Previous lectures: Inference in FOL

» Universal instantiation Vv o 30 a
SUuBsT({v/g},) SuBsT({v/k}, a)

» Existantial instantiation
» Reduction to propositional logic

» Unification ... 1t is a crime for an American to sell weapons to hostile nations:
American(x)\Weapon(y)A\Sells(x,y, z)NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 3 Owns(Nono,x) N Missile(xr):
Owns(Nono, M) and Missile(M)
... all of its missiles were sold to it by Colonel West
V& Missile(x) AN Owns(Nono,r) = Sells(West, z, Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile":
Enemy(x, America) = Hostile(x)
West, who is American . ..
American(West)
The country Nono, an enemy of America .
Enemy(Nono, America)

Quiz

Write down logical representations for the following sentences in
First-Order Logic:

a. Everyone who loves all animals is loved by someone.

b. Anyone who kills an animal is loved by no one.

c. Jack loves all animals.

d. Either Jack or Curiosity killed the cat, who is named Tuna.
e. Cat is an animal.

f. Curiosity killed the cat.

a. Everyone who loves all animals is loved by someone.

» If all animals are loved by somebody
then that somebody will be loved by someone

» |[f there is somebody who loves all y and all y are animals
then that somebody will be loved by someone

b. Anyone who kills an animal is loved by no one.

» X everyone who kills all animals is loved by no one.
P

Unification

Definition

The process of finding a substitution that makes two
literals complementary is called unification.

Two literals for which a unifying substitution exists are
called unifiable.

Importance of Unification

e [t 1s the basis for FOL resolution.

e It1s the main way rule-based systems determine
which rules apply 1n a situation.

e It 1s the way variables are treated in logic

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, x)| Knows(John, Jane)
Knows(John, x)| Knows(y, OJ)
Knows(John, x)| Knows(y, Mother(y))
Knows(John, x)| Knows(x,0J)

Chapter 9 10

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, z)| Knows(John, Jane) |{x/Jane}
Knows(John, x)| Knows(y, OJ)
Knows(John, x)| Knows(y, Mother(y))
Knows(John, x)| Knows(x,0J)

Chapter 9 11

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, z)| Knows(John, Jane) |{x/Jane}
Knows(John, x)| Knows(y, OJ) {z/OJ,y/John}
Knows(John, x)| Knows(y, Mother(y))

Knows(John, x)| Knows(x,0J)

Chapter 9 12

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 0

Knows(John, x)| Knows(John, Jane) |{z/Jane}
Knows(John, x)| Knows(y, OJ) {z/OJ,y/John}

() (

() (

Knows(John, x)| Knows(y, Mother(y)) |{y/John, xz/Mother(John)}
Knows(John, x)| Knows(x,0J)

Chapter 9 13

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(x) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, B) = 0 if o =30

p q 4

Knows(John, z)| Knows(John, Jane) |{x/Jane}

Knows(John, x)| Knows(y, OJ) {z/OJ,y/John}
Knows(John, x)| Knows(y, Mother(y)) |{y/John, xz/Mother(John)}
Knows(John, x)| Knows(x,0J) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(zy7,0J)

Chapter 9 14

Generalized Modus Ponens (GMP)

! R Apa A ... \p, = .
PUs P2y oo Pals (PLAP: b) where p;/0 = p,0 for all i
qt
p1 is King(John) p1is King(x)
po’ is Greedy(y) po is Greedy(x)

0 is {x/John,y/John} qis Fvil(x)
qf is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Chapter 9 15

Forward chaining algorithm

function FOL-FC-ASk(KB, «) returns a substitution or false

repeat until new is empty
new<«—{ }
for each sentence rin KB do
(prA... N\ pp = q)« STANDARDIZE-APART(7)
for each 6 such that (p1 A ... A p,)0 = (p) A ... A pl)o
for some pi,...,pl in KB
q' — SuBsT(0, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢ to new
¢ «— UNIFY(¢', @)
if ¢ is not fail then return ¢
add new to KB
return false

