Today — Part 1: Uncertainty

» Only a degree of belief

» Use probability theory
» Assign to each sentence a numerical degree of belief.
» Not degree of truth!
» Summarizing the uncertainty that comes from laziness, ignorance.

» Random variables

» Joint and marginal distributions

» Conditional distributions

» Product rule, chain rule, Bayes' rule

» Inference

» Independence, conditional independence



Uncertainty

General situation:

" Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

Unobserved variables: Agent needs to reason about

other aspects (e.g. where an object is or what disease is
present)

Model: Agent knows something about how the known
variables relate to the unknown variables

Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge



Random Variables

A random variable is some aspect of the world about which wt
(may) have uncertainty

" R=Isitraining?
" T=Isit hot or cold?
" D =How long will it take to drive to work?
" L =Where is the ghost?
We denote random variables with capital letters
Like variables in a CSP, random variables have domains
" Rin {true, false} (often write as {+r, -r})
" Tin {hot, cold}
" Din |0, )
" Lin possible locations, maybe {(0,0), (0,1), ...}




" Associate a probability with each value

" Temperature:

Probability Distributions

P(T)
T P
hot 0.5
cold | 0.5

" Weather:
IRl // LATT7
T ¥-.///////

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number
P(W = rain) = 0.1

Must have:

Ve P(X=z)>0

and

Y P(X=2z)=1



Joint Distributions

specifies a real number for each assignment (or outcome):
P(Xl — I, X2 — IDy... Xn — .’.Bn,)

P(:L’]_,:L'Q, . o .fI/"n)

A joint distribution over a set of random variables: X1, X2,...Xn

P(xz1,22,...2n) > 0

Z P(xq1,20,...20n) = 1

(z1,29,...Tn)
Size of distribution if n variables with domain sizes d?

P(T, W)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain | 0.3

" For all but the smallest distributions, impractical to write out!




Prior probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity=true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)
P(Weather, Cavity) = a 4 X 2 matrix of values:

Weather = |sunny rain cloudy snow
Cavity=true [0.144 0.02 0.016 0.02
Cavity = false|0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points

Chapter 13 12



Probabilistic Models

. .. el e Distribution over TW
A probabilistic model is a joint distribution SHIPH Y

over a set of random variables T i p

hot sun 0.4
hot rain 0.1

Probabilistic models:
" (Random) variables with domains

" Assignments are called outcomes cold sun 0.2
" Joint distributions: say whether assighments d .
(outcomes) are likely co rain 0.3
" Normalized: sum to 1.0 .
" Ideally: only certain variables directly interact Constraint over TW
. i . T W P
® Constraint satisfaction problems:
" Variables with domains hot sun T
" Constraints: state whether assighments are .
possible hot rain F
* Ideally: only certain variables directly interact cold sun F
cold rain T




Events

" An eventis a set E of outcomes

P(E) = > P(zy...xn)
) .(;1,‘1...;’1:7,,)6.E .
" From a joint distribution, we can calculate the

probability of any event

" Probability that it’s hot AND sunny?
" Probability that it’s hot?
" Probability that it’s hot OR sunny?
" Typically, the events we care about are partial
assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Quiz: Events

" P(x, +y) ?

" P(-y OR +x) ?

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P(T,W)

1 W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(T)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

P(X)
P(X,Y) X P
— +X 0.5
X Y P
- 1-0.5=0.5
+X +y 0.2 P(x) = Z P(x,y) X
x | vy | 03 Y P(Y)
-X +y 0.4 Y P
—
-X -y 0.1 +y 06
P(y) =) P(z,y) _
;’IT Yy 0.4




Conditional probability

Conditional or posterior probabilities
e.g., P((i(m)?:t@/|7‘nm‘.h,(].(’h€> — ().8 not equal to P(cavity), not equal to P(cavity, toothache)

i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache,49ersWin) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial

P(Cavity|Tootha) cavity not cavity

toothache pl 1-pl

not toothache p2 1-p2

Chapter 13 15




Conditional Probabilities

" A simple relation between joint and conditional probabilities
" In fact, this is taken as the definition of a conditional probability

_ P(a,b)
P(alb) = 20
P(T. W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a,b)

P(a)

=s.T =c¢ 0.2
PIW =s|T =c) = P(M;(Tl o) 2 = 0.5

=PW=s,T=c)4+ P(W=nr,T=c)
= 02403 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)#
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

" P(+x | +y) ?

