Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

247748552

24 31%

32752411

23 29%

24415124

i

20 26%

32543213

11 14%

Fithess Selection

32752411

247148552

32752411

>~
N

24415124

Pairs

32748552

3274812

24752411

247752411

32752124

32252124

24415411

Cross-Over

2441541[7]

Chapter 4, Sections 3—4 11

GAME PLAYING
in competitive multi-agent problems

Reminder: Taxi example. How do you define multi-agent problems?

Chapter 6 1

Outline

> Games

¢ Perfect play
— minimax decisions

— a—3 pruning
{> Resource limits and approximate evaluation
> Games of chance
> Games of imperfect information
From the textbook: "Game playing was one of the first tasks undertaken by Al.
... to the point that machines have surpassed humans in ... The main exception

is Go, in which computers perform at the amateur level".
search tree of chess: 357100 in average.

Chapter 6 2

Games vs. search problems

“Unpredictable” opponent = solution is a strategy
specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Plan of attack:

e Computer considers possible lines of play (Babbage, 1846)
e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)
e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)

e Pruning to allow deeper search (McCarthy, 1956)

Require the ability to make some decision even when calculating the optimal
decision is infeasible.

Chapter 6 3

Types of games

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Define game formally:
- initial state

- successor function

- terminal test

- utility function

"zero-sum" games are considered here.

2-players: MAX and MIN. Max moves first

Chapter 6 4

Game tree (2-player, deterministic, turns)

MAX (X)

X X X B
MIN (O) X X X

X X X

x[o x| Jo] [x
MAX (X))

x[o[x] [x]o x|o
MIN (O) X X

x[o[x] [xJo[x] [x[o[x
TERMINAL o|x| [o]o[x X

0 x| x|o| [x[olo

Utility -1 0 +1

minimax value:High values are assumed to be good for MAX (&bad for MIN).
MAX should find a "contingent” strategy.

Chapter 6 5

Optimal strategy: leads to outcomes at least as good as any other
strategy when one is playing a perfect opponent.

Minimax

Perfect play for deterministic, perfect-information games

ldea: choose move to position with highest minimax value
= best achievable payoff against best play

assuming both players play optimally.
E.g., 2-ply game:
MAX \

MIN

3 12 8 2 4 6 14 5 2

MAX prefers to a state with max value, MIN prefers min

MINIMAX-VALUE (n) = Utility (n) if n is terminal
max MINIMAX-VAL (s) where s is successor and n is MAX node
min MINIMAX-VAL (s) where s is successor and n is MIN node

Chapter 6 6

How about minimax decision at the root?

Minimax

Perfect play for deterministic, perfect-information games

ldea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game: Assumes MIN plays optimal.
MAX 3 What if not?

MIN

Chapter 6 6

How about minimax decision at the root?

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(stale) then return UTILITY(state)
V— —00
for a, s in SUCCESSORS(state) do v« MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(stale) returns a utility value
if TERMINAL-TEST(stale) then return UTILITY(state)

V00
for a, s in SUCCESSORS(state) do v« MIN(v, MAX-VALUE(s))
return v

Chapter 6

Properties of minimax

Complete??

Chapter 6

8

Properties of minimax

Complete?? Only if tree is finite

Optimal??

Chapter 6

9

Properties of minimax

Complete?? Yes, if tree is finite

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

What type of exploration?

Chapter 6 10

Properties of minimax

Complete?? Yes, if tree is finite

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity??

Chapter 6

11

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ~ 35, m ~ 100 for “reasonable” games

= exact solution completely infeasible
2 questions:
But do we need to explore every path?

How about multi-player games?

