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Outline

& Why FOL?

> Syntax and semantics of FOL

> Fun with sentences

& Wumpus world in FOL
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Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

|--> knowledge and inference are separate. Inference is domain-independent.

Propositional logic allows partial /disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B ; A\ P is derived from meaning of 5 ; and of P »

Meaning in propositional logic is context-independent
unlike natural language, where meaning depends on context
guag g

Propositional logic has very limited expressive power

(unlike natural language)

E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square

Procedural approach: programs represent the computational processes. Data structures within programs can
represent the facts. Lack any general mechanisms for deriving facts from other facts: each update to a data
structure is done by a domain-specific procedure.

Natural languages are very expressive! but ambigious & context dependent.
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First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

e Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, . ..

e Functions: father of, best friend, third inning of, one more than, end of

e.g. "one plus two equals three"
- Objects?

- relations?

- functions?
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Logics in general

Language

Ontological
Commitment

Epistemological
Commitment

Propositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

facts

facts + degree of truth

true/false/unknown

known interval value

- Ontology often deals with questions concerning what entities exist or may be said
to exist and how such entities may be grouped, related within a hierarchy, and
subdivided according to similarities and differences. (wiki)

- Epistomology: the study or a theory of the nature and grounds of knowledge especially

with reference to its limits and validity. (merriam-webster)
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Logics in general

Language

Ontological
Commitment

Epistemological
Commitment

Propositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

facts

facts, objects, relations

facts, objects, relations, times
facts

facts + degree of truth

true/false/unknown
true/false/unknown
true/false/unknown
degree of belief

known interval value
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Syntax of FOL: Basic elements

Constants
Predicates
Functions

Variables

KingJohn, 2, UCB, ...
Brother, >, ...
Sqrt, LeftLegOf, ...

x, Yy, a, b,...

Connectives A V = = &

Equality
Quantifiers

=

Chapter 8
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Syntax of FOL: Basic elements

Sentence —  AtomicSentence | ComplexSentence
AtomicSentence —  Predicate | Predicate( Term,...) | Term = Term

ComplexSentence — ( Sentence ) | [ Sentence ]
— Sentence
Sentence N Sentence
Sentence v Sentence
Sentence = Sentence

Sentence < Sentence

Quantifier Variable, ... Sentence
Term — Function(Term,...)
Constant

Variable

Quantifier — YV | 3

Constant — A | X1 | John

Variable — al| x| s

Predicate —  True | False | After | Loves | Raining | ---
Function — Mother | LeftLeg | -

OPERATOR PRECEDENCE : =, N\, V, =, =



Atomic sentences

Atomic sentence = predicate(termy, ..., term,,)
or termi = termsy

Term = function(terms, ..., term,)
or constant or variable

E.g., Brother(KingJohn, RichardT heLionheart)
> (Length(LeftLegO f(Richard)), Length(LeftLegO f(KingJohn)))

A term with no variables is called a ground term.
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Complex sentences

Complex sentences are made from atomic sentences using connectives
—|S, Sl A\ SQ, Sl V SQ, Sl = SQ, Sl a— SQ

E.g. Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
>(1,2) V <(1,2)
>(1,2) A =>(1,2)
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The semantics must relate sentences to models in order to determine truth.

Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains > 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

An atomic sentence predicate(termy, ... term,) is true
iff the objects referred to by term., ..., term,
are in the relation referred to by predicate

Chapter 8
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Models for FOL: Example

Domain for FOL is the set of objects it contains.

Objects in the domain are related in various ways:

- relation: set of tuples of objects that are related.
e.g. brotherhood relation?

- function: given object must be related to exactly
one object.

brother

T—

brother

person

person
King

eft leg

Relation: the set of tuples of objects that are related.

Objects? Chapter §
Relations? Unary relations, binary relations?

Functions?
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Truth example

Consider the interpretation in which
Richard — Richard the Lionheart
John — the evil King John
Brother — the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model
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Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to oo
For each k-ary predicate P in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C' in the vocabulary
For each choice of referent for C' from n objects ...

Computing entailment by enumerating FOL models is not easy!