" P(-x | +y)?

" Ply | +x)?

P(+x,+y)/P(+y) = 0.2/0.6 = 1/3

1-1/3 = 2/3

P(-y,+x) / P(+x) =0.3/0.5=0.6



Conditional Distributions

® Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

- P(W|T = hot) P(T, W)
w P T W p
Q ::i: 22 hot sun 0.4
~ hot rain 0.1
E/ P(W|T = cold) cold sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6




Normalization Trick

P(W=sun|T=c) = alpha . P(sun,cold) = alpha. 0.2 =2 x 0.2
P(W=rain|T=c) = alpha . P(rain,cold) = alpha. 0.3

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

...alphax05=1

P(W|T = ¢)
W P
sun | 0.4
rain 0.6




Normalization Trick

_ P(H' — 8, T e C) )

P(W:S|Tzc)

P(T = ¢)
. - P(W =35,T = c)
P(T,W) T PW=sT=c)+P(W=nrT=c) v
0.2
= = 0.4
T W P 0.2+ 0.3 0 P(‘x‘qT = (;)
hot su.n 0.4 v >
hot rain 0.1 — - 02
cold sun 0.2 :
- . - P(W=r,T =c¢) rain 0.6
cold | rain | 0.3 P(W=r|T=c)= P(T = o)

_ P(W =nr,T =c)

C PW=sT=c)+PW=rT=r¢)
03
T 02403

0.6




Normalization Trick

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(W:S|T:c)_

SELECT the joint
probabilities

matching the

evidence

ﬁ

!I

(W

PW=s5T=c¢c)
PI::'[' = ¢)
P(W =T =¢)

T PW=sT=c)4+P(W=nrT=c)

0.2

T 02403

= =04
0.240.3
NORMALIZE the
selection
P(c,W) (make it sum to one)
T W P
----'>
cold | sun | 0.2
cold | rain | 0.3
AT = ) = PW =rT=r¢)
’ P(T =¢)
_ P(W =r,T = ¢)
_1T$;Z~.f::}+11u =rT=c)

P(WI|T = ¢)
w P
sun 0.4
rain 0.6




Quiz: Normalization Trick

"P(X | Y=-y)?
P(X,Y)

X Y P

+X +y 0.2

+X -y 0.3

-X +y 0.4

-X -y 0.1

SELECT the joint
probabilities
matching the

evidence

ﬁ

P(xr 'Y)

+X
-X

0.3
0.1

NORMALIZE the
selection
(make it sum to one)

é

P(X]|-y)
0.75
0.25



Probabilistic Inference

" Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

" We generally compute conditional probabilities
" P(on time | no reported accidents) = 0.90
" These represent the agent’s beliefs given the evidence

" Probabilities change with new evidence:
" P(on time | no accidents, 5 a.m.) =0.95
" P(on time | no accidents, 5 a.m., raining) = 0.80
" Observing new evidence causes beliefs to be updated




Inference by enumeration

Start with the joint distribution:

toothache =1 toothache

catch | T catch) catch| 1 catch

=1 cavity'] .016

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiwpP (W)

P(!cav | toot) = P(!cav,toot) / P(toot) = (0.016+0.064) / (0.108+0.012+0.016+0.064)

Chapter 13 17



Inference by enumeration

Start with the joint distribution:

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiwpP (W)

l toothache I —1toothache

I catch| catchl catch| —catch
cavity 108 | .012 072 .008
—1cavity  .016| .064 144 | .576

P(toothache) = 0.108 + 0.012 4 0.016 + 0.064 = 0.2

Chapter 13

18



Inference by enumeration

Start with the joint distribution:

toothache =1 toothache
catch| —catch| catch| —catch

cavity| .108| .012 | .072| .008
—cavity | .016| .064 144 | .576

For any proposition ¢, sum the atomic events where it is true:

P(¢) = LiwpP (W)

P(cavityVtoothache) = 0.1084-0.012+0.07240.008+0.016+0.064 = 0.28

Chapter 13 19



Inference by enumeration

Start with the joint distribution:

toothache =1 toothache

catch | T catch) catch| 1 catch

=1 cavity | .016

Can also compute conditional probabilities:

P(—cavity N toothache)

