Overview

nformed search strategies

Heuristic functions

_ocal search and optimization

_ocal search in continuous spaces
Searching with nondeterministic actions
Searching with partial observations

Online search agents and unknown
environments

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe — INSERTALL(EXPAND(node, problem), fringe)
end

Chapter 3

Best-first search

ldea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

f(n) : evaluation function
lowest evaluation is selected for expansion
maintain fringe in the ascending order of f-values.

Special cases:
greedy search
A* search

Chapter 4, Sections 1-2 4

Romania with step costs in km

] Oradea

Arad
Sibiu g9 Fagaras
118 ™
80
Timisoara . Rimnicu Vilcea

11 1 Lugoj Pitesti

70 -

1 Mehadia 10

75 138

Dobreta [] 120
=l Craiova

211

Neamt
u 87
] lasi
92
] Vaslui
142
98
85 [] Hirsova
Urziceni
[] 86
Bucharest
90 O
] Giurgiu Eforie

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 08
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Chapter 4, Sections 1-2 5

Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal
~ of the cheapest path

E.g., hsip(n) = straight-line distance from 7 to Bucharest

Greedy search expands the node that appears to be closest to goal

if f(n) = h(n) --> greedy search

Chapter 4, Sections 1-2 6

Greedy search example

366

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

366
0
160
242
161
176
71
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui

Zerind

241
234
380
100
193
253
329

80
199
374

Values of h g p—straight-line distances to Bucharest.

Chapter 4, Sections 1-2 7

Greedy search example

253 329 374
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Tasi 226 Vaslui 199
Lugoj 244 Zerind 374

Values of hgr, p—straight-line distances to Bucharest.

Chapter 4, Sections 1-2 8

Greedy search example

366 176 193
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 71 Timisoara 329
Hirsova 151 Urziceni 80
Tasi 226 Vaslui 199
Lugoj 244 Zerind 374

Values of /g7, p—straight-line distances to Bucharest.

Chapter 4, Sections 1-2 9

Greedy search example

Sibiu Cimisoarad CZerind >

329 374

[| Oradea

Crad> @gaid Oaden> @otid
366 380 193

75

Arad L}

253 & 0

Optimal?
Greedy...
false starts? from lasi to Fagaras

L1 Hirsova
Urziceni

86

Bucharest
Drobeta []
Eforie

Craiova] Giurgiu

Chapter 4, Sections 1-2 10

Properties of greedy search

| § Oradea

Complete??

Arad L]

Drobeta [
90

Craiova

[l Giurgju

Chapter 4, Sections 1-2 11

Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time??

Chapter 4, Sections 1-2 12

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,

lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1-2

13

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2

14

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal?? No

Chapter 4, Sections 1-2

15

A* search

ldea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n)+ h(n)

g(n) = cost so far to reach n -~ estimated cost from start to n
h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal
A* search uses an admissible heuristic

i.e., h(n) < h*(n) where h*(n) is the true cost from n.

(Also require h(n) > 0, so h(G) = 0 for any goal G5.)

E.g., hsip(n) never overestimates the actual road distance
g(n) is the actual cost:

Theorem: A* search is optimal --> f(n) never overestimates the cost

Chapter 4, Sections 1-2

16

A* search example

Arad L]

118

|| Oradea

Drobeta [

Craiova

366=0+366

L Hirsova
Urziceni

86
Bucharest

] Giurgiu Eforie

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui

Zerind

241
234
380
100
193
253
329

80
199
374

Values of /g1, p—straight-line distances to Bucharest.

Chapter 4, Sections 1-2

17

A* search example

393=140+253 447=118+329 449=75+374

[| Oradea

Arad 366 Mehadia 241

75 Bucharest 0 Neamt 234
Craiova 160 Oradea 380

Arad [Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193

s Fagaras 176 Sibiu 253

b Vaslui Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199

Lugoj 244 Zerind 374

Values of g1, p—straight-line distances to Bucharest.
L1 Hirsova

86

Bucharest
Drobeta [

. Chapter 4, Sections 1-2 18
Craiova Giurgiu Eforie

A* search example

75

Arad L]

118

Drobeta [

Craiova

Pitesti

447=118+329

449=75+374

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

241
234
380
100
193
253
329

80
199
374

Values of /1 g1, p—straight-line distances to Bucharest.

L Hirso

Bucharest

[] Giurgiu

86

Eforie

Chapter 4, Sections 1-2

19

A* search example

CArad >
Sibiu>> Cimisoara) C Zerind >

447=118+329 449=75+374

CArad > PFagaras>y COradea > @immis Viced

646=280+366 415=239+176 671=291+380

CCraiova> Pitesti > _Sibiu_3

526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 20

A* search example

CArad
Sibiu>> Cimisoara) C Zerind >

447=118+329 449=75+374

CArad > (Fagarasd COradea> Eimien Viced

646=280+366 671=291+380

C_Sbiu > ucharesd CCraiova S Pitesti > C_Sibiu_3

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Chapter 4, Sections 1-2 21

A* search example

CArad >
Sibiu>> Cimisoara) C Zerind >

447=118+329 449=75+374

> G o> @D

646=280+366 671=291+380

C_Sbiu > Buchares

591=338+253 450=450+0 526=366+160

418=418+0 615=455+160 607=414+193

Optimal? Yes if heuristic is

1- admissible ... never overestimates: h(n) <= h*(n)

2- consistency... h(n) < h(n') + c(n,a,n")

Every consistent heuristic is admissible.

* Admissible but inconsistent heuristics require bookkeeping to ensure optimality.