Chapter 6 12

o—(pruning example

MAX 23

MIN 3

Chapter 6 13

o—(pruning example

MAX 23
A would never choose C.
MIN 3 <2
X X

Chapter 6 14

o—(pruning example

MAX

MIN

IN

14

Chapter 6

15

o—(pruning example

MAX

MIN

Chapter 6

16

o—(pruning example

MAX

MIN

Chapter 6

17

Why is it called o—37

MAX

MIN

MAX

MIN vV

v is the best value (to MAX) found so far off the current path

If V' is worse than o, MAX will avoid it = prune that branch
(i.e. when we learn enough aboun v)

Define (3 similarly for MIN

Chapter 6

18

The o—p3 algorithm

function ALPHA-BETA-DECISION(state) returns an action
return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
(3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(stale) then return UTILITY(state)
V= —00
for a, s in SUCCESSORS(state) do
v MAX(v, MIN-VALUE(s, a, 3))
if v > [then return v
a«— MaX(a, v)
return v

function MIN-VALUE(state, o, 3) returns a utility value
same as M AX-VALUE but with roles of «, 3 reversed

alpha: the value of the best (highest) choice found at any choice point along the path for MAX
beta: the value of the best (lowest) choice found at any choice point alongsthe path for MIN

Properties of a—p

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b"’f'f-/Q)
= doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

=
5 50

Unfortunately, 35”" is still impossible!

Chapter 6 20

Resource limits

Standard approach:

e Use CUTOFF-TEST instead of TERMINAL-TEST
e.g., depth limit (perhaps add quiescence search)

e Use EVAL instead of UTILITY
I.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10* nodes/second
= 10° nodes per move =~ 3552
= a—3 reaches depth 8 = pretty good chess program

1- EVAL should order the terminal nodes the same way as utility
2- Computation time should be short
3- Should be strongly correlated with the actual chances of winning

EVAL (x) = .. for the chess?

- find some categories, find expected value of winning for each category
.... to0 many categories, a lot of experience.

- what else? Chepter 6 21

Evaluation functions

L

&
L
I

*
L
1
2
I

"

g2z 2
a2 e

1
b ¢
L
[
2
2

£
ks
L
[
W
L

;

Black to move White to move
White slightly better Black winning
: : : pawn: 1
For chess, typically linear weighted sum of features knight or bishop: 3
rook: 5

FEval(s) = wy fi(s) + wafa(s) + ...+ wyfu(s)

e.g., wi = 9 with
fi(s) = (number of white queens) — (number of black queens), etc.

Try to include the following information: a pair of bishops wgQtth more than
twice the value of the bishop
No rule information is included in the evaluation..

Where to cut-off?
fixed depth? more robust: iterative deepening until time limit?

apply only in quiescent positions: unlikely exhibit significant changes in the value.

--> guiescence search EvalllatiOIl fllIlCtiOIlS

L

&
L
I

*
L
1
2
I

"

g2z 2
a2 e

£
ks
L
[
W
L

1
b ¢
L
[
2
2

Black to move White to move

White slightly better Black winning

For chess, typically linear weighted sum of features

FEval(s) = wy fi(s) + wafa(s) + ...+ wyfu(s)

e.g., wi = 9 with

fi(s) = (number of white queens) — (number of black queens), etc.

Chapter 6 22

Digression: Exact values don’t matter

MAX
MIN K 2 1 R 20
1 4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 6 23

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves. (-

o8
+0: Google DeepMind
Challenge Match

Not anymore..

AlphaGo seals 4-1 victory over Go
grandmaster Lee Sedol

Chapter 6 24

DeepMind's artificial intelligence astonishes fans to defeat human opponent and
offers evidence computer software has mastered a major challenge

Nondeterministic games: backgammon

0123456 7 8 9 1011 12
7~ 1(N a7 aY

N ' 4‘» 4“‘» <. 4‘» = "

25 24 23 22 21 20 19 18 17 16 15 14 13

Combine luck and skill!
How is MIN-MAX tree handled?

Chapter 6

25

Nondeterministic games: backgammon

0123456 7 8 9 1011 12

MAX :
---_-_-_
‘_\-\-\-\-“"—\-_‘____—---_-__
CHANCE () () QR Q ;1
e T e mméi_%ﬁi
XX]
1L} '" l|l -’-—\H—\-\-\- '“
j T
.flll \
CHANCE (c) Q . O E
. s 118 1/36
1,1 1,2 > A
AR AR
R h llll "T
TERMINAL 2 -1 1 -1 1

Figure 5.11 Schematic game tree for a backgammon position.

