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Outline

♦ Why FOL?

♦ Syntax and semantics of FOL

♦ Fun with sentences

♦ Wumpus world in FOL
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Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent

(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square
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First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, . . .

• Functions: father of, best friend, third inning of, one more than, end of
. . .
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Logics in general

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value
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Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Predicates Brother, >, . . .
Functions Sqrt, LeftLegOf, . . .
Variables x, y, a, b, . . .
Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃
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Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
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Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)
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Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate
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Models for FOL: Example

R J$

left leg left leg

on head
brother

brother

person
person
king

crown
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Truth example

Consider the interpretation in which
Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model
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Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞
For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!
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Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley) ⇒ Smart(x)

∀x P is true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn,Berkeley) ⇒ Smart(KingJohn))
∧ (At(Richard,Berkeley) ⇒ Smart(Richard))
∧ (At(Berkeley,Berkeley) ⇒ Smart(Berkeley))
∧ . . .
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Quiz

What is the interpretation of 

Feedback:

https://tinyurl.com/yclbjjv6



A common mistake to avoid

Typically, ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀x At(x, Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”
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Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is true in a model m iff P is true with x being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard, Stanford) ∧ Smart(Richard))
∨ (At(Stanford, Stanford) ∧ Smart(Stanford))
∨ . . .
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Another common mistake to avoid

Typically, ∧ is the main connective with ∃

Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!

Chapter 8 16



Properties of quantifiers

∀x ∀ y is the same as ∀ y ∀ x (why??)

∃x ∃ y is the same as ∃ y ∃ x (why??)

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃ x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀ x ¬Likes(x,Broccoli)
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Fun with sentences

Brothers are siblings
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Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔ [¬(x = y) ∧ ∃m, f ¬(m = f) ∧

Parent(m,x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]
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Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, ∃ a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary,Bill)

Ask(KB, S) returns some/all σ such that KB |= Sσ
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Knowledge base for the wumpus world

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter], t) ⇒ AtGold(t)

Reflex: ∀ t AtGold(t) ⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)

Holding(Gold, t) cannot be observed
⇒ keeping track of change is essential
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Deducing hidden properties

Properties of locations:
∀x, t At(Agent, x, t) ∧ Smelt(t) ⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧ Breeze(t) ⇒ Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
∀ y Breezy(y) ⇒ ∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule—infer effect from cause
∀x, y P it(x) ∧ Adjacent(x, y) ⇒ Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]
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Knowledge Engineering in FOL

Create a formal representation of the objects and relations in the 
domain.

Identify the task: The range of questions, kinds of facts.

Assemble relevant knowledge: How the domain works

Decide on vocabulary of predicates, functions, constants.

Encode general knowledge: Write down the axioms for all 
vocabulary terms.

Encode a description of the specific problem instance

Pose queries to the inference procedure

Debug the KB
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Knowledge Engineering in FOL

Identify task: Assemble relevant knowledge:

Decide on vocabulary: 

Distinguish gates, 

Gate behavior: 

Terminals:

Value of terminal:

Connectivity: 

Encode general knowledge of the domain:

Encode specific problem instance:
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Knowledge Engineering in FOL

Identify task: Input → Output

Assemble relevant knowledge: 4 types of gates: XOR, AND, OR

Decide on vocabulary: 

Distinguish gates, X
1
, X

2

Gate behavior: Type (X
1
)=XOR  or Type(X

1
, XOR) or XOR(X

1
)

Terminals: In(1,X
2
), Out(1, X

1
)

Signal

Connectivity: Connected(Out(1,X
1
), In(1,X

2
))
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Knowledge Engineering in FOL

Encode general knowledge of the domain:

Encode specific problem instance:
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Knowledge Engineering in FOL

Pose queries:



Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB
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Inference in first-order logic

Chapter 9
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Outline

♦ Reducing first-order inference to propositional inference

♦ Unification

♦ Generalized Modus Ponens

♦ Forward and backward chaining

♦ Logic programming

♦ Resolution
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A brief history of reasoning

450b.c. Stoics propositional logic, inference (maybe)
322b.c. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution
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Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

∀ v α

Subst({v/g}, α)

for any variable v and ground term g

E.g., ∀ x King(x) ∧Greedy(x) ⇒ Evil(x) yields

King(John) ∧Greedy(John) ⇒ Evil(John)
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧Greedy(Father(John)) ⇒ Evil(Father(John))

...

Chapter 9 4



Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α

Subst({v/k}, α)

E.g., ∃ x Crown(x) ∧OnHead(x, John) yields

Crown(C1) ∧OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant

Another example: from ∃ x d(xy)/dy = xy we obtain

d(ey)/dy = ey

provided e is a new constant symbol
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Existential instantiation contd.

UI can be applied several times to add new sentences;
the new KB is logically equivalent to the old

EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable
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Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) ∧Greedy(John) ⇒ Evil(John)
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard) etc.
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Reduction contd.

Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable
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Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p · nk instantiations

With function symbols, it gets nuch much worse!
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A first-order inference rule
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Unification



Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y, OJ)
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, OJ)
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Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, OJ)
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Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)
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Generalized Modus Ponens (GMP)

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn⇒ q)

qθ
where pi

′θ = piθ for all i

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)
qθ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Chapter 9 15



Soundness of GMP

Need to show that

p1
′, . . . , pn

′, (p1 ∧ . . . ∧ pn⇒ q) |= qθ

provided that pi
′θ = piθ for all i

Lemma: For any definite clause p, we have p |= pθ by UI

1. (p1 ∧ . . . ∧ pn⇒ q) |= (p1 ∧ . . . ∧ pn⇒ q)θ = (p1θ ∧ . . . ∧ pnθ ⇒ qθ)

2. p1
′, . . . , pn

′ |= p1
′ ∧ . . . ∧ pn

′ |= p1
′θ ∧ . . . ∧ pn

′θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens
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Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
Missile(x)⇒ Weapon(x)

An enemy of America counts as “hostile”:

Chapter 9 22



Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
Missile(x)⇒ Weapon(x)

An enemy of America counts as “hostile”:
Enemy(x, America) ⇒ Hostile(x)

West, who is American . . .
American(West)

The country Nono, an enemy of America . . .
Enemy(Nono, America)

Chapter 9 23


