Week 1

Emre Ugur, BM 33
emre.ugur@boun.edu.tr
https://www.cmpe.boun.edu.tr/~emre/courses

categories

learning environment rObOt

traversability
thrféllgim information {€ALUTES over

performance prediction interactions learned
learn world shape perception hand training
position distance relevant experts UMtation ..
method execution end range studies
ff image phase al effects perceptual predicted
C eCt parameters Robotics state entity initial
system next prov example robots robot's space control
primit feature aroach dt:‘.?t:]opi%cnr results cm
computed new . number vector actions
com;?]r:x action human Psychology

_ relation interaction
developmental

grasp peming affordances
behavior affordance

category

CoLoRs Lab:
www.colors.cmpe.boun.edu.tr/

WY ﬁ‘v ¥
= i €
-

» Artificial Intelligence

» Machine Learning

» Robot Learning

» Introduction to Cognitive Science

FIRTINA NEDENIYLE IDO TUM IG HAT SEFERLERINI IPTAL ETTI € 46437

Emre Ugur

CMPES540: Responsiblilities — This Year

Quizzes (10): 0%
Midterm (1): 30%
Final: 30%

Projects (4): 40%
In-class activity: 0%

Yy v v v %

Emre Ugur CMPES540 — Week 1

Syllabus

Agents & Uninformed search Ch 2, 3.1- Midterm - tentative

4
Introduction to Project Programming Probability Ch. 13.1-5
Environment Bayes nets: Syntax and semantics | Ch. 14.1-3
A* search, heuristics Ch. 3.5-6 Bayes nets: Exact inference Ch. 14.3
Local search; search-based agents | Ch. 4 Bayes nets: Approximate Ch.14.4

inference

Game playing Ch. 5.1-5 Markov Models, Hidden Markov Ch. 15.1-3,
Constraint satisfaction problems Ch. 6.1, Models 15.5

6.3-5 Applications of HMMs Ch. 22.1,

23.5

Propositional logic: semantics and Ch. 7.1-4, Decision theory Ch. 16.1-3,
inference 7.6.1 Markov decision processes 16.5-6
Propositional planning and logical Ch.7.7 Ch.17.1
agents
First-order logic Ch. 8.1-3, Machine learning: Classification Ch. 18.1-4,

9.1 and regression 18.6
Planning Advanced Topics: Vision and Ch. 24,25

robotics

Emre Ugur CMPES540 — Week 1

Projects — programming + report

» Programming Language: C++
» Programming environment: Linux
» Automatically graded

» Will be announced at least 2 weeks before due date

» Late submission
» Upto 4 days in total.

» Topics (subject to change):
» Search
» Adversarial search
» Logic
» Regression

Emre Ugur CMPE540 — Week 1

Projects — programming + report

» Projects are adapted from inst.eecs.berkeley.edu
» https://inst.eecs.berkeley.edu/~cs188/fall/projects/

Project 1: Search in Pacman

All those colored walls,
Mazes give Pacman the blues,

Quizzes

» In every lecture
» Random time

» Mostly from the current lecture — but might be from paper readings
or the previous lecture

» Pseudo-code

» Problem solving

» Algorithm application

» Explanation, definition, etc.

Emre Ugur CMPES540 — Week 1

Sources & credits

» Course notes:

Artificial Intelligence
A Modern Approach

» http://aima.cs.berkeley.edu/ Kot Third Edion
» Levent Akin, Pinar Yolum and Albert Ali Salah

» http://www.cmpe.boun.edu.tr/~akin/

» Russell and Norvig:

Stuart
Russell
Peter

» http://mas.cmpe.boun.edu.tr/wiki/doku.php?id=courses:cmpe540:info
» Projects and content:

» UC Berkeley CS188 Intro to Al
» https://inst.eecs.berkeley.edu/~cs188/fall/assignments.html

Emre Ugur CMPES540 — Week 1

Chapter 1:
Introduction

What is Al?

» The study of creating intelligent agents

What is Al?