Chapter 8
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Universal quantification

V (variables) (sentence)

Everyone at Berkeley is smart:
Vo At(x, Berkeley) = Smart(x)

Va P istrue in a model m iff P is true with = being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn, Berkeley) = Smart(KingJohn))
(At(Richard, Berkeley) = Smart(Richard))
(At(Berkeley, Berkeley) = Smart(Berkeley))

> > >
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Quiz
» What is the interpretation of
Vax At(x, Bogazici) A Smart(x)

» Feedback:

» https://tinyurl.com/yclbjjve



A common mistake to avoid

Typically, = is the main connective with V
Common mistake: using A as the main connective with V:

Vax At(x, Berkeley) N Smart(x)

means "Everyone is at Berkeley and everyone is smart”
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Existential quantification

3 (variables) (sentence)

Someone at Stanford is smart:
dx At(x, Stanford) A Smart(x)

dx P is true in a model m iff P is true with = being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stan ford) A Smart(KingJohn))
V (At(Richard, Stanford) A Smart(Richard))
V (At(Stanford, Stanford) A Smart(Stanford))
V
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Another common mistake to avoid

Typically, A is the main connective with -

Common mistake: using = as the main connective with 3:
dx At(x, Stanford) = Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers

Vo Vy isthesameasVy Vo
dxr dy isthesameas dy dx
Jdx Vy is not the sameasVy dx

dx Vy Loves(z,y)

Vy dx Loves(x,vy)

Quantifier duality: each can be expressed using the other
Vx Likes(x, IceCream) —3x —Likes(x, [ceCream)
dx Likes(xz, Broccoli) -V —Likes(x, Broccoli)

Note: P(x,y) is interpreted as "x is a P of y".

Chapter 8
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Properties of quantifiers

Vo Vy isthesameasVy Vo
dxr dy isthesameas dy dx
Jdx Vy is not the sameasVy dx

da Vy Loves(x,y)
“There is a person who loves everyone in the world”

Vy dx Loves(z,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other
Vx Likes(x, IceCream) —3x —Likes(x, [ceCream)
dx Likes(xz, Broccoli) -V —Likes(x, Broccoli)

relate to De Morgan's rule?
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Fun with sentences

Brothers are siblings

Chapter 8
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Fun with sentences

Brothers are siblings
Vx,y Brother(x,y)

“Sibling” is symmetric

= Sibling(x,y).

Chapter 8

19



Fun with sentences

Brothers are siblings

Vax,y Brother(x,y) = Sibling(x,y).
“Sibling” is symmetric

Va,y Sibling(x,y) < Sibling(y,x).

One’s mother is one's female parent
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Fun with sentences

Brothers are siblings

Vax,y Brother(x,y) = Sibling(x,y).

“Sibling” is symmetric

Va,y Sibling(x,y) < Sibling(y,x).

One’s mother is one's female parent

Va,y Mother(x,y) < (Female(x) N\ Parent(x,y)).

A first cousin is a child of a parent’s sibling
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Fun with sentences

Brothers are siblings
Vx,y Brother(x,y)

“Sibling” is symmetric

= Sibling(x,y).

Va,y Sibling(x,y) < Sibling(y,x).

One’s mother is one's female parent

Va,y Mother(x,y) < (Female(x) N\ Parent(x,y)).

A first cousin is a child of a parent’s sibling

Va,y FirstCousin(z,y) < dp,ps Parent(p,x) A Sibling(ps,p) A

Parent(ps,y)
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Fun with sentences i.e. Kinship domain

Ym,c Mother(c)=m < Female(m) N Parent(m,c) .
One’s husband is one’s male spouse:
Yw,h Husband(h,w) < Male(h) N Spouse(h,w) .
Male and female are disjoint categories:
Va Male(x) & —Female(x).
Parent and child are inverse relations:
Y p,c Parent(p,c) < Child(e,p) .
A grandparent is a parent of one’s parent:
Y g,c Grandparent(g,c) < dp Parent(g,p) N Parent(p,c) .

A sibling 1s another child of one’s parents:

Ya,y Sibling(x.y) < x #yAdp Parent(p,x) N Parent(p,y) .

Definitions "bottom-out" at a basic set of predicates.
What is the basic set here?
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Domain of natural numbers and addition

NatNum(0) .
vn NatNum(n) = NatNum(S(n)) .

vn 0#S5(n).
Ym,n m#n = S(m)#S(n).

vm NatNum(m) = + (0,m)=m.
vYm,n NatNum(m) A\ NatNum(n) = + (S(m),n) = S(+(m.n))

.. interpretation with infix notation ?
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Domain of sets and operations

1. The only sets are the empty set and those made by adjoining something to a set:
Vs Set(s) & (s={})V(Ix,so Set(se) Ns={x|s2}).

2. The empty set has no elements adjoined into it. In other words, there is no way to
decompose { } into a smaller set and an element:

—Jx,s {x|s}={}.

3. Adjoining an element already in the set has no effect:

Vo.s r€s & s={x|s}.

4. The only members of a set are the elements that were adjoined into it. We express
this recursively, saying that x 1s a member of s if and only if s 1s equal to some set s2
adjoined with some element y, where either y 1s the same as & or x is a member of sa:

sof N (z=yN xe€s2)).