P(toothache)
0.016 + 0.064

=04
0.108 + 0.012 4 0.016 + 0.064

P(—cavity|toothache) =

Chapter 13 20



Normalization

toothache =1 toothache
catch| —1catch| catch| —catch

caviry | .108[].012] | .072] .008
— cavity |1.016/|.064] | .144] 576

Denominator can be viewed as a normalization constant «

P (Cavity|toothache) = a P(Cavity, toothache)
a |P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch)|

a [(0.108, 0,016) + (0.012, 0.064)]

a (0.12,0.08) = (0.6,0.4)

General idea: compute distribution on query variable

by fixing evidence variables and summing over hidden variables

Chapter 13 21



Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbe H =X — Y — E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y[E=e)=aP(Y,E=e) = aX,P(Y,E=¢,H=h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???

Chapter 13 22



Inference by Enumeration

" P(W)?  <p(sun), P(rain)> = <0.65, 0.35>

© P(W | winter)? <p(sun|winter),P(rain|winter)>

alpha <P(sun,winter), P(rain,winter)>
a <0.25, 0.25>
<0.5, 0.5>

* P(W [ winter, hot)? <P(sun|winter,hot),P(rain|winter,hot)>

P(a,b,c,d|e,f,q)

a <P(sun,winter,hot),P(rain,winter,hot)>
a <0.10, 0.05>
<0.66, 0.33>

S T W P
summe | hot sun 0.30
r
summe | hot rain 0.05
r
summe | cold sun 0.10
r
summe | cold rain 0.05
r
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20




Inference by Enumeration

* Obvious problems:
" Worst-case time complexity O(d")

" Space complexity O(d") to store the joint distribution



P(A[B) = P(A,B)/P(B) --> P(A,B) = P(A|B) P(B) =
P(B|A) = P(A,B)/P(A) --> P(A,B) = P(B|A) P(A) = P(B) P(A) &

Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A B)=P(A)P(B)

Cavity
decomposes into \J 0othache Catch 8

:
4
P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity)P(Weather)

Cavity
Toothache Catch
Weather

AX2X2X2

32 entries reduced to 12; for n independent biased coins, 2" — n
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?

Chapter 13 23




A.and,B.are independent iff P(A|B)=P(A) ... P(B|A) = P(B)
A and B are conditionally independent given C... P(A|B,C)=P(A|C)

Conditional independence

P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’'t depend
on whether | have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catch|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

P(A[B) = P(A) ... P(A|B,C) = P(A|C)
P(A,B) = P(A) P(B) ..... P(A,B|C) = P(A|C) P(BIC)

Chapter 13 24



P(A,B) = P(A|B) P(B)
P(A,B,C) = P(A|B,C) P(B,C) = P(A|B,C) P(B|C) P(C)

Conditional independence contd.

Werite out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.

Chapter 13 25



Bayes’ Rule

Product rule P(a A b) = P(alb)P(b) = P(bla)P(a)

P(bla)P
= Bayes' rule P(a|b) = < Jg()b) ()
or in distribution form
P(X|Y)P(Y)

P(Y|X) =

px]  ~ CPXYIP(Y)

Useful for assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

E.g., let M be meningitis, S be stiff neck:

P P . . 1
(Slmﬁ_ (m) O8XOOOO-:O.OOO8
P(s) 0.1

P(Cause|Ef fect) =

P(m|s) =

Note: posterior probability of meningitis still very small!

Chapter 13 26



Quiz: Bayes’ Rule

" Given: P(D|W)
iven: (W) — T
R P wet sun 0.1
un 08 dry sun 0.9
cain 0.2 wet rain | 0.7
dry rain 0.3

" What is P(W | dFY) ? <P(sunl|dry), P(rain|dry)>
<P(dry|sun)P(sun)/P(dry), P(dry|rain)P(rain)/P(dry)>
alpha <P(dry|sun)P(sun), P(dry|rain)P(rain)>
alpha <0.90.8, 0.3 0.2>
alpha <0.72, 0.06>



Bayes’ Rule and conditional independence

P(Cavity|toothache A catch)
= aP(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Ef fect,) = P(Cause)ll,P(Ef fect;|Cause)

E3

Total number of parameters is linear in n

P(cl,c2,el,e2) = P(cl,c2) P(el,e2|cl1,c?)
= P(cl) P(c2) P(ellcl,c2) P(e2|cl,c?)