Chapter 9 24

function FOL-FC-ASK(AE, a) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
o, the query, an atomic sentence
local variables: new. the new sentences inferred on each iteration

repeat until new is empty
new—{ }
for each rule in KB do
(pr A...A pp = q)— STANDARDIZE-VARIABLES(rule)

for each # such that SUBST(#,p; A ... A p,)=SUBST(f,p; A ... A pl)
for some pi.,...,p,, in KB

q' — SUBST(#, q)

if ¢" does not unify with some sentence already in A|B or new then
add q' to new
¢ «— UNIFY(q', o)
if ¢ is not fail then return ¢

add new to KB

return false _ . : . :
J . it is a crime for an American to sell weapons to hostile nations:

American(x) \Weapon(y)A\Sells(x,y, z)NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 OQwns(Nono,x) N Missile(x):

Owns(Nono, M) and Maissile(M)

. all of its missiles were sold to it by Colonel West

Vo Missile(x) N Owns(Nono,r) = Sells(West, x, Nono)
Missiles are weapons:

Missile(x) = Weapon(z)
An enemy of America counts as “hostile”:

Enemy(x, America) = Hostile(x)
West, who is American . ..

American(West)
The country Nono, an enemy of America . ..

Enemy(Nono, America)

Forward chaining proof

American(\West)

Missile(M1) Owns(Nono,M1)

Enemy(Nono,America)

Chapter 9 25

Forward chaining proof

Weapon(M1) Salls(West,M1,Nono)

American(\West)

Missile(M1) Owns(Nono,M1)

Hostile(Nono)

Enemy(Nono,America)

Chapter 9 26

Forward chaining proof

Criminal (West)

Weapon(M1) Salls(West,M1,Nono)

American(\West)

Missile(M1) Owns(Nono,M1)

Hostile(Nono)

Enemy(Nono,America)

Chapter 9 27

Backward chaining algorithm

function FOL-BC-ASK(KB, goals,) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
0, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty

if goals is empty then return {0}
q' — SUBST(A, FIRST(goals))
for each sentence rin KB
where STANDARDIZE-APART(7) = (p1 A ... A pp = q)
and 0’ — UNIFY(q, ¢') succeeds
new_goals < [p1, ..., pn|REST(goals)]
answers «— FOL-BC-ASK(K B, new_goals, COMPOSE(f', 0)) U answers
return answers

Chapter 9

31

Backward chaining example

Criminal (West)

Chapter 9

32

Backward chaining example

Criminal (West)

American(x)

Weapon(y)

SHls(x,y,2)

{x/West}

Hostile(2)

Chapter 9 33

Backward chaining example

Criminal (West)

American(West)

Weapon(y)

{}

SHls(x,y,2)

{x/West}

Hostile(2)

Chapter 9 34

Backward chaining example

Criminal (West)

American(West)

Weapon(y)

{}

Missile(y)

SHls(x,y,2)

{x/West}

Hostile(2)

Chapter 9 35

Backward chaining example

Criminal (West)

American(West)

Weapon(y)

{}

Missile(y)

{ yM1}

SHls(x,y,2)

{x/West, y/M1}

Hostile(2)

Chapter 9 36

Backward chaining example

Criminal (West) {x/\West, y/M1, ZINono}
American(West) Weapon(y) Salls(West,M1,2) Hostile(2)
{} { z/Nono}

Missile(y) Missile(M1) | | Owns(Nono,M1)
{ ym1}

Chapter 9 37

Backward chaining example

Criminal (West) {x/\West, y/M1, ZINono}
American(\West) Weapon(y) Sells(West,M1,2) Hostile(Nono)
{1} { z/Nono}
Missile(y) Missile(M1) | |Owns(Nono,M1) | | Enemy(Nono,America)
{ ym1} {} {} {}

Chapter 9 38

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Chapter 9

39

Previous lecture: Resolution algorithm

» Proof by contradiction.

To prove (KB = «), show (KB A —a) is unsatisfiable.

