Outline

O G RV R I O

Knowledge—based agents flexible: accept new tasks in the form of explicitly described goals
partial obs: infer hidden aspects of the current state

Wumpus world powerful: combine and recombine information
generic: knowledge is expressed in general forms

Logic in general—models and entailment
Propositional (Boolean) logic
Equivalence, validity, satisfiability

Inference rules and theorem proving
— forward chaining
— backward chaining
— resolution

Chapter 7 2

Knowledge bases

Inference engine -e————— domain-independent algorithms

Knowledge base —~e—— domain-specific content

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
TELL it what it needs to know

Then it can ASK itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
l.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
Declarative approach: in the form of sentences: adv?

Procedural approach: program code. minimizing the representation and reasoning: adv?

Chapter 7

A simple knowledge-based agent

function KB-AGENT(percept) returns an action
static: KB, a knowledge base // background information
t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

action«— ASK(KB, MAKE-ACTION-QUERY(?)) // extensive reasoning about 77
TELL(K B, MAKE- ACTION-SENTENCE(action, t))

t—t+1

return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

Chapter 7 4

Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment | SEeas Zoe| (I
Squares adjacent to wumpus are smelly Con P,
Squares adjacent to pit are breezy ? /ﬁf T I
Glitter iff gold is in the same square ccocs e
Shooting kills wumpus if you are facing it i -
Shooting uses up the only arrow 1 gﬁa Zo” | (R | S
Grabbing picks up gold if in same square START
Releasing drops the gold in same square 1 2 3 4

. Random distribution of gold and W.
Actuators Left turn, Right turn, PIT with 20% prob.

Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell , Bump, Scream

[Stench, Breeze, Glitter, Bump, Scream]

Chapter 7 5

Wumpus world characterization

Observable??

Chapter 7

6

Wumpus world characterization

Observable?? No—only local perception Partially observable

Deterministic??

Chapter 7 7

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic??

Chapter 7

8

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static??

Chapter 7

9

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete??

Chapter 7

10

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions
Static?? Yes—Wumpus and Pits do not move
Discrete?? Yes

Single-agent??

Chapter 7 11

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions
Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature

Chapter 7 12

Exploring a wumpus world

OK

OK OK

[None, None, None, None, None]

Chapter 7 13

Exploring a wumpus world

Chapter 7

14

Exploring a wumpus world

[None, Breeze, None, None, None]

Chapter 7 15

what to do?

Exploring a wumpus world

[Stench, None, None, None, None]

Chapter 7 16

where is the wumpus?

Exploring a wumpus world

Was difficult: combined the knowledge gained at different times in different places
Difficult for animals.
this is what logical agents do Chapter 7 17

Exploring a wumpus world

Exploring a wumpus world

[None, None, None, None, None]

Chapter 7 19

Exploring a wumpus world

[Stench, Breeze, Glitter, None, None]

Chapter 7 20

In each case, where the agent draws a conclusion from the available information, that
conclusion is guaranteed to be correct if the available information is correct.

Other tight spots

Breeze in (1,2) and (2,1)

ctions

ormly distributed,
-ob 0.86, vs. 0.31

P?
oK p?
- p?
Al
]
|¢OK B OK
ry i p?

Smell in (1,1)
—> cannot move
Can use a strategy of coercion:
shoot straight ahead
wumpus was there = dead = safe
wumpus wasn't there = safe

Chapter 7

21

Logic in general

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;
I.e., define truth of a sentence in a world

E.g., the language of arithmetic
x + 2 > 1y is a sentence; x2 + y > is not a sentence
xr + 2 > y is true iff the number + 2 is no less than the number y

T+ 2 >y is true in a world where =7, y=1
r + 2 > vy is false in a world where =0, y=06

to be precise, use "model" instead of "possible world"
--> mathematical abstraction

Chapter 7

22

Entailment

Entailment means that one thing follows from another:
KB E «

Knowledge base K B entails sentence «
if and only if
v is true in all worlds where KB is true

E.g., the KB containing “the Giants won” and “the Reds won"
entails “Either the Giants won or the Reds won"

Eg.,x+y=4entailsd=x+y

Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Note: brains process syntax (of some sort)

Chapter 7

23

Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence « if «v is true in m
M (cv) is the set of all models of «
Then KB = «if and only if M(KB) C M(«)

E.g. KB = Giants won and Reds won
o = Giants won

a |= b if and only if, in every model in which a is true, b is also true.