Chapter 13 27



Wumpus World

14 2,4 3,4 4.4
13 2.3 3.3 43
1,2 2,2 3,2 4.2
B

OK

1,1 21 31 41
B
OK OK

P;j =true iff [i, j] contains a pit

B;j =true iff [i, j] is breezy
Include only B 1, By 2, B> in the probability model

Chapter 13
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Specifying the probability model

The full joint distribution is P (P, . ..., P4, By 1, B9, Bo)

Apply product rule: P (B 1, Bi2, Boy | P, ..., Pig)P(Prq, ... . Py)

(Do it this way to get P(E f fect|Cause).) n pits?

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
P(Piy,..., P =11 P(P) = 0.2" x 0.8

for n pits. for a particular configuration.

Chapter 13
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Observations and query

We know the following facts:
b= _Ib171 N\ b1’2 N\ b271
known = —pi1 A —pra A —pa2

Query is P( P s|known,b)
Define Unknown = P;;s other than P, 3 and Known
For inference by enumeration, we have

P (P 3|known, b) = a2iunknownP (P13, unknown, known, b)

Grows exponentially with number of squares!

P(P_13|known,b) = alpha P(P_13,known,b)

Chapter 13 30




b= -by1 ANbioA by
known = —pi11 A —pi1a2 A —pai

Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

1Ad————loa____Joa____laas ___
[ \
\\ I
N\ |
N |
T\
| G i
I OTHER
| QUERY ! [N }
\ I N\ I
~___1/ \ I
12 22-—N r
/ \\ | \Q\ |
| N | N\
I \\ \ \:‘\ |
| <\ N\ L
E NN FRINGE DU i
| OWN N N |
| KN NN D I
| \\ < | \\ |
'\_____I____,/ r\\__,’ N/

Define Unknown = Frinage ) Other
P(b| P, 3. Known, Unknown) = P (b| P, 5, Known, Fringe)

Manipulate query into a form where we can use this!
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b__'bll/\bIQ/\bZI

kno = &
Using condltlonal independence contd.

P( P s|known, b) =& X P (P, 3, unknown, known, b)

unknown

— aunk%ownP(MPl 3, known, unknown )P (P 3, knawn,%}
— ozﬂ%ge OtheTPUknown P137W>P(P1,3,kn0’wn, fringe, other)
~ > > ROloun P ringe P(Pys. known, fringe, ofher)

—a x> P blknown, Py 3, fringe) > P(P; 3, inown, ﬁm’ngeiother)

fringe other
= ozf > P(blknown, P, 3, fringe) Z P (P, 3) P(known)P(fringe)P(other)
mnge other
= aP:known)P(Pl 3)f > P(blknown, Py 3, fringe) P(fringe) %j P(other)
ringe other
. aE——
am — %’PsPl 3) fT%geP(b|kn0wn , Py 3, fringe) P( fringe) 1

P(blknown,P13,p22,p31)P(p22,p31) + P(blknown,P13,!p22,p31)P(!p22,p31) +
P(blknown,P13,p22,!p31)P(p22,!p31) + P(blknown,P13,!p22,!p31)P(!p22,!p31)

P(Other) = P (P14,P24)

S S~

P(p14,p24)+P(!pl4,p24)+P(pl4,!p24)+P(1p4l,1p24) = 1
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b = ﬂbl,l N bl,'z N b‘Z,l
known = —p11 A =p12 A —p21

H Using conditional independence contd.

13 13 13 7.3 13
T2 22 T2 72 T2 22 T2 72 T2 22

. | @ . | @ : . | @ . | @

OK OK OK OK OK
1 21 3.1 1 2.1 31 1 21 31 K 21 31 1 21 31

. | @ “ . | @ . | @ “
0K OK OK OK OK OK OK OK OK OK
0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16

o P(P3) ¥ P(b|,icn.otwn., P 3, fringe)P(fringe)

fringe

P(Pys|known,b) = & (0.2(0.04 + 0.16 4 0.16), 0.8(0.04 + 0.16))
~ (0.31,0.69)

P(Pys|known,b) ~ (0.86,0.14)

P(blknown,pl13,p22,p31)P(p22,p31) + P(blknown,pl3,!p22,p31)P(!p22,p31) +
P(blknown,pl13,p22,!p31)P(p22,!p31) + P(blknown,pl3,!p22,!p31)P(!p22,!p31) +

Chapter 13 33



Today — Part 2: Probabillistic Reasoning

» Bayesian networks

» Systematic way to represent the independence and conditional
Independence relationships.