Resolution algorithm

Proof by contradiction, i.e., show KB A —« unsatisfiable

function PL-RESOLUTION(KB, «) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB N -«
new<«—{ }
loop do
for each C;, C; in clauses do
resolvents «— PL-RESOLVE(C;, C})
if resolvents contains the empty clause then return true
new<«— new U resolvents
if new C clauses then return false
clauses <« clauses U new

Chapter 7

69

Resolution example

KB = (Bl,l = <P172 V P271)> A _'Bl,l o = —|P1’2

B 2,1\/ Bl,l

B Bl,l\/ P1,2\/ P2,1

P

B Bl,l\/ Pl,z\/ 1 |Z)1 L\ Pz WY —.|I)12I B Bl,l\/ Pz,l\/ Bl,l

BLErY Bl,l

B Bl,l

M AN

Pl,z\/ I:)2,1\/ _'P2,1

o P2,1 ! P1,2

Chapter 7 70

Resolution: brief summary

Full first-order version:
(NNl miVoee Vo,
(€1v---\/éz-_l\/&-ﬂ\/---\/Zkalv---\/mj_l\/mj+1\/---\/mn)9

where UNIFY({;, —=m;) =0.
[Animal (F(x)) V Loves(G(x),x)] and [-Loves(u,v) Vv —Kills(u,v)] |

For example, unifier?
resolvent clause?

= Rich(x) V Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 0 = {z/Ken}

Apply resolution steps to C'N (K B A —«); complete for FOL

Chapter 9 43

Conversion to CNF

Everyone who loves all animals is loved by someone:
Vo [Vy Animal(y) = Loves(x,y)] = [y Loves(y,x)]

1. Eliminate biconditionals and implications

2. Move — inwards: —Vz,p =dzxr —-p, —-dx,p =V —p:

Chapter 9 44

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

5. Drop universal quantifiers:

6. Distribute A over V:

Chapter 9 45

Conversion to CNF contd.

. Standardize variables: each quantifier should use a different one
Va 3y Animal(y) A =Loves(x,y)| V [z Loves(z,)]

. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

Va [Animal(F(x)) A = Loves(x, F(x))| V Loves(G(x), x)
. Drop universal quantifiers:

[Animal(F(x)) N = Loves(x, F'(x))] V Loves(G(x), x)

. Distribute A over V:

[Animal(F(z)) V Loves(G(x),x)] A |[=Loves(x, F'(x)) V Loves(G(x), x)]

Chapter 9 45

Conversion to CNF contd.

. Standardize variables: each quantifier should use a different one
Va 3y Animal(y) A =Loves(x,y)| V [z Loves(z,)]

. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

Va [Animal(F(x)) A = Loves(x, F(x))| V Loves(G(x), x)
. Drop universal quantifiers:

[Animal(F(x)) N = Loves(x, F'(x))] V Loves(G(x), x)

. Distribute A over V:

[Animal(F(z)) V Loves(G(x),x)] A |[=Loves(x, F'(x)) V Loves(G(x), x)]

Chapter 9 45

Resolution proof: definite clauses

- American(x) v - Weapon(y) v - SdlIs(xy,z2 v - Hostile(z) v Criminal(x)

= Criminal (West)

American(\West) - American(West) v — Weapon(y) v - Sells(West,y,2)

v 1 Hostile(2)

-1 Missile(x) v Weapon(x)

Missile(M1)

- Weapon(y) v- Sells(Westy,z) v -1 Hostile(2)

- Missiley) v~ Sdls(Westy,2) v — Hostile(2)

-1 Missileg(x) v -1 Owns(Nono,x) v Salls(West,x,Nono)

- SeisWest,M1,2) v - Hostile(2)

Missile(M1) -1 Missilg(M1) v - Owns(Nono,M1) v -1 Hostile(Nono)

Owns(Nono,M1)

- Enemy(x,America) v Hostile(x)

/

= Owns(Nono,M1) v — Hostile(Nono)

-1 Hostile(Nono)

Enemy(Nono,America) Enemy(Nono,America)

.

Chapter 9

46

Resolution: Another example

Write down logical representations for the following sentences in
First-Order Logic:

a. Everyone who loves all animals is loved by someone.
b. Anyone who kills an animal is loved by no one.

c. Jack loves all animals.
d. Either Jack or Curiosity killed the cat, who is named Tuna.

e. Cat is an animal.
f. Did curiosity kill the cat?