Chapter 7 24

Entailment in the wumpus world

Situation after detecting nothing in [1,1],
moving right, breeze in [2,1] o HEp.

Consider possible models for ?s (Al . [A] ?

assuming only pits

3 Boolean choices = 8 possible models

Chapter 7 25

Wumpus models

’ .

Q: Which models cover the
situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Chapter 7 26

Wumpus models

K B = wumpus-world rules + observations

There are three models in which KB is true.

Q: In which models, [1,2] is safe? Chapter 7 27

Wumpus models

K B = wumpus-world rules + observations

ap = “[1,2] is safe”, KB |= «, proved by model checking - enumerate all possibble
models to check that
In every model KB is true, al is also true. alpha is.kruye i all models

in which KB is true.

Wumpus models

K B = wumpus-world rules + observations

Chapter 7 29

Wumpus models

K B = wumpus-world rules + observations
ay = “[2,2] is safe”, KB [~ as

in some models in which KB is true, a2 is false. Chapter 7 30

Prev. inference algorithm: model checking

Deriving to conclusions: Inference

K B F=; o = sentence « can be derived from /' B by procedure ¢

Consequences of /X' B are a haystack; « is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: 7 is sound if

whenever K B ; «, it is also true that KB = «
l.e. an inference algorithm that derives only entailed sentences is called sound.

Completeness: i is complete if

whenever K'B |= «, it is also true that KB F; «
i.e. an inference algorithm is complete if it can derive any sentence that is entailed.

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and

complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the K D.

Chapter 7 31

Reasoning process

» If KB is true in the real world, then any sentence a derived from
KB by a sound inference procedure is also true in the real world.

» Inference operates on syntax

Sentences _ Sentence
Entails
¢ ¢
Rep tat g g
Q Y
e B S T -
& @

Aspects of the ™ Aspect of the
real world Follows real world

» How do we know that KB Is true in real world?

» Syntax is in agent's head Cognitive Development and Symbol
_ Emergence in Humans and Robots
» Symbol grounding 32 G ot ot

NIl Shonan Meeting:

@ Shonan Village Center, October 3-7, 2016

Organizers

e Tadahiro Taniguchi, Ritsumeikan University, Japan
e Emre Ugur, Bogazici University, Turkey
e George Konidaris, Duke University, US

Propositional logic: Syntax

. . Boolean logic (George Boole 1815-1864)
Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P, P, etc are sentences

If S'is a sentence, —S is a sentence (negation)

If S1 and S5 are sentences, S; /A Ss is a sentence (conjunction)
If S1 and S, are sentences, S V S5 is a sentence (disjunction)

If S1 and S, are sentences, S; = 55 is a sentence (implication)

If S1 and S, are sentences, S| < S5 is a sentence (biconditional)

True and False are also proposition symbols

A literal is either an atomic sentence or a negative atomic sentence.

Chapter 7 32

Propositional Logic : Syntax

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — True | False| P| Q| R| ...

ComplexSentence — (Sentence) | [Sentence]
— Sentence

Sentence N Sentence

|

|

| Sentence V Sentence

| Sentence = Sentence
|

Sentence < Sentence

OPERATOR PRECEDENCE : - A V.=. &

Figure 7.7 A BNF (Backus—Naur Form) grammar of sentences in propositional logic,
along with operator precedences, from highest to lowest.

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

Po Ps

false true

Eg PLQ

false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

=S

S1 NSy
S1V 9
Sl = SQ
le.,

S1<:>SQ

Is true iff
Is true iff
Is true iff
Is true iff
is false iff

S

is false

is true and
Is true or
is false or
Is true and

52
92
92
92

IS true
Is true
Is true
is false

is true iff S; = S5 istrueand S, = S is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
“Pio A (P V Psq) = true A (false V true) =true A true =true

Chapter 7

33

Truth tables for connectives
P Q - P PAQ PvQ P=0Q | P&Q
false | false true false false true true
false true true false true true false
true | false false false true false false
true true false true true true true

If P is true, then | am claiming Q is true. Otherwise, | have no claim.