25

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MAX

CHANCE

MIN

4 7 4

how should we adapt the minimax algorithm?

max: return highest
min: return lowest Chapter 6 26
chance: ?

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Chapter 6 27

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon = 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)° ~ 1.2 x 10"

As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

a—/3 pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL
~ world-champion level

Chapter 6

28

With minimax, satisfying the same ordering was sufficient.

Digression: Exact values DO matter

MAX

DICE

MIN

1 400 400

Behaviour is preserved only by positive linear transformation of EE-VAL

Hence EVAL should be proportional to the expected payoff

Chapter 6 29

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game”

|dea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals

*

Special case: if an action is optimal for all deals, it's optimal.”

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Chapter 6

Example

Four-card bridge /whist /hearts hand, M AX to play first

6v]oe[aaf7s

8%

#

T I

#

9&

T @
.

T 2

Chapter 6 31

Example

Four-card bridge/whist/hearts hand, MAX to play first

wax. vfoofealra] o4 [ov l @

wiN - [o]20]oafss z:e:: g

wax [ofsfsalra] (4 [ofsolls] [l [l
— e e g

i [so]oalolss] T [sofalosls| ga) [eofoolilise] el [DG ss

Chapter 6 32

Example

Four-card bridge /whist /hearts hand, M AX to play first

o EEE FEPH = Pl =

MIN [i9]oefosj3s] [s9]oslosjos| (o) [:9[20f8N38] o) [YIRRRNNCH ¥

—@***@* °

UBTISCImmIZIC IR Sl Spmi £
-

o - o

MIN mm Em @ 4 | 34 - 05

Chapter 6 33

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Chapter 6

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:
take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you'll be run over by a bus;

take the right fork and you'll find a mound of jewels.

Chapter 6 35

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:
take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you'll be run over by a bus;

take the right fork and you'll find a mound of jewels.

Road A leads to a small heap of gold pieces

Road B leads to a fork:
guess correctly and you'll find a mound of jewels;
guess incorrectly and you'll be run over by a bus.

Chapter 6

36

Proper analysis

* Intuition that the value of an action is the average of its values

in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
> Acting to obtain information
{ Signalling to one's partner
> Acting randomly to minimize information disclosure

Chapter 6

37

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

{» perfection is unattainable = must approximate

> good idea to think about what to think about

{> uncertainty constrains the assignment of values to states

{> optimal decisions depend on information state, not real state

Games are to Al as grand prix racing is to automobile design

Chapter 6

CONSTRAINT SATISFACTION PROBLEMS

Chapter 5

1

Outline

 CSP examples

> Backtracking search for CSPs

> Problem structure and problem decomposition

> Local search for CSPs

Chapter 5

2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box"—any old data structure
that supports goal test, eval, successor

CSP: states and goal test conform a standard, structured and simple representation.
state is defined by variables X; with values from domain D);

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

- state: assignment of variables {Xi=a, Xj=Db..}

- assignment is consistent or legal if not violates constraints

- solution: a complete assignment that satisfies all constraints
- some CFPs require soln that maximize objective function

Chapter 5 3

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South
. —-—___'_"‘_“‘—'—-—-—-—._/\,-
Australia
New South Wales

hﬁ;\\

Tasmania

Variables WA, NT, Q, NSW,V, SA, T

Domains D; = {red, green,blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .

Chapter 5 4

Example: Map-Coloring contd.

>
\~_~\\

Tasmv’a

Solutions are assignments satisfying all constraints, e.g.,

{WA=red, NT = green,QQ =red, NSW = green,V =red, SA=blue, T = green}

There are different solutions.

Chapter 5 5

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Maybe easier to visualize?

O
@

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 5

6

Start from initial-state={}, assign a value in each step.