Convert to FOL

Vx [Vy Animal(y) = Loves(X,y)] = [dy Loves(y,x)
Vx [dy Animal(y) A Kills(x,y)] = [Vz —Loves(z,x)]

Vx Animal(x) = Loves(Jack,x)

Kills(Jack,Tuna) v Kills(Curiosity, Tuna)
Cat(Tuna)

Vx Cat(x) = Animal(x)
—Kills(Curiosity, Tuna)

FOL to CNF

Animal(F(x)) v Loves(G(x),x)
—Loves(x,F(x)) v Loves(G(x),x)
—Animal(y) v —Kills(x,y) v —=Loves(z.x)
—Animal(x) v Loves(Jack,x)

Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
Cat(Tuna)

—Cat(x) v Animal(X)

—Kills(Curiosity,Tuna)

Resolution by Refutation

» Exercise

Resolution by Refutation

Cat(Tuna) | —Cat(x) v Animal(x) | Kills(Jack.Tuna) v Kills[Cuﬂc:sit}',Tuna]l —Kills(Curiosity, Tuna)

—Animal(y) v —Kills(x,y) v ﬂLoves[z,xﬂ

[—Loves(x.F(x)) v anes[G[x],x)l —Animal(x) v anes[]ack,x]|

Animal(F(x)) v Loves(G(x).x)

Resolution by Refutation

| Cat(Tuna)| —Cat(x) v Animal(x) Kills(]ack,Tuna)vKills{Cuﬂosity,Tuna)" —Kills(Curiosity, Tuna)

LAnimal(Tuna) —Animal(y) v —Kills(x,y) v —Loves(z,x)| Kills(Jack,Tuna)

—=Kills(x,Tuna) v —Loves(z,x) —Loves(x,F(x)) v Loves(G(x),x) —Animal(x) v Loves(Jack,x)‘

—Animal(F(Jack)) v Loves(G(Jack)Jack) Animal(F(x)) v Loves(G(x),x

—Loves(z,Jack) Loves(G(Jack),Jack)

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Chapter 9

39

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. ldentify problem |dentify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork,US) than x == x + 2|

Chapter 9 40

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques = approaching a billion LIPS

Program = set of clauses = head :- literal;, ... literal,.

criminal (X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)

e.g., given alive(X) :- not dead(X).

alive (joe) succeeds if dead(joe) fails

Chapter 9

41

Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append ([],Y,Y).
append ([X|L],Y, [X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) 7

answers: A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=[]

Chapter 9

42

Planning

» Problem solving agents
» Logical Agents
» Planners

PDDL

» a factored representation: a state of the world is represented by
a collection of variables

» state: a conjunction of fluents that are ground, functionless atoms.
» the closed-world assumption
» Not used:
> At(X, y)
» =Poor,
» At(Father (Fred), Sydney)
» Deals with frame problem: only mentions A
» everything that stays the same is left unmentioned

Action(Fly(p, from, to),
PRECOND: At(p, from) N Plane(p) N Airport(from) /\ Airporit(to)
EFFECT: —~ At (p, from) N At(p. to))

PDDL

Action(Fly(p, from, to),
PRECOND: At(p, from) N Plane(p) N Airport(from) /\ Airporit(to)

EFFECT: — At(p, from) A\ At(p. to))

Y p, from,to (Fly(p, from,to) € ACTIONS(s)) <
s = (At(p, from) A Plane(p) N Airport(from) / Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s.

Propositionalize a PDDL problem
replace each action schema with a set of ground actions
then use a propositional solver such as SATPLAN to find a solution.

This is impractical when v and k are large.

RESULT(s,a) = (s — DEL(a)) U ADD(a) .

il = ActionCausesFt v (#* N —ActionCausesNotF") .

In PDDL the times and states are implicit in the action schemas: the precondition always
refers to time t and the effect to time ¢ + 1.

PDDL

» Definition of a planning domain: A set of action schemas

» A specific problem: within the domain is defined with the addition
of an initial state and a goal.

Init(At(Cy, SFO) N At(Cy, JFK) N At(Py, SFO) N At(P, JFK)
N Cargo(Cy) N Cargo(C3) N Plane(Py) N Plane(Ps)
N Airport(JFK) N Airport(SFO))
Goal (At(Cy, JFK) N At(Cy, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) N At(p, a) N Cargo(c) N Plane(p) N Airport(a)
EFFECT: — At(e, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) N Cargo(c) N Plane(p) N Airport(a)
EFFECT: At(c, a) N — In(c, p))
Action(Fly(p, from, to).