Chapter 7 34

Wumpus world sentences

Let P ; be true if there is a pit in |2, j].
Let B3; ; be true if there is a breeze in |1, j].

- P
—DB 3
By

9

“Pits cause breezes in adjacent squares”

Chapter 7 35

Wumpus world sentences

Let P ; be true if there is a pit in |2, j].
Let B3; ; be true if there is a breeze in |1, j].

“Pits cause breezes in adjacent squares”

B, & (PiaV Py
By & (Pi1V PV Psy)

“A square is breezy if and only if there is an adjacent pit”

How can we construct the knowledge base?

Chapter 7 36

Wumpus world sentences

Let P ; be true if there is a pit in |2, j].

Let B3; ; be true if there is a breeze in |1, j].

R1: _IP171
R4: —'B171
R5: 32,1

“Pits cause breezes in adjacent squares”

R2: BL1 & (PLQ V P2,1)
R3: Byy & (Pi1V PV P3y)

“A square is breezy if and only if there is an adjacent pit”

Chapter 7

36

Recall that the aim of logical inference is to decide whether KB|=a for some sentence.

Truth tables for inference

Bip| Bo1 | Pii| Pig | Po1 | Pag | P31 | 1 | Rg | Rs | Ry | Ry | KB
false | false | false | false | false | false | false || true | true | true | true | false | false
false | false | false | false | false | false | true || true | true | false | true | false | false

false | true | false | false | false | false | false || true | true | false | true | true | false
false | true | false | false | false | false | true || true | true | true | true | true | true
false | true | false | false | false | true | false | true | true | true | true | true | true
false | true | false | false | false | true | true || true | true | true | true | true | true

false | true | false | false | true | false | false || true | false | false | true | true | false

true | true | true | true | true | true | true | false | true | true | false | true || false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that « is too

i.e. enumerate the models, and check that alpha is true in every model in which KB is true.
how many models are there in total?
where is the pit? -- need to reformulate as a model (or models).

Chapter 7 37

Inference by Enumeration

function TT-ENTAILS?(K B, «v) returns true or false
inputs: KD, the knowledge base, a sentence in propositional logic
v, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and o
return TT-CHECK-ALL(KB, o, symbols,{ })

function TT-CHECK-ALL(KB, v, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(K B, model) then return PL-TRUE?(«, model)
else return true // when KB is false, always return true
else do
P — FIRST(symbols)
rest «— REST(symbols)
return (TT-CHECK-ALL(KB, o, rest, model U {P = true})
and
TT-CHECK-ALL(KB, o, rest, model U {P = false }))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment.
(TT stands for truth table.) PL-TRUE? returns frue if a sentence holds within a model. The
variable model represents a partial model—an assignment to some of the symbols. The key-
word “and” is used here as a logical operation on its two arguments, returning true or false.

Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-ENTAILS?(KB,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, «, symbols, |])

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true
else do
P «— FIRST(symbols); rest«— REST(symbols)
return TT-CHECK-ALL(KB, «, rest, EXTEND(P, true, model)) and
TT-CHECK-ALL(KB, o, rest, EXTEND(P, false, model))

O(2") for n symbols;

Chapter 7

Logical equivalence

Two sentences are logically equivalent iff true in same models:

o= ifandonly if o = 3 and 3 = «

(aANpB) = (BAa) commutativity of A
(aVpB) = (6Va) commutativity of V
((aANB)Ay) = (AN (BA7)) associativity of A
(aVB)Vy) = (aV(BVy)) associativity of V
—(—a) = a double-negation elimination
(« = B) = (8 = —a) contraposition
(a = B) = (—~a VvV 3) implication elimination
(@ < 0) = ((a = B)AN (B = «)) biconditional elimination
—(aAfB) = (maV —0G) De Morgan
—(aV @) = (—aA—=0) De Morgan
(aAN(BVY) = (aAP)V(aAvy)) distributivity of A over V
(aV(BA7Y) = (aVB)A(aVy)) distributivity of V over A

Chapter 7 39

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, ' | ‘ o

Validity is connected to inference via the Deduction Theorem:

KB E aifand only if (KB = «) is valid
A sentence is satisfiable if it is true in some model
e.g.,
A sentence is unsatisfiable if it is true in no models
e.g.,