Varieties of CSPs

Discrete variables , _
.. . . | : v Depth-first-search is
finite domains; size d = ((d") complete assignments why? oopular. Why?
¢ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
¢ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., StartJob, +5 < Start.Jobs
{> linear constraints solvable, nonlinear undecidable

e.q.?

enumerating
assignments not

.) possible
Continuous variables

¢ e.g., start/end times for Hubble Telescope observations
> linear constraints solvable in poly time by LP methods

Chapter 5 7

Varieties of constraints

Unary constraints involve a single variable,

e.g., SA # green

Binary constraints involve pairs of variables,

eg, SALWA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Chapter 5

Example: Cryptarithmetic

O DE©

M|+
o|— -
Clz =
0O O

Variables: ' T"U W R O

Constraints

alldif{ F, T,U, W, R,O) what else?

Chapter 5 9

Example: Cryptarithmetic

constraint hypergraph

o|— -
Clz =
0O O

|+

& &

Variables: /' T U W R O X, X9 X3

Constraints
alldifi F,' T, U, W, R, O)
O+0=R+10-X,, etc.

Chapter 5 9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets Absolute vs. preference constraints
Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 5 10

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
{ Initial state: the empty assignment, { }

{» Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with 7 variables

= use depth-first search d values
3) Path is irrelevant, so can also use complete-state formulation
4) How many leaves?

Chapter 5 11

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
{ Initial state: the empty assignment, { }

{» Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with 7 variables

= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n — ()d at depth 7, hence n!d" leaves!!!!

Chapter 5 11

Backtracking search

Variable assignments are commutative, i.e.,
[WA=redthen NT = green] sameas [NT' = greenthen WA = red]

Only need to consider assignments to a single variable at each node
= b=ad and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n =~ 25

Chapter 5 12

Depth-first-search: Backtracking

» A variant of depth-first search called backtracking BACKTRACKING search
uses still less memory.

» Only one successor is generated at a time rather than all successors;
» Each partially expanded node remembers which successor to generate next.

> |n this way, only O(m) memory is needed rather than O(bm).

r@®

LT
n

ST
PR

Emre Ugur

Backtracking search

function BACKTRACKING-SEARCH(¢sp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure

if assignment is complete then return assignment

var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment
result «<— RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

add backtracking search from pg. 76

Chapter 5

13

Backtracking example

53

Chapter 5 14

Backtracking example

U

—]

o o

Backtracking example

U

—]

¢ ¢ &

/\

¢ &

Backtracking example

—]

¢ ¢ &

. . Uninformed algorithm. No big expectations
‘_L, ‘_L’ Problem: 4-coloring of 50 USA states

of consistency checks:

- plain backtracking: >1,000K

/\ - forward checking: >1,000K

- FC+MRV: 60

‘p‘% ‘\QL% Problem: n-queens

of consistency checks:

- plain backtracking: >40,000K
- forward checking: >40,000K
- FC+MRV: 717K

Chapter 5 17

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Chapter 5 18

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

SOER Somm =~tpe

called "the most constrained variable"

Uninformed algorithm. No big expectations
Problem: n-queens

of consistency checks:

- plain backtracking: >40,000K

- BT+MRV > 13,500K

- forward checking: >40,000K

- FC+MRV: 717K

Chapter 5 19

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

R~ R~

Attempt to reduce branching factor of future choices by selecting the variable that is
involved in the largest number of constraints on other unassigned variables.

Chapter 5 20

Least constraining value

Given a variable, choose the least constraining value:

the one that rules out the fewest values in the remaining variables
I.e. leave the max flexibility for subsequent variable assignments.

“QL% Allows 1 value for SA
o4

. ‘ Allows 0 values for SA
Combining these heuristics makes 1000 queens feasible

So far, we only considered the constraints on a variable only at a time

Chapter 5 21

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

=S

WA NT Q NSW V' SA T

Chapter 5 22

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SIS

WA NT Q NSW \'J SA T
ErE[ErE/ErE[EeE[EeE[EEE][E N
| vejmreE[meE[EeE] PE[EEE

Chapter 5 23

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

e S -

WA NT Q NSW V' SA T

Chapter 5

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Lf:"‘\l ';: "‘_L%_"_%

WA NT Q NSW Vv SA T
ErE[EeE/ErE[/EeE[Ee /e E[EEE
| "ejerEjee (e E] PE[EEE
I | I ireni E[EEE
I | B[. | — | B

But probably we would select either NT or SA

Chapter 5 25

Constraint propagation

SSE SSEA S~

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

WA NT Q NSW v SA T

ENEENFEENFEIEfEIE"EIEEEIETE
B "EjEFEEfFEETE) BB D
] BT |IE EETE EENH

N'T and S A cannot both be blue!

variable onto other variables.