Outline

{ Syntax
{> Semantics

{> Parameterized distributions

Chapter 14.1-3
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link &~ “directly influences”)
a conditional distribution for each node given its parents:

P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values

Chapter 14.1-3 3



Example

Topology of network encodes conditional independence assertions:

CEDNCE

Weather is independent of the other variables

T'oothache and C'atch are conditionally independent given C'avity

Chapter 14.1-3 4



Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is there a
burglar? P(B | j, 'm) = alpha P(B,j,'m) = alpha sum_{A,E} P(B,j,!m,A,E}

Variables: Burglar, Farthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
— A burglar can set the alarm off

— An earthquake can set the alarm off
— The alarm can cause Mary to call -- Mary likes loud music so sometimes misses

— The alarm can cause John to call -- always calls, but sometimes confuses
with telephone ringing,
P(Burglar)
Burglar Earthquake P(Earthquake)
\J / P(Alarm|Burglar,Earthquake)
Alarm

P(JohnCalls|Alarm) / N\,  P(MarryCalsialarm)

JohnCalls  MarryCalls

Chapter 14.1-3



Example contd.

P(AIB,E)

T - |=

™ =T - |

95

94
.29

001

Burglary

P(B)

001

P(E)

Earthquake 002

P(JIA)

>

90
05

P(MIA)

l

70
01
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2x2x2... = 27°n probabilities for full joint probability distribution table

Compactness

A CPT for Boolean X; with & Boolean parents has

220 -0
rows for the combinations of parent values ﬁ@

Each row requires one number p for X, = true

(the number for X, = false is just 1 — p) @ @

If each variable has no more than /£ parents, ;(’J‘llA)
the complete network requires | ') numbers

l.e., grows linearly with  vs. (J(2") for the full joint distribution

For burglary net, 1 + 1+ 4+ 2+ 2= 10 numbers (vs. 2° — 1 = 31)

Chapter 14.1-3 7



Compactness

A CPT for Boolean X; with /: Boolean parents has

2" rows for the combinations of parent values @

Each row requires one number p for X, = true m
(the number for X; = false is just 1 — p) @ @

If each variable has no more than /& parents,
the complete network requires O(n - 2¥) numbers

l.e., grows linearly with 7, vs. (J(2") for the full joint distribution

For burglary net, 1 + 1+ 4+ 2+ 2= 10 numbers (vs. 2° — 1 = 31)

Chapter 14.1-3 7



Global semantics

Global semantics defines the full joint distribution

as the product of the local conditional distributions: @

Plxy,...,: r,) = ﬂ:' Plx;|lparents(X;)) ;AI
e.g., P(jAmAaAN—-bA —e) @ @

P(not e) P(not b) P(a | not b, not e) P(jla) P(m]|a), .
~ 0.998 0999 o.ggcall chain rule 190 @en@litional independence.

P(b,e,a,j,m) = P(a,j,m|b,e) P(b,e)

= P(j,m,a|b,e) P(b) P(e)

= P(j,m|a,b,e) P(a|b,e) P(b) P(e)
P(j,m]|a) P(a|b,e) P(b) P(e)
P(jla) P(m|a) P(a|b,e) P(b) P(e)

Chapter 14.1-3



Global semantics

“Global” semantics defines the full joint distribution

as the product of the local conditional distributions: @

eg., P(gAmAaN-bA —e) @ @

= P(jla)P(m|a)P(a|-b, —~e)P(—b)P(—e)
0.9 x 0.7 x 0.001 x 0.999 x 0.998
0.00063

Q
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics <> global semantics

Chapter 14.1-3 10



Markov blanket ||

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

Chapter 14.1-3 11



Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables Xy, ... .. X,
2. Fori =1ton
add X, to the network
select parents from X;...... X, 1 such that
P(X;|Parents(X;)) = P(X;| X, ..., X;_1)

This choice of parents guarantees the global semantics:

P(X,,....X,) = II'_ P(X/|X1, ... Xi_1) (chain rule)
= [I'_,P(X;|Parents(X;)) (by construction)

Chapter 14.1-3
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Example

Suppose we choose the ordering M, .J, A, B, E

P(JIM)= P(J)?