Satisfiability is connected to inference via the following:
KB E «if and only if (KB A =) is unsatisfiable
l.e., prove a by reductio ad absurdum

Chapter 7

40

Validity and satisfiability

A sentence is valid if it is true in all models,
eg., True, AV-A, A=A (ANA= B)) = B

Validity is connected to inference via the Deduction Theorem:
KB E aifand only if (KB = «) is valid

A sentence is satisfiable if it is true in some model
e.g., AV B, C

A sentence is unsatisfiable if it is true in no models
e.g., AN—-A

Satisfiability is connected to inference via the following:
KB E «if and only if (KB A =) is unsatisfiable
l.e., prove a by reductio ad absurdum

Chapter 7 40

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules
— Legitimate (sound) generation of new sentences from old
— Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search alg.
— Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in 1)
improved backtracking, e.g., Davis—Putnam—-Logemann—-Loveland
heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Chapter 7 41

Proof with Inference rules

» Modus a = [, e} (anp) =
Ponens: 3 (V@) =
(e AB)AY) =
> And- Tq AR ((aVB)Vy) =
Elimination: ~(-a) = a
Q0
(o = [) = (-
(0 = 3) = (
(@ & 3) = (
—(aANB) = (-
—(aV @) = (-
(@A (BVy) = (
(aV(BAY) = (

(BAa)
(BVa)
(@ A (BA7))
(Vv (BVA))

commutativity of A
commutativity of V
associativity of A
associativity of V
double-negation elimination
contraposition
implication elimination
NG =)
De Morgan
De Morgan
)V (aA7))
) A (V7))

f = —a)

biconditional eliminatio

distributivity of A over V
distributivity of V over A

Proof with Inference rules — Quiz

Ri: =P » Bi-conditional elimination to R,
Ry : Bl,l & (PLQ V PQ,l) .
Rs : BQJ = (Pl,l V PQ’Q V PS,l)

R4 . —|B1:1 .
Rs: DBoj. » Modus ponens with R,

» And-elimination

» Contrapositives

P> 1 Isthere apit at (2,1)? » De morgan's rule

a = [, o (aNpB) = (A«) commutativity of A
3 (Vv @3) = (fVa) commutativity of V
((aNB)AYy) = (aAN(BA7)) associativity of A
aNp ((aVvpB)Vy) = (aV(FV7y)) associativity of V
Qo —(=a) = a double-negation elimination
(« = () = (- = —a) contraposition
(¢ = () = (—a Vv 3) implication elimination
(a & 0) = ((a« = B)A(B = «)) biconditional elimination
—(aANfB) = (-maV -F) De Morgan
—(aV @) = (maAN-F) DeMorgan
(an(BVy) = (aNB)V(aAy)) distributivity of A over V
(aV(BAY) = (aVP)A(aVy)) distributivity of V over A

Proof with inference rules

» Does it look like a search problem?
>

» Does it look like more efficient than enumerating models?
>

» |s it affected by additional sentences?
» If KB Ea then KBABEa?

A single inference rule that yields a complete inference algoritm when coupled
with any complete search algorithm.

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

clauses
Eg, (AV-B)A(BV-CV-D)

Resolution inference rule (for CNF): complete for propositional logic

IARYARERVE S myV---Vm,y,
51\/'“\/fi_l\/&qu\/”'\/fk\/mlV"'ij_1ij+1V"'an

where /; and m; are complementary literals. E.g.,

P13V P2, =P 9
P 3

9

=5 | U,
_>H.;X

-
!
=

Resolution is sound and complete for propositional logic

Chapter 7 67

Conversion to CNF

Bi1 < (PiaV Py)

1. Eliminate <, replacing o < [with (v = G) A (f = «).
(Bi1 = (Pi2V Pa)) AN((Pr2V Pa1) = Bia)

2. Eliminate =, replacing o = (3 with -V (3.

(mB1aV PiaV Poy) N(—(PraV Po1)V Br)

3. Move — inwards using de Morgan's rules and double-negation:

(mB1aV PioV Poy) AN((mPiaA—Pa1)V Byy)
4. Apply distributivity law (\ over A) and flatten:
(mB11V PiaV Poy) AN (=PioV Bi1) A (P11 V By)