Views of Al fall into four categories (Humanly vs. Rationally)
» Acting rationally, Thinking humanly, Acting humanly, Thinking rationally,

“"The exciting new effort to make “"The study of mental faculties through the
computers think ... machines with minds, use of computational models" (Charniak and
in the full and literal sense" (Haugeland, McDermott, 1985)

1985)

“"The study of the computations that make it
“"The automation of activities that we possible to perceive, reason, and act"
associate with human thinking, activities (Winston, 1992)

such as decision-making, problem solving,
learning ..." (Bellman, 1978)

“The art of creating machines that perform | A field of study that seeks to explain and

functions that require intelligence when emulate intelligent behavior in terms of
performed by people” (Kurzweil, 1990) computational processes" (Schalkoff, 1990)
“"The study of how to make computers do | Al ... is concerned with intelligent behavior

things at which, at the moment, people are | in artifacts.” (Nillson, 1998)
better" (Rich and Knight, 1991)

Thinking humanly: cognitive modeling

» 1960s "cognitive revolution": information processing psychology
» Requires scientific theories of internal activities of the brain

» How to validate? Requires
» 1) Predicting and testing behavior of human subjects (top-down)
» or 2) Direct identification from neurological data (bottom-up)

» Both approaches (roughly, Cognitive Science and Cognitive
Neuroscience) are now distinct from Al

Milestones in understanding and
Implementing intelligent systems

P Turing, Alan M. "On computable numbers, with an application to the Entscheidungsproblem."
Proceedings of the London mathematical society 2.1 (1937): 230-265.

P McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4), 115-133.

P Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1959). What the frog's eye tells the
frog's brain. Proceedings of the IRE, 47(11), 1940-1951.

P Hubel, David H., and Torsten N. Wiesel. "Receptive fields of single neurones in the cat's striate
cortex." The Journal of physiology 148.3 (1959): 574-591.

P Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological review, 63(2), 81.

P Newell, Allen, and Herbert Simon. "The logic theory machine--A complex information processing
system." IRE Transactions on information theory 2.3 (1956): 61-79.

B Chomsky, Noam. "Three models for the description of language." IRE Transactions on information
theory 2.3 (1956): 113-124.

v

Von Neumann, John. 1958 The computer and the brain. Yale University Press,.

v

Putnam, H. 1960. "Minds and Machines." InS. Hook, ed., Dimensions of Mind. New York: New York
University Press.

P Marr, D. (1982) Vision: A Computational Investigation info the Human Representation and
Processing of Visual Information. San Francisco: W. H. Freeman.

Turing Machine: The idea of algorithm and
computation

i |&—=——— Current state

display window

«——Machine head

S, s, | s S, 5,

2

L Square being scanned

Figure 1.4 Schematic representation of a Turing machine. (Adapted from Cutland 1980)

delete the symbol in the cell

write a new symbol in the cell
move the tape one cell to the left
move the tape one cell to the right

Acting humanly: Turing Test

» Turing (1950) "Computing machinery and intelligence":
» "Can machines think?" "Can machines behave intelligently?"
» Operational test for intelligent behavior: the Imitation Game

» Predicted that by 2000, a machine might have a 30% chance of
fooling a lay person for 5 minutes

» Anticipated all major arguments against Al in following 50 years

» Suggested major components of Al: knowledge, reasoning,
language understanding, learning

HUMAN
INTERROGATOR

1965

2019

Emre Ugur

-

1950

20 vs 361

Emre Ugur

Deepmind - Reinforcement Learning

Emre Ugur

State-of-the-art in Natural Language
Processing and Scene Recognition

small
cylinders or red objects
are there?
Answer: 5

*adapted from Dr. Aykut Erdem

Emre Ugur

State-of-the-art in robotics

Boston Dynamics

Emre Ugur

State-of-the-art in robotics

B
__Farpiex, E=WYTSE| FAIRPL

AT m— ——— e . e e

State-of-the-art in robotics

Conditional Neural
Movement Primitives

Emre Ugur

Acting rationally: rational agent

» Rational behavior: doing the right thing.
» How do you define right thing?

» The right thing: that which is expected to maximize expected goal
achievement or outcome, given the available information

» Doesn't necessarily involve thinking, e.g.?