PRECOND: At(p, from) N Plane(p) N Awrport(from) N Airport(to)
EFFECT: — At(p, from) N At(p, to))

Figure 10.1 A PDDL description of an air cargo transportation planning problem.

PDDL example

A
C B
oin C
I
Start State Goal State

Black(x)

Oon(x,y)

Clear(x)

Action: Move (b, X, y)...
Action: MoveToTable (b,x)

PDDL example

A
C B
olE c
1
Start State Goal State

Init(On(A, Table) N On(B, Table) N On(C, A)

N Block(A) N Block(B) N Block(C) N Clear(B) N Clear(C))
Goal(On(A.B) N On(B.(C))
Action(Move (b, x,y),

PRECOND: On(b,xz) N Clear(b) N Clear(y) N Block(b) N Block(y) N
(b#x) N (b#Fy) A (z7Y),

EFFECT: On(b.y) N Clear(xz) N —=On(b,x) N —Clear(y))
Action(MoveToTable (b, x),

PRECOND: On(b,xz) N Clear(b) N Block(b) N (b#x),
EFFECT: On(b, Table) N Clear(x) N =On(b, z))

Automated Planning

Planning research has been central to Al from the beginning, partly because
of practical interest but also because of the “intelligence” features of human
planners.

{> Large logistics problems, operational planning, robotics, scheduling etc.
¢ A number of international Conferences on Planning

> Bi-annual Planning competition

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 3

Automated Planning

The setting: a single agent in a fully observable, deterministic and static
environment.

Propositional logic can express small domain planning problems, but becomes
impractical if there are many actions and states (combinatorial explosion).

Example: In the wumpus world the action of a forward-step has to be written
for all four directions, for all n? locations, and for each time step 7.

The Planning Domain Definition Language (PDDL) is a subset of FOL and
more expressive than propositional logic. It allows for factored representation.

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 14 4

Planning Domain Definition Language (PDDL)

PDDL is derived from the STRIPS planning language.

— Initial and goal states.
— A set of ACTIONS(s) in terms of preconditions and effects.
— Closed world assumption: Unmentioned state variables are assumed false.

Example:

AcTIioN: Fly(from, to)
PRECONDITION: At(p, from), Plane(p), Airport(from), Airport(o)
EFrFECT: —At(p, from), At(p, to)

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 5

PDDL/STRIPS operators

Tidily arranged actions descriptions, restricted language

ACTION: Buy(z)
PRECONDITION: At(p), Sells(p,) At(p) Sells(p,x)

EFFECT: Have(z) Buy(x)

[Note: this abstracts away many

H
important details of buying!] ave(x)

Restricted language = efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 6

Example: Air cargo transport

A classical transportation problem: Loading and unloading cargo and flying
between different airports.

Actions: Load(cargo, plane, airport), Unload(cargo, plane, airport),
Fly(plane, airport, airport)

Predicates: In(cargo, plane), At(cargoVplane, airport)

Example solution:
Load(C1, P1, SFO), Fly(P1, SFO, JFK), Unload(C1, P1, JFK),
Load(C2, P2, JFK), Fly(P2, JFK, SFO), Unload(C2, P2, SFO).

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 7

Example: The blocks world

Cube-shape blocks sitting on a table or stacked on top of each other.
Actions: PutOn(block, block), PutOnTable(block)
Predicates: On(block, blockVtable), Clear(blockVtable)

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 8

How difficult is planning?

Does there exist a plan that achieves the goal? PlanSat

Does there exist a solution of length at most £7 Bounded PlanSat

PlanSat and Bounded PlanSat are PSPACE-complete.
— i.e., difficult!

PlanSat without negative preconditions and without negative effects is in P.
— i.e., solveablel!

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 9

State-space search

> Forward (progression):
state-space search considers actions that are applicable

> Backward (regression):
state-space search considers actions that are relevant

Neither of them is efficient without good heuristics!