Constraint propagation repeatedly enforces constraints locally
general term for propagating the implications of a constraint on one

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SSEA SSE o~

WA

NT

Chapter 5

27

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SSEA SSE o~

WA NT Q NSW V' SA

C_ 1Ire» (I

\}/

Chapter 5

28

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SR SSEN Sw
L NTl :Q: INSWZ|!vl Sml ITI

\{/

If X loses a value, neighbors of X need to be rechecked

Chapter 5

29

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed v

SN S S
L NT_I :Q: INSWZ|!vl) (I
{ e

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X1, Xy, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;)«<— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X}] do

if no value y in DOMAIN[X/] allows (z,y) to satisfy the constraint X; < X

then delete = from DOMAIN[X;]; removed < true
return removed

nAd ut detecting all 1s NP-har
O(n’d’ but d 11 is NP-hard

~ compute!

Chapter 5

31

Constraint Propagation Example

R »*Different-color constraint

Graph Coloring

Initial Domains are indicated VE

Arc examined |Value deleted \

Each undirected constraint arc is really two directed constraint arcs, the
effects shown above are from examining BOTH arcs.

http://web.mit.edu/6.034/wwwbob/constraint.pdf

Constraint Propagation Example

14 e*Different-color constraint

Graph Coloring

Initial Domains are indicated VE

Arc examined |Value deleted \

V-V, none a
Vi Vs Vi) EOH—

V-V, none
V,-V, none

http://web.mit.edu/6.034/wwwbob/constraint.pdf

Constraint Propagation Example

Emre Ugur

But, arc consistency is not enough in general

Graph Colorin
P J @ arc consistent but

- No solutions
GRS

arc consistent but 2
@ solutions B,R,G ;

I

Problem structure

O
@

Tasmania and mainland are independent subproblems

|dentifiable as connected components of constraint graph

Chapter 5 32

Problem structure contd.

Suppose each subproblem has ¢ variables out of 7 total

Worst-case solution cost is n/c - d°, linear in n

E.g.,_n:8(), d=2, c=20
2%0 = 4 billion years at 10 million nodes/sec
4-2% = 0.4 seconds at 10 million nodes/sec

Chapter 5 33

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in

O(n d?) time
Compare to general CSPs, where worst-case time is O(d’”)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 5 34

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

:e oz

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)
why do wé remove

3. For j from 1 to n, assign X ; consistently with Parent(X;) in backwards order?

Chapter 5 35

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

& = S
® ©

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(7777), very fast for small ¢

1. Choose a subset S of variables such that constraint graph becomes tree.

2. For each possible assignment of S that satisfies all constraints on S
(a) remove from domains of the remaining variables that are inconsistent with assign. of S
(b) if remaining CSP has a solution..

Chapter 5 36

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

& = S
® ©

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d“ - (n — c¢)d?), very fast for small ¢

1. Choose a subset S of variables such that constraint graph becomes tree.

2. For each possible assignment of S that satisfies all constraints on S
(a) remove from domains of the remaining variables that are inconsistent with assign. of S
(b) if remaining CSP has a solution..

Chapter 5 36

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Chapter 5

37

Local search for CSP

» Min-conflicts heuristic: select the value that results in min number
of conflicts with other variables. Surprisingly effective

function MIN-CONFLICTS(csp, maz_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current < an initial complete assignment for csp
for i = 1 to maz_steps do
if current is a solution for ¢sp then return current
var +— a randomly chosen conflicted variable from csp. VARIABLES
value — the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var = value in current
return failure

N PwlE W
o 3
H B
o
W
L]
W
[

-
2
LR
LR
0

- KX
L B

Example: 4-Queens

States: 4 queens in 4 columns (4* = 250 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks

N o
H B

h=5 h=2 h=0

Chapter 5 38

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice

Chapter 5