Chapter 4, Sections 1-2 22

Optimality of A* (standard proof)

Suppose some suboptimal goal (5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal (7.
Start

N

@ G,

=
3
C»
I
=2
0
S»

since h(G2) = 0
q(Gh) since Gy is suboptimal

AVARRY,
P
3

since h 1s admissible

Since f((G5) > f(n), A* will never select (G, for expansion

Chapter 4, Sections 1-2 23

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')
If /» is consistent, we have c(n,a,n’)

f) = of
= g(n) + c(n,a,n') + h(n')
> g(n)
(

—
-
o~

e

l.e., f(n) is nondecreasing along any path.

if h(n) is consistent, then the values of f(n) along any path are nondecreasing.

Chapter 4, Sections 1-2 30

Consistency (Monotonicity): h(n) <= c(n,a,n')+h(n")
---> suppose n' is successor of n
f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') >= g(n) + h(n) = f(n)

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < [,

all nodes f(n) < 400

Optimal:

h(n)=0).

A* expands fringe nodes wih lowest f-cost.
Heuristic = 1: shape, heuristic = direct-path .. ?

Chapter 4, Sections 1-2

all other goal nodes will have
higher f-costs, thus g-costs (as

24

Properties of A*

Complete??

Chapter 4, Sections 1-2

25

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time??

Chapter 4, Sections 1-2

26

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in h X length of soln.]

Space??

Chapter 4, Sections 1-2

27

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in h X length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1-2

28

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with [< f(G)

Time?? Exponential in [relative error in h X length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f;. until f; is finished

A* expands all nodes with f(n) < C*

A* expands some nodes with f(n) = C"*
A* expands no nodes with f(n) > C*

Chapter 4, Sections 1-2

29

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')
If /» is consistent, we have c(n,a,n’)

f) = of
= g(n) + c(n,a,n') + h(n')
> g(n)
(

—
-
o~

e

l.e., f(n) is nondecreasing along any path.

if h(n) is consistent, then the values of f(n) along any path are nondecreasing.

Chapter 4, Sections 1-2 30

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4
5 6
8 3 1

1 2 3
4 5 6
7 8

hi(S) =77
ho(S) =77

Start State

Goal State

Chapter 4, Sections 1-2

31

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4
5 6
8 3 1

1 2 3
4 5 6
7 8

hi(S) =77 6

ho(S) =77 4404+3+3+1+0+2+1 = 14

Start State

Goal State

Chapter 4, Sections 1-2

32

Dominance

If ho(n) > hy(n) for all n (both admissible)
then /o dominates /i and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hg) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy) = 39,135 nodes
A*(hy) = 1,641 nodes

Given any admissible heuristics 5, hy,
h(n) = max(hy(n), hy(n))

is also admissible and dominates h,, 7y

every node expanded by h2 will also
be expanded by hl.

QUESTION: HOW TO INVENT ADMISSIBLE HEURISTICS?

Chapter 4, Sections 1-2 33

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then /1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then /(1) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

The cost of an optimal solution to a relaxed problem is an admissible heuristic for the
original problem.

eg. traveling salesman problem

Chapter 4, Sections 1-2 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)

Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

8-puzzle: A tile can move from A to B if
A is adjecent to B

and B is blank

Chapter 4, Sections 1-2

35

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

eg. 8-puzzle: other admissible heuristics?
subproblem? howto combine?

Chapter 4, Sections 1-2

35

Pattern Databases

* (2 |f 4 L] 2

g * 3 4 B

* 3] * * *
Start State Goal State

» Store exact solution of every possible subproblem instance
» Lookup table

» Do this for different subproblems — take max()

» How about sum?

» Share common moves
» Disjoint pattern databases:

» Random 15-puzzles in a few seconds
» Reduced by a factor of 10,000 compared to Manhattan distance

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest A
— incomplete and not always optimal

A* search expands lowest g + h
— complete and optimal
— also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 4, Sections 1-2 36

Previous search algorithms explored state space systematically. Kept paths in
the memory. Path to the goal was part of solution.

Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP ~ other examples?
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it -- local search in the neighbourhood

1 Constant space, suitable for online as well as offline search
2 Often find solutions in large or infinite (continuous) state spaces

Chapter 4, Sections 3—4 3

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities

Chapter 4, Sections 3—4 4

Example: n-queens

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

=) (8
‘I—W
h=2
Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1mullion

e
> Bt

Chapter 4, Sections 3—4 5

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor

end

Chapter 4, Sections 3—4 6

Hill-climbing contd.

Useful to consider state space landscape

objectixe function lobal maximum

shoulder

local maximum

"flat" local maximum
= plateaux

»state space
current

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (&)escape from shoulders (Z)loop on flat maxima

Chapter 4, Sections 3—4 7

Hill-climbing contd.

18 |12 14 (13| 13 |12 14
16 (13 15 |12 | 14 (12| 16
14 (12| 18 1315 | 2| 14
14 14|\ 131 16 11316 || grecay:
o o Do
W
18 (1|15 15 0| N
14 (1317 |12 14 |12 |18

h= # of pairs attacking (direct or indirect) local minimum

steepest-ascent solves only 14%. If limited sideway moves: 94%

Stochastic hill-climbing: select with probability steepness Chapter 4, Sections 34 7

Random-restart hill-climing: start-over. Expected number of restarts for 8-queens?
--> good for few local minima

Hill-climbing: incomplete: might always stuck in local optima (even stochastic)
Random-walk: complete: inefficient

Simulated annealing

|dea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current «— MAKE-NODE(INITIAL-STATE[problem])
for i< 1 to oo do
T— schedule][{]
if T'= 0 then return current
nexrt < a randomly selected successor of current
A E«— VALUE[neztl] — VALUE[current]

if AE > 0 then current — next

else current «— next only with probability e® Z/T .. accept with small prob.
higher chance in the bgginning

.. accept if it improves

shake hard enough to bounce the ball at the local minimu%t e
but not hard enough to dislodge it from global minimum. "™