5. A setis a subset of another set if and only if all of the first set’s members are members
of the second set:

Vo,s r€s < Jy,s2 (s={y

Vs1,8 s1Cs9 & (Vo v€s1 = r€s9).

6. Two sets are equal if and only if each is a subset of the other:

V51,52 (81 —59) & (s1 Cs9As9Csq).

7. An object is in the intersection of two sets if and only if it is a member of both sets:
Vi ,s1,89 v€(s1Nsy) & (r€sy AT Esy).
8. An object is in the union of two sets if and only if it is a member of either set:

Vi, s1,s9 v€(s1Usg) & (r€s1VreEss).

Chapter 8
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Equality

termy = terms is true under a given interpretation
if and only if term, and terms refer to the same object

da,y Brother(x, Richard) N Brother(y, Richard) N —(x=1v) .
=ntence

(EI x,y Brother(x, Richard) N Brother(y, Richard)

E.g., definition of (full) Sibling in terms of Parent:
Va,y Sibling(x,y) < [=(x=y)AIm, [ =(m=f)A
Parent(m,z) A Parent(f,x) N\ Parent(m,y) A Parent(f,y)]

Chapter 8
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Actions: Turn(Right), Turn(Left), Forward, Shoot
Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢ = 5:

Tell(K B, Percept(|[Smell, Breeze, None|,5)) ... add sentences to KB (assertion)
Ask(KB,da Action(a,b)) ... ask questions

constant, variable, relation, function?
|.e., does K BB entail any particular actions at t = 57

Answer: Yes, {a/Shoot} «— substitution (binding list)

Given a sentence S and a substitution o,

So denotes the result of plugging o into S; e.g.,
S = Smarter(z,y)

o = {x/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

Ask(K B, S) returns some/all o such that KB |= So
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Knowledge base for the wumpus world

“Perception”

Vb,g,t Percept(|[Smell,b,g|,t) = Smelt(t)
Vs,b,t Percept(|s,b, Glitter|,t) = AtGold(t)

Reflex: Vt AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?

Vit AtGold(t) N —Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential

Chapter 8 25




Deducing hidden properties

Properties of locations:
Va,t At(Agent,x,t) N Smelt(t) = Smelly(x)
Va,t At(Agent,x,t) A\ Breeze(t) = Breezy(x)

Squares are breezy near a pit:
Wumpus(x), Wall(x), Pit(x), Adjacent(x,y)
Diagnostic rule—infer cause from effect

Vy Breezyly) = 777

Causal rule—infer effect from cause
222 = Breezy(y)

Definition for the Breezy predicate:
Vy Breezyly) < 772
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Deducing hidden properties

Properties of locations:
Va,t At(Agent,x,t) N Smelt(t) = Smelly(x)
Va,t At(Agent,x,t) A\ Breeze(t) = Breezy(x)

Squares are breezy near a pit:
Pit(x), Adjacent(x,y), Wumpus(x), Wall(x)
Diagnostic rule—infer cause from effect

Yy Breezy(y) = dx Pit(x) N\ Adjacent(x,y)

Causal rule—infer effect from cause
Va,y Pit(x) N Adjacent(x,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Vy Breezy(y) < [dx Pit(z) AN Adjacent(x,y)]
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Knowledge Engineering in FOL

Create a formal representation of the objects and relations in the
domain.

» |dentify the task: The range of questions, kinds of facts.
» Assemble relevant knowledge: How the domain works

» Decide on vocabulary of predicates, functions, constants.
I

Encode general knowledge: Write down the axioms for all
vocabulary terms.

\4

Encode a description of the specific problem instance

\ 4

Pose queries to the inference procedure
» Debug the KB



Knowledge Engineering in FOL

B LO/]_ e

» |dentify task: Assemble relevant knowledge:
» Decide on vocabulary:

» Distinguish gates,

» Gate behavior:

» Terminals:

» Value of terminal:

» Connectivity:
» Encode general knowledge of the domain:

» Encode specific problem instance:



Knowledge Engineering in FOL
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» |dentify task: Input — Output
» Assemble relevant knowledge: 4 types of gates: XOR, AND, OR

» Decide on vocabulary:
» Distinguish gates, X, X,
» Gate behavior: Type (X )=XOR or Type(X_ , XOR) or XOR(X))
» Terminals: In(1,X,), Out(1, X )

» Signal
» Connectivity: Connected(Out(1,X ), In(1,X)))



Knowledge Engineering in FOL
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» Encode general knowledge of the domain:

Vt1,to Connected(ty,t2) = Signal(t;) = Signal(ts)
vVt Signal(t) =1V Signal(t) = 0,1 # 0
Vg Type(g) = OR = Signal(Out(1,g)) =1 < In Signal(In(n,g)) =1

» Encode specific problem instance:
Type(X1) = XOR Type(X1) = AND...
Connected (Out(1,X1), In(1, X5))
Connected (In (1,Cq), In(1, X1))



Knowledge Engineering in FOL
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» Pose queries:

EI7:17/5.271’3
Signal(In(1,Cy)) = i1 A Signal(In(2, Cl)) —
A Signal(Out(1,C1)) = 0 A Signal(Out(2, )

Szgnal(ln(S Ch)) =13

IIM



Summary

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus KB

Chapter 8
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INFERENCE IN FIRST-ORDER LOGIC

CHAPTER 9

Chapter 9
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Outline

S 0SSO O

Reducing first-order inference to propositional inference
Unification

Generalized Modus Ponens

Forward and backward chaining

Logic programming

Resolution

Chapter 9
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A brief history of reasoning

450B.C. Stoics propositional logic, inference (maybe)

322B.C. Aristotle “syllogisms” (inference rules), quantifiers

1565 Cardano probability theory (propositional logic 4+ uncertainty)
1847 Boole propositional logic (again)

1879 Frege first-order logic

1922 Wittgenstein  proof by truth tables

1930 Godel 3 complete algorithm for FOL

1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Godel =3 complete algorithm for arithmetic

1960 Davis/Putnam “practical” algorithm for propositional logic

1965 Robinson “practical” algorithm for FOL—resolution
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Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

Vv «
SUBST({v/g}, a)

for any variable v and ground term g

Eg, Vo King(x) A\ Greedy(x) = FEvil(x) yields

King(John) A Greedy(John) = FEvil(John)
King(Richard) N Greedy(Richard) = FEvil(Richard)
King(Father(John)) A Greedy(Father(John)) = FEwvil(Father(John))
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Existential instantiation (EI)

For any sentence «, variable v, and constant symbol £

that does not appear elsewhere in the knowledge base:

Jv «

SUBST({v/k}, )
Eg, dx Crown(xz) NOnHead(x, John) yields

Crown(Ch) A OnHead(Cy, John)
provided ('] is a new constant symbol, called a Skolem constant
Another example: from dx d(xY)/dy = 2Y we obtain

d(e’)/dy = e’

provided e is a new constant symbol
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Existential instantiation contd.

Ul can be applied several times to add new sentences;
the new KB is logically equivalent to the old

El can be applied once to replace the existential sentence;

the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

Question: How can we use instantiations for inference in FOL?

Chapter 9



Reduction to propositional inference

Suppose the KB contains just the following:

Vo King(x) A Greedy(z) = FEvil(x)
King(John)

Greedy(John)

Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) N\ Greedy(John) = FEvil(John)
King(Richard) N Greedy(Richard) = FEvil(Richard)
King(John)

Greedy(John)

Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Chapter 9 7



Reduction contd.

Claim: a ground sentence” is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

|dea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence « is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

ldea: For n = 0 to oo do
create a propositional KB by instantiating with depth-n terms
see if o is entailed by this KB

Via propositionalization, any entailed sentence can be proved: complete!
What if not entailed? We cannot tell if it is entailed or not...

Chapter 9
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Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

Vo King(x) A Greedy(z) = FEvil(x)
King(John)

Vy Greedy(y)

Brother(Richard, John)

it seems obvious that Fvil(John), but propositionalization produces lots of

facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p - n”

With function symbols, it gets nuch much worsel!

Instantiations

Chapter 9
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A first-order inference rule

Indeed, the inference of Ewvil(.John) from the sentences

v King(x) N Greedy(x) = FEuvil(x)
King(John)
Greedy(John)



A first-order inference rule

Indeed, the inference of Ewvil(.John) from the sentences

v King(x) N Greedy(x) = FEuvil(x)
King(John)
Greedy(John) {x/John} solves the query Euvil(x)-



A first-order inference rule

Indeed, the inference of Ewvil(.John) from the sentences

v King(x) N Greedy(x) = FEuvil(x)
King(John)
Yy Greedy(y) .

{x/John,y/John}



A first-order inference rule

Indeed, the inference of Ewvil(.John) from the sentences

v King(x) N Greedy(x) = FEuvil(x)
King(John)
Yy Greedy(y) .

