rate
specificity	tn/n = 1 - fp-rate

Measuring classifier performance

Four possible cases in two class problems:


	Predicted class				
True Class	Positive	Negative	Total		
Positive	<i>tp</i> : true positive	fn: false negative	p		
Negative	fp: false positive	<i>tn</i> : true negative	n		
Total	p'	n'	N		

• Different measures in two class:

Name	Formula
error	(fp+fn)/N
accuracy	(tp + tn)/N = 1 - error
tp-rate	tp/p
fp-rate	fp/n
precision	tp/p'
recall	tp/p = tp-rate
sensitivity	tp/p = tp-rate
specificity	tn/n = 1 – fp-rate

• Multi-class problems:

class confusion matrix

Confusion matrix

MILLI PDL ICULUICA

	Anger (%)	Disgust (%)	Fear (%)	Joy (%)	Sadness (%)	Surprise (%)	Neutral (%)
Anger	58.7	5.5	0	0	26.7	0	9.1
Disgust	3.3	85.0	2.5	0	2.5	0	6.7
Fear	1.0	0	61.7	24.0	10.3	0	3.0
Joy	0	0	6.0	90.4	0	0	3.6
Sadness	4.9	0	0	0	72.4	1.7	21.0
Surprise	0	0	1.3	0	2.7	92.4	3.6
Neutral	2.0	0.8	0.4	0.8	25.7	0	70.3

Basic Emotions