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1—4

10

Heuristics for forward state-space search

For forward state-space search there are a number of domain-independent
heuristics:

> Relaxing actions:
— Ignore-preconditions heuristic
— Ignore-delete-lists heuristic

{> State abstractions:
— Reduce the state space

Programs that has won the bi-annual Planning competition has often used
— FF (fast forward) search with heuristics, or
— planning graphs, or
— SAT.

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1—4 11

Planning graphs

The main disadvantage of state-space search is the size of the search tree
(exponential). Also, the heuristics are not admissible in general.

The planning graph is a polynomial size approximation of the complete tree.
Search on this graph is an admissible heuristic.

The planning graph is organized in alternating levels of possible states S,
and applicable actions A;. Links between levels represent preconditions and
effects whereas links within the levels express conflicts (mutex-links).

S A S A, S,
Bake(Cake)
Have(Cake) 1 Have(Cake) 1 Have(Cake)
- Have(Cake) >< {1 — Have(Cake)
Eat(Cake)
Eaten(Cake) 1 Eaten(Cake)
- Eaten(Cake) {1 - Eaten(Cake) {t — Eaten(Cake)

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1—4 12

Planning graphs

A planning problem with [literals and a actions has a polynomial size plan-
ning graph:

— Levels S; contain at most [nodes and [> mutex links

— Levels A; contain at most a + [nodes and (a + [)* mutex links

— At most 2(al + 1) links between levels for preconditions and effects
— Therefore, a graph with n levels has size O(n(a + 1)?)

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides ©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 13

The GraphPlan algorithm

The GraphPlan algorithm expands the graph with new levels S; and A; until
there are no mutex links between the goals. To extract the actual plan, the
algorithm searches backwards in the graph.

The plan extraction is the difficult part and is usually done with greedy-like
heuristics.

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1—4 14

SatPlan and CSP

Translate the PDDL description into a SAT problem or a CSP (constraint
satisfaction problem).

The goal state as well as all actions have to be propositionalized. Action

schemas have to be replaced by a set of ground actions, variables have to be

replaced by constants, fluents need to be introduced for each time step, etc.
= combinatorial explosion

In other words, we remove a part of the benefits of the expressiveness of
PDDL to gain access to efficient solution methods for SAT and CSP solvers.

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 15

Historical remark: Linear planning

Planners in the early 1970s considered totally ordered action sequences
— problems were decomposed in subgoals
— the resulting subplans were stringed together in some order
— this is called linear planning

But, linear planning is incomplete!
— there are some very simple problems it cannot handle
— e.g., the Sussman anomaly
— a complete planner must be able to interleave subplans

Enter partial-order planning, state-of-the-art during the 1980s and 90s
— today mostly used for specific tasks, such as operations scheduling
— also used when it is important for humans to understand the plans
— e.g., operational plans for spacecraft and Mars rovers are checked
by human operators before uploaded to the vehicles

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1—4

16

Example: The Sussman anomaly

"Sussman anomaly" problem

1
Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0n(x,z) ~Clear(y) ~0n(x,z) Clear(z) On(x,Table)

Clear(z) On(x,y)

+ several inequality constraints

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 17

Example contd.

START E

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

On(A,B) On(B,C)

FINISH

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 18

Example contd.

START E

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

\l

CI?B) OnzB,z) CI?C)

PutOn(B,C)

4
On(A,B) On(B,C)

FINISH

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 19

Example contd.

START E

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

PutOn(A,B)
clobbers CI(B)
=> order after
PutOn(B,C)
) \ \

CI(B) On(B,z) CI(C)

CI(A) o&kacmm

PutOn(B,C)

PmOMAB)l

\

) #
On(A,B) On(B,C)

FINISH

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1-4 20

Example contd.

START E

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

/ PutOn(A,B)
clobbers CI(B)
// => order after

On({:’z) Cl(c§ PutOn(B,C)

PutOnTable(C) E|Lcl,tt?t)ne(|r85’((::)|(c)
=> %rder grte(:é)
PutOnTable
\ | CI?B) OnzB,z) u?c:)

0N Y g
CI(A) On(A,z) CI(B) i PutOn(B,C)
| :

PutOn(A,B)

\

) #
On(A,B) On(B,C)

FINISH

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 10, Sections 1—4 21