» e.g., blinking reflex — but thinking should be in the service of
rational action

Rational agents

» An agent is an entity that perceives and acts

» This course is about designing rational agents

» Abstractly, an agent is a function from percept histories to actions:
> [f: P* o A

» For any given class of environments and tasks, we seek the agent
(or class of agents) with the best performance

» Caveat: computational limitations make perfect rationality
unachievable

» Design best program for given machine resources

State-of-the-art

Real-world interactions
v Play a decent game of table tennis Creativity

v’ Drive safely along a curving mountain road

x Drive safely along Minibis Caddesi

v’ Buy a week’s worth of groceries on the web

v Play a decent game of bridge

x Discover and prove a new mathematical theorem

x Design and execute a research program in molecular biology
x Write an intentionally funny story

v’ Give competent legal advice in a specialized area of law
v Translate spoken English into spoken Swedish in real time
x Converse successfully with another person for an hour

x Perform a complex surgical operation

v Clean the floors without further guidance

x Unload any dishwasher and put everything away

Chapter 2:
Intelligent Agents

Overview

PEAS (Performance, Environment, Actuators,
Sensors)

Environment types
Agent functions and properties

Agent types

What is an Intelligent Agent?

An agent Is anything that can be viewed as
perceiving Iits environment through sensors and
acting upon that environment through actuators

Human agent: eyes, ears, and other organs for

sensors; hands, legs, mouth, and other body parts
for actuators

Robotic agent: cameras and infrared range
finders for sensors:; various motors for actuators

Agents

Sensors

actuators

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from to
f:P*-A
The agent program runs on the physical architecture to produce f

Vacuum-cleaner world

Percepts: location and contents, e.g., [A; Dirty]
Actions: Left, Right, Suck, NoOp
Simplest reflex agent?

A vacuum-cleaner agent

Percept sequence Action
A;Clean] Right
A;Dirty] Suck
B;Clean] Left
B;Dirty] Suck
A;Clean], [A;Clean] Right
A;Clean], [A;Dirty] Suck

function REFLEX-VACUUM-AGENT ([location,status]) returns an action
if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

What is the right function?
Can it be implemented in a small agent program?

Rationality

A rational agent Iis one that does the right thing.
More precisely, what is rational at any given time
depends on four things:

2 The performance measure that defines the criterion of
success.

2 The agent’s prior knowledge of the environment.
2 The actions that the agent can perform.
2 The agent’s percept sequence to date.

Performance measure

For possible , a rational

agent should select an that is expected to
Its , given the
provided by the percept sequence and

whatever built-in the agent has.

Design measures according to what you want (as
a behavior) and not according to what you think

the agent should behave!

Vacuum-cleaner?
— Amount of dirt cleaned up.

Rationality

® Rationality maximizes expected performance while perfection
maximizes actual performance.

Task Environment

" PEAS: Performance measure, Environment,
Actuators, Sensors

“ Must first specify the setting for intelligent agent
odometer, engine sensors, ?

= Consider, e.g., the task of designing an automated taxi driver
(“beyond the capabilities of existing technology”) :

" Performance measure:
a

" Environment;
d

= Actuators:
a

= Sensors:
(|

Task Environment

" PEAS: Performance measure, Environment,
Actuators, Sensors

“ Must first specify the setting for intelligent agent
odometer, engine sensors, ?

= Consider, e.g., the task of designing an automated taxi driver
(“beyond the capabilities of existing technology”) :

“ Performance measure:

0 Safe, fast, legal, comfortable trip, maximize profits and ?
“ Environment:

9 Roads, other traffic (?), pedestrians, customers, weather

= Actuators:
0 Steering wheel, accelerator, brake, signal, horn, ?

= Sensors:
0 Cameras, sonar, speedometer, GPS, odometer, engine sensors, ?

PEAS for Internet shopping agent

Performance Measure?
d

Environment?
d

Actuators?
([

Sensors?
d

—
®pP

BUY 4 VIE

SERVICES

PEAS for Internet shopping agent

A. BuyForMe Service

ir reCncll shopoars help Doy what sou want.

" Performance Measure?

J price, quality, appropriateness,
efficiency

“ Environment?

3 current and future WWW sites,
vendors, shippers

= Actuators?
2 display to user, follow URL, fill in form
" Sensors?

0 HTML pages (text, graphics, scripts)

PEAS for Part-picking robot

Performance measure:

Environment:

Actuators:

Sensors:

PEAS for Part-picking robot

Performance measure:

— Percentage of parts in correct bins
Environment:

— Conveyor belt with parts,bins
Actuators:

— Jointed arm and hand

Sensors:

— Camera, joint angle sensors

Agent Characteristics

“ Embodiment
“ Situatedness
“ Autonomy
= Adaptivity
“ Sociability

Agent Characteristics

Situatedness: The agent receives some form of
sensory input from its environment, and it performs
some action that changes its environment in some
way. Examples of environments: the physical world
and the Internet.