Chapter 7 68

Resolution algorithm

Proof by contradiction, i.e., show X' B A =« unsatisfiable

function PL-RESOLUTION(KB, «) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB N -«
new<«—{ }
loop do
for each C;, C; in clauses do
resolvents «— PL-RESOLVE(C;, C})
if resolvents contains the empty clause then return true
new<«— new U resolvents
if new C clauses then return false
clauses <« clauses U new

Each pair that contains complementary literals is resolved to produce a new clause
The new clause is added to the set if it is not already present. Continue until

- either there are no new clauses that can be added: KB does not entail alpha

- or two clauses resolve to yield the empty clause: KB entails alpha

Chapter 7 69

Resolution example

KB = (Bl,l = <P172 V P271)> A _'Bl,l o = _|P1’2

Chapter 7 70

Resolution example

KB = (Bl,l = <P172 V P271)> A _'Bl,l o = —|P1’2

B 2,1\/ Bl,l

B Bl,l\/ P1,2\/ P2,1

L T\

BLErY Bl,l

Chapter 7 70

Resolution example

KB = (Bl,l = <P172 V P271)> A _'Bl,l o = —|P1’2

B 2,1\/ Bl,l

B Bl,l\/ P1,2\/ P2,1

P

B Bl,l\/ Pl,z\/ 1 |Z)1 L\ Pz WY —.|I)12I B Bl,l\/ Pz,l\/ Bl,l

BLErY Bl,l

B Bl,l

M AN

Pl,z\/ I:)2,1\/ _'P2,1

o P2,1 ! P1,2

Chapter 7 70

Forward and Backward Chaining

» In many practical situations, the full power of resolution is not
needed. Real-world knowledge bases often contain only clauses
of a restricted kind, called Horn clauses.

» Disjunction of literals with at most one positive literal

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses
Horn clause =
{» proposition symbol; or
¢ (conjunction of symbols) = symbol
Eg, CAN(B = AANCAD = B)

Modus Ponens (for Horn Form): complete for Horn KBs

..., 0, ar N Nay, =
o

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

Chapter 7

42

Forward chaining

Idea: fire any rule whose premises are satisfied in the K B,
add its conclusion to the /'3, until query is found

P = Q@
LANM = P
BANL = M
ANP = L
ANB = L
A

B

Easy to see with AND-OR graphs

Chapter 7 43

Forward chaining

|dea: fire any rule whose premises are satisfied in the K B,
add its conclusion to the /'3, until query is found

Q
P = @

LANM = P P
BANL = M

ANP = L M
ANB = L

A

B

Chapter 7 43

Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
p <« Popr(agenda)
unless inferred[p] do
inferred[p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c]
if count|[c] = 0 then do
if HEAD[¢] = ¢ then return true
PusH(HEAD|(], agenda)
return false

Chapter 7

44

Forward chaining example

Chapter

45

Forward chaining example

Chapter

46

Forward chaining example

Chapter

47

Forward chaining example

Q

1
P
1
%
M)
X

CCCCCCCCCC

Forward chaining example

CCCCCCCCCC

Forward chaining example

CCCCCCCCCC

Forward chaining example

Forward chaining example

Proof of completeness

FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols

3. Every clause in the original K B is true in m
Proof: Suppose a clause a; A ... Aaj = bis false in m
Then a; A ... Aapis true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB
5. If KB = q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check o

Chapter 7

53

Forward chaining: A data-driven reasoning

Backward chaining

|dea: work backwards from the query ¢:
to prove ¢ by BC,
check if ¢ is known already, or
prove by BC all premises of some rule concluding ¢

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

Chapter 7

54

Backward chaining example

Chapter

55

Backward chaining example

Backward chaining example

Chapter

57

Backward chaining example

Q
\T
.

M
A\
AT

@ E

Chapter

Backward chaining example

Chapter

59

Backward chaining example

Q

|

P
M

P

®

Chapter

60

Backward chaining example

Chapter

61

Backward chaining example

Q

|
hy
2

Chapter

62

Backward chaining example

|
I
b

A o

CCCCCCCCCC

Backward chaining example

CCCCCCCCCC

Backward chaining example

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do | get into a PhD program?

Complexity of BC can be much less than linear in size of KB

Chapter 7

66

Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundess: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated informa-
tion, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

Chapter 7 71