Chapter 14.1-3 13



Example

Suppose we choose the ordering M, .J, A, B, E

(Qryoute)
<

P(JIM) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J,M) = P(A)?

Chapter 14.1-3 14



Example

Suppose we choose the ordering M, .J, A, B, E

Qlrycute)

\ g

Burglary

P(J|M) = P(J)? No

AlJ, M) = P(A|J)? P(A|J,M)= P(A)? No
B|A, J, M) = P(B|A)?

B|A,J, M) = P(B)?

(
P(
P(
P(

Chapter 14.1-3 15



Example

Suppose we choose the ordering M, .J, A, B, E

Earthquake
(M) = P(J)? No

P(.J

P(A|J, M) = P(4|1)7 P(A|J,M) = P(A)? No
P(B|A,J.M)= P(B|A)? Yes

P(B|A, J. \1)_1?(‘3}7 No

P(E|B,A,J, M) = P(E|A)?
P(E|B,A,J,M)= P(E|A, B)?

Chapter 14.1-3 16



Example

Suppose we choose the ordering M, .J, A, B, E

P(J|M) = P(J)? No

(

(A|J, M) = P(A|J)? P(A|J,M)= P(A)? No
(B|A, J.M) = P(B|A)? Yes

(B|A, ’\[) P{B}7 No

(E|B,A,J.M)= P(E|A)? No

(F|B., A, J. ]

P
P
P
P
P ) = I’(EHB,)? Yes

J.
A J M
A J M

Chapter 14.1-3 17



Example contd.

Burglary
Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 + 2 + 4 =13 numbers needed

Chapter 14.1-3 18




Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

Chapter 14.1-3 19



Example: Car insurance

SocioEcon




Constructing Bayesian Networks

» Quiz: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm



Constructing Bayesian Networks

» MaryCalls, JohnCalls, Earthquake, Burglary, Alarm

MarvyCalls

Emre Ugur




Variable elimination algorithm

P(B|ljm)=aP B E P E P(a|B.e) P(jla) P(m|a)
f (B L' f3(AB.E) f4(A) f5(A)

» Annotate each part of expression with the name of the
corresponding factor

» Each factor is a matrix indexed by the values of its argument
variables

» f,(A) and f_(A) corresponding to P(j | a) and P(m| a) depend just on
A because J and M are fixed by the query.

7 A P(jla) \ [ 0.90 " (AN Pim|a) \ [ 0.70
fa{d) = (1’(,1‘ w)) B <(u)s) f5(4) = (1'(111 —-a) )\ 0.0]



Variable elimination algorithm

P(B|jm)=aPB) Z P(e) Z Pla| B.e)P(jla) P(m|a)
T T — N —
fi(B)  f2(F) f3(A,B.E) fi(A) f5(A)

, B P(jla) \ ([ 0.90 . B P(m|a) [ 0.70
fa{4) = (1’(_,‘ w)) - (().()5) fs(d) = (1’(/:; | w)) - (().()1 )

» f.(A,B,E) will be a 2x2x2 matrix

A B E P(A|B,E)
T T T 0.95 A N [7® [ 7®
( Burglary ) o . Earthquake ) —
T T F 0.94 — = R
T F T 0.29 P
T F F 0.01 \Alarm ) 10 g | 9
F T T 0.05 /Nl Ll
F T F 0.06 /
e "-».___» A A .__.7-\" ——— A | M)
F F T 0.71 ( JohnCalls ) 7 | 90 ( MaryCalls ) [ [ 70
N— f 105 N— f1.01
F F F

0.999



Variable elimination algorithm

P(B|ljm)=aP B E P E P(a|B.e) P(jla) P(m|a)
fl(B _’(L) f3(A.B.E) f4(A) f5(A)

P(B|j.m) = af(B) x ng(/?) X Zf;;(A.B.E) % f4(A) x f5(A)

» “X” operator is not ordinary matrix multiplication but instead the
pointwise product operation

» The pointwise product of two factors f, and f, yields a new factor f
whose variables are the union of the variables in f, and f, and

whose elements are given by the product of the corresponding
elements in the two factors.



Variable elimination algorithm