Embodiment: Having a physical body

Autonomy: The agent can act without direct
Intervention by humans or other agents and that it has
control over its own actions and internal state.

Agent Characteristics

Adaptivity : The agent is capable of

— (1) reacting flexibly to changes in its environment

— (2) taking goal directed initiative (i.e., IS pro-active),
when appropriate;

—and (3) learning from its own experience, Iits
environment, and interactions with others.

Sociability: The agent is capable of interacting in a
peer-to-peer manner with other agents or humans.

Environment Types - Categorize in

different dimensions
“ Fully observable vs. partially observable.

Q

" Deterministic vs. stochastic.

Q
Q

Q

“ Episodic vs. sequential.
Q

Environment Types - Categorize in

different dimensions

Fully observable vs. partially observable.

2 If an agent’s sensors give it access to the complete state of the environment at
each point in time, then we say that the task environment is fully observable.
Example?

Deterministic vs. stochastic.
3 Guaranteed effect.

2 |If the next state of the environment is completely determined by the current
state and the action executed by the agent, then we say the environment is
deterministic; otherwise it is stochastic. Example? Board games? Chess,
backgammon

Episodic vs. sequential.

2 In an episodic task environment, the agent’s experience is divided into
atomic “episodes.”

2 Episode: Single cycle of an agent perceiving and taking an action
0 Episodic: If the choice depends on the current episode and not on
previous episodes
Easier to operate.

4 In sequential environments, the current decision may affect all future
decisions. Examples? Chess?

Environment Types

= Static vs. dynamic.

“ Discrete vs. continuous.
(|

= Single-agent vs. multi-agent.

a

Environment Types

Static vs. dynamic.

2 If the environment can change while an agent is deliberating, then
we say the environment is dynamic for that agent; otherwise it is
static.

2 |If the environment itself does not change with the passage of time
but the agent’s performance score does, then we say the
environment is semidynamic. Example?

Discrete vs. continuous.

9 The discrete/continuous distinction can be applied to the state
of the environment, to the way time is handled, and to the
percepts and actions of the agent. Example?

< Possible to convert continuous environments into discrete
environments (with loss of precision)

Single-agent vs. multi-agent.

0 Taxi driver? Whether B's behavior is best described as maximizing a
performance measure depending on A's performance measure

2 Competitive

2 Cooperative

Environment types

Internet

Observable?

Deterministic?

Episodic?

Static?

Discrete?

Single-agent?

Environment types

Internet
Shopping

Backgammon

Observable?

Deterministic? No

Episodic? No No No

Static? Yes Semi No

Discrete? Yes Yes No

Single-agent? No Yes (except auctions) No

The environment type largely determines the agent design. The real world is (of course) partially observable, stochastic,
sequential, dynamic, continuous, multi-agent

Structure of agent

0 Mathematically speaking, we say that an agent’s
behavior is described by the agent function that maps
any given percept sequence to an action.

4 Take the current percept as input and return action.

2 The implementation of the agent function for an artificial
agent is called the agent program.

2 Why only current percept?
* Only information provided by the environment.

Agent types

Four basic agent types in order of increasing
generality:

2 simple reflex agents

2 reflex agents with state

4 goal-based agents

2 utility-based agents

All these can be turned into learning agents

Simple Retlex Agents

/ Agent Sensors m

What the world
is like now

m
=
<.
=
o
-
3
(D
. =t

(Cc:-nditiﬂn—actic:-n rules)—.- :ﬁgﬂ c? a’gar? olw

K Actuators - .

Simple Retlex Agents

Select actions based only on the current percept, ignoring the
rest of the percept history.