{x/John,y/John}

Generalized Modus Ponens (GMP)

! ! ! -,
Pl P2y ooy Pns (PLAPLA L ADPL = q)

qt

where p,'0) = p,0 for all i



A first-order inference rule

Indeed, the inference of Evil(John) from the sentences

va King(x) N Greedy(x) = Buvil(x)
King(John)
Yy Greedy(y) .

{x/John,y/John}

Generalized Modus Ponens (GMP)

! ! ! -,
pry p2y ooy pals (prAPaA L APy = q)

qt

where p,'0) = p,0 for all i

p1’is King(John) p1is King(x)
po’ is Greedy(y) po is Greedy(x)
q is Evil(x)



A first-order inference rule

Indeed, the inference of Evil(John) from the sentences

va King(x) A Greedy(x) = Euvil(x)
King(John)
Yy Greedy(y) .

{x/John,y/John}

Generalized Modus Ponens (GMP)

ol . oph (DL AP AL A D, = .

b P2 Py (PLAP2 A P = 9) where p,;'0 = p;0 for all i
qt

p1’is King(John) p1is King(x) 0is {x/John,y/John}

o’ is Greedy(y) po is Greedy(x) q0 is Evil(John)

q is Evil(x)



Unification

Knows(John. Jane)

vy Knows(y, Bill)
7y Knows(y, Mother(y))
v x Knows(x, Elizabeth)

AskVars(Knows(John,x)): whom does John know?



Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, x)| Knows(John, Jane)
Knows(John, x)| Knows(y, OJ)
Knows(John, x)| Knows(y, Mother(y))
Knows(John, x)| Knows(x,0J)

Chapter 9 10



Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, z)| Knows(John, Jane) |{x/Jane}
Knows(John, x)| Knows(y, OJ)
Knows(John, x)| Knows(y, Mother(y))
Knows(John, x)| Knows(x,0J)
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Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, z)| Knows(John, Jane) |{x/Jane}
Knows(John, x)| Knows(y, OJ) {z/OJ,y/John}
Knows(John, x)| Knows(y, Mother(y))

Knows(John, x)| Knows(x,0J)

Chapter 9 12



Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, x)| Knows(John, Jane) |{z/Jane}
Knows(John, x)| Knows(y, OJ) {z/OJ,y/John}

( ) (

( ) (

Knows(John, x)| Knows(y, Mother(y)) |{y/John, xz/Mother(John)}
Knows(John, x)| Knows(x,0J)
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Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 4

Knows(John, z)| Knows(John, Jane) |{x/Jane}

Knows(John, x)| Knows(y, OJ) {z/OJ,y/John}
Knows(John, x)| Knows(y, Mother(y)) |{y/John, xz/Mother(John)}
Knows(John, x)| Knows(x,0J) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(zy7,0J)
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Generalized Modus Ponens (GMP)

! R Apa A ... \p, = .
PUs P2y oo Pals (PLAP: b ) where p;/0 = p,0 for all i
qt
p1 is King(John) p1is King(x)
po’ is Greedy(y) po is Greedy(x)

0 is {x/John,y/John} qis Fvil(x)
qf is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified
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Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal
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Example knowledge base contd.

. it is a crime for an American to sell weapons to hostile nations:
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Example knowledge base contd.

. it is a crime for an American to sell weapons to hostile nations:
American(x) AW eapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles
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Example knowledge base contd.

. it is a crime for an American to sell weapons to hostile nations:
American(x) AW eapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 Owns(Nono, x) A Missile(x):
Owns(Nono, M) and Missile( M)
... all of its missiles were sold to it by Colonel West
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Example knowledge base contd.

. it is a crime for an American to sell weapons to hostile nations:
American(x) AW eapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 Owns(Nono, x) A Missile(x):
Owns(Nono, M) and Missile( M)
... all of its missiles were sold to it by Colonel West
Vax Missile(x) N Owns(Nono,z) = Sells(West, x, Nono)

Missiles are weapons:
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Example knowledge base contd.

. it is a crime for an American to sell weapons to hostile nations:
American(x) AW eapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 Owns(Nono, x) A Missile(x):
Owns(Nono, M) and Missile( M)
... all of its missiles were sold to it by Colonel West
Vax Missile(x) N Owns(Nono,z) = Sells(West, x, Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile”:
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Example knowledge base contd.

. it is a crime for an American to sell weapons to hostile nations:
American(x) AW eapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 Owns(Nono, x) A Missile(x):
Owns(Nono, M) and Missile( M)
... all of its missiles were sold to it by Colonel West
Vax Missile(x) N Owns(Nono,z) = Sells(West, x, Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile”:
Enemy(x, America) = Hostile(x)
West, who is American . ..
American(West)
The country Nono, an enemy of America . ..
Enemy(Nono, America)
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