Table lookup of percept-action pairs defining all possible
condition-action rules necessary to interact in an environment

Problems

2 Possible condition-action rules too big to generate and to
store (Chess has about 10'%° states, for example)

2 No knowledge of non-perceptual parts of the current state
Get into loops - randomize

2 Not adaptive to changes in the environment; requires entire
table to be updated if changes occur

Reflex Agents with state

4 (T = ARWAR
- x\\t SE"T"S

What the world
@ow the world evulueED—’ is like now

@hat my actions do

JUBWUOIIAUT

(Cnndition—actinn rules>—> Ehcﬂ aﬂ a’gur? le

l

KAgent Actuators =

Retlex Agent with State
Model-based reflex agents

The knowledge about “how the world works” is called a of the
world.

An agent that uses such a model is called a

Encode "internal state" of the world to remember the past as contained
In earlier percepts

Needed because sensors do not usually give the entire state of the
world at each input (what did we call this environment?), so perception
of the environment is captured over time.

Requires ability to represent change in the world; one possibility is to
represent just the latest state, but then can't reason about hypothetical
courses of action

2 Ability to “model” how world evolves independent of agent — other
driver

2 Ability to “model” how world evolves as a result of agent actions

Goal-based Agent

4 (T —(
- '\\1 Sentinrs

What the world
G—Iow the world evolves is like now
) What it will be like
@hat my actions do if | do action A

JusWiUoIIAUT

What action |
should do now

kAgE“t Actu!atnrﬁ 71/

Goal-based Agents

A taxi in a junction, turn left or right?

Choose actions so as to achieve a (given or computed) goal = a
description of a desirable situation

Keeping track of the current state is often not enough --- need to add
goals to decide which situations are good

9 Think about a goal state where the desired goal holds

2 Plan or search a sequence of actions such that applying those
actions will transform the current state into the goal state

2 Combine goal info and possible next states.

Deliberative instead of reactive. Not reflex anymore.

May have to consider long sequences of possible actions before
deciding if goal is achieved --- involves consideration of the future,
"what will happen if | do...?"

Goal-based agents are more flexible — no need to rewrite lookup
tables.

Utility-based Agents

4 (TS N D
x\iseniurs

What the world
G—Inw the world evolves is like now
) What it will be like
@hﬂt my actions do if | do action A

z. : How happy | will be
Utility - in such a state

What action |
should do now

I

JUBWUOIIAUT

KAgent Actuators -

Utility-based Agents

When there are multiple possible alternatives, how to decide
which one is best?

A goal specifies a crude distinction between a happy and
unhappy state, but often need a more general performance
measure that describes ' 'degree of happiness”

Goals alone are not really enough.

2 Taxi: different sequences to the same goal are safer, quicker,
more reliable or cheaper.
Utility function U: State —» Reals

4 indicates a measure of success or happiness when at a
given state

2 A state has higher utility if it is preferred over another.

2 Allows decisions comparing choice between conflicting
goals, and choice between likelihood of success and
importance of goal (if achievement is uncertain)

What Is missing?

4 2) (
- x\l SE"TMS

What the world
G—Inw the world evolves is like now
) What it will be like
@hﬂt my actions do if | do action A

- How happy | will be
(_ Utility) *| insuchastate

What action |
should do now

I

JUBWIUOJIAUT

Kﬂgent Actuators -

Learning Agents

Performance standard

o

\fl

f

=N

Critic == Sensors - |
feedback
m
-
Y changes Y <.
Learning Performance 3
element element =
nowledge 3
learning M
goals =
-t
Problem
generator '
gent

Actuators m

Learning agents - components

learning element, which is responsible for making
Improvements,

performance element, which is responsible for selecting
external actions. The performance element is the entire
agent: it takes in percepts and decides on actions.

critic gives feedback from the on how the agent is doing
with respect to a fixed performance standard.

problem generator is responsible for suggesting actions
that will lead to new and informative experiences.

Summary

= Agents interact with environments through actuators
and sensors

=T
a
=T

ne agent function describes what the agent does In
| circumstances

ne performance measure evaluates the environment

seguence

= A perfectly rational agent maximizes expected
performance

Summary

Implement (some) agent functions
descriptions define task environments

Environments are categorized along several dimensions:

2 Observable? Deterministic? Episodic? Static? Discrete?
Single-agent?

Several basic agent architectures exist:

1 Reflex, reflex with state, goal-based, utility-based

2 Learning vs. non-learning

PROBLEM SOLVING AND SEARCH

CHAPTER 3

Week 1: Uninformed Search

No-problem specific information

Chapter 3 1

Outline

ORI G S %

Problem-solving agents
Problem types
Problem formulation
Example problems

Basic search algorithms

Chapter 3

3

Problem-solving agents

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE(slate, percept)

if seq is empty then
goal«+— FORMULATE-GOAL(state)
problem «— FORMULATE- PROBLEM(state, goal)
seq«— SEARCH(problem)

action «<— RECOMMENDATION(seq, state)

seq <— REMAINDER(seq, stale)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

open-loop Chapter 3

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 5

Example: Romania

] Oradea
71
Neamt
(]
L 87
75 151
] lasi
Arad[T
) . 92
Sibiu , Fagaras
118 ;
[JVaslui
80
Timisoara Rimnicu Vilcea
]
142
70 = 08 .
_ 146 35 _ _ Hirsova
[JMehadia 101 S Urziceni
7 138 Q.E.,U_ ucharest 5
Dobreta 120
= e 90
raiova o Eforie
[1Giurgiu

Chapter 3 6

Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable = contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space = exploration problem (“online")

Chapter 3

7

Example: vacuum world

Single-state, start in #5. Solution??

=)
3%
3 | =
kg
=)
=)

R [EA] | AL

Chapter 3

8

Example: vacuum world

Single-state, start in #5. Solution??

|Right, Suck] 1=l
FR
Conformant, start in {1,2,3,4,5,6,7,8}
, , . 3 | =A)
e.g., Right goes to {2,4,6,8}. Solution?? pro
5 | =)
7 [0

R [EA] | AL

Chapter 3

9

Example: vacuum world

Single-state, start in #5. Solution??

Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}

e.g., Right goes to {2,4,6,8}. Solution??

Right, Suck, Left, Suck]

Contingency, start in #5

1 (1 [°L] ik

Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.

Solution??

=)
g | %
=)
2R
=)
o3R
=)

Chapter 3

10

Example: vacuum world

Single-state, start in #5. Solution??

Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}

e.g., Right goes to {2,4,6,8}. Solution??

Right, Suck, Left, Suck]

Contingency, start in #5

1 (1 [°L] ik

Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.

Solution??
'Right,if dirt then Suck]

=)
g | %
=)
2R
=)
o3R
=)

Chapter 3

11

Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs

e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}

goal test, can be
explicit, e.g., © = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > (

A solution is a sequence of actions
leading from the initial state to a goal state

Chapter 3

12

Selecting a state space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., 'Arad — Zerind" represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier’ than the original problem!

Chapter 3

13

Example: vacuum world state space graph

(28 | e 2280

(e L TED O L 120
LCAQQ : AQDH

states??
actions??
goal test??
path cost??

Chapter 3 14

Example: vacuum world state space graph

(Fal

(e L TED O L 120
LCAQ : AQDH
i

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??

goal test??

path cost??

Chapter 3

15

Example: vacuum world state space graph

(Fal

(e L TED O L 120
LCAQ : AQDH
i

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??

path cost??

Chapter 3 16

Example: vacuum world state space graph

(Fal

(e L TED O L 120
LCAQ : AQDH
i

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??

Chapter 3 17

Example: vacuum world state space graph

(Fal

(e L TED O L 120
LCAQ : AQDH
i

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Chapter 3 18

Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??

Chapter 3 19

Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)

actions??
goal test??
path cost??

2 4 1 2

6 4 5

3 1 7 8
Start State Goal State

Chapter 3

20

Example: The 8-puzzle

1 2
4 5
7 8

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

Goal State

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??
path cost??

Chapter 3

21

Example: The 8-puzzle

1 2
4 5
7 8

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

Goal State

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??

Chapter 3

22

Example: The 8-puzzle

1 2
4 5
7 8

7 2 4

5 6

8 3 1
Start State

states??: integer locations of tiles (ignore intermediate positions)

Goal State

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Chapter 3

23

Example: robotic assembly

P

A
\

states’?: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions’?: continuous motions of robot joints
goal test??: complete assembly with no robot included!

path cost??: time to execute

Chapter 3

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Chapter 3

25

Tree search example

—_ N T
- N
_ Sibiu D CIH_TESOEHEED
TN — /N
-/ N T~ . / AN
/ \ ~— / \
£ N ~. L N
Fagarag) QOrddC a /Hmlr icu wluetﬁ - Ardd 5 _ Luq0] 3
TN N s

Q ?Erirlaﬁfﬁ
/N

/
/
L __

N
N
N

_ “Arad 3 KOradeaH

//IT‘\

ol
e

Chapter 3

~N

26

Tree search example

Chapter 3

27

Tree search example

Chapter 3

28

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action

State || 5 ||| 4 Node depth = 6
g="6
6 || 1] 8
fe
7 Il 3 |l 2 st

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.

Chapter 3 29

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
Jringe <— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
if fringe is empty then return failure

node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node

fringe — INSERTA LL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors < the empty set
for each action, result in SUCCESSOR-F'N(problem, STATE[node]) do

s«—a new NODE
PARENT-NODE[s] <— node; ACTION|[s| «— action; STATE[s| < result

PATH-COST[s] < PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] < DEPTH[node] + 1
add s to successors

return successors

Chapter 3

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be)

Chapter 3

31

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

lterative deepening search

Chapter 3

32

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Chapter 3 33

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
> (B G

Chapter 3

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Chapter 3 35

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4]
(B) ©
>O ©® ©® @

Chapter 3 36

Properties of breadth-first search

Complete??

Chapter 3

37

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Chapter 3 38

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+ b0+ 0>+ 0%+ ...+ 07+ b(b? — 1) = O(b%1), i.e., exp. in d

Space??

Chapter 3 39

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+ b0+ 0>+ 0%+ ...+ 07+ b(b? — 1) = O(b%1), i.e., exp. in d

Space?? O(b%™) (keeps every node in memory)

Optimal??

Chapter 3 40

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 14+b+b6>+b3+ ...+ b2+ b(b"—1) = Ob™), i.e., exp. in d
Space?? O(b%™) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.

Chapter 3 41

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost > ¢

Time?? # of nodes with ¢ < cost of optimal solution, O(b!¢ /<l
where (' is the cost of the optimal solution

Space?? # of nodes with ¢ < cost of optimal solution, O(bm*/ﬂ)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

@
e ~N

gy~ \/Q

Se e

/ \>’ / \>,
‘ 3 (F :
ORERCEERG R
/ \ / \ / \ / \

) (D) () ®) D)) W) 0)

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(4)
>(8) 9

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 46

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 a7

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 49

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(4)
40

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3

Properties of depth-first search

Complete??

Chapter 3 55

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??

Chapter 3 56

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 57

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Chapter 3 58

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Chapter 3 59

Depth-limited search

= depth-first search with depth limit /,
l.e., nodes at depth [have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? — false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limil then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Chapter 3

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth<— 0 to oo do
result <« DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Chapter 3

61

Iterative deepening search [=0

Limit=0

CN

Chapter 3

62

Iterative deepening search [=1

Limit=1

@

o e

Chapter 3

63

Iterative deepening search [=2

Limit =2 10 O
>(8) (O

(4)
20

Chapter 3 64

Iterative deepening search | =3

Limit = 3 10 @)
>(B) 0O

(A @
NG ()

Chapter 3 65

Properties of iterative deepening search

Complete??

Chapter 3 66

Properties of iterative deepening search

Complete?? Yes

Time??

Chapter 3 67

Properties of iterative deepening search

Complete?? Yes

Time?? (d 4 1)b° + db' + (d — 1)b2 + ... + b = O(b)

Space??

Chapter 3 68

Properties of iterative deepening search

Complete?? Yes

Time?? (d 4 1)b° + db' + (d — 1)b2 + ... + b = O(b)

Space?? O(bd)

Optimal??

Chapter 3 69

Properties of iterative deepening search

Complete?? Yes

Time?? (d 4 1)b° + db' + (d — 1)b2 + ... + b = O(b)
Space?? O(bd)

Optimal?? Yes, if step cost =1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+ 400 + 3,000 4 20, 000 + 100, 000 = 123, 450
N(BFS) = 10+ 100 + 1,000 + 10, 000 + 100, 000 + 999,990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Chapter 3 70

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if [> d Yes
Time bt pl /el b b b
Space pi+1 plC /el bm bl bd
Optimal? Yes* Yes No No Yes*

Chapter 3 71

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential

onel

Chapter 3

T2

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe — INSERTALL(EXPAND(node, problem), fringe)
end

Chapter 3

Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

lterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Chapter 3 74

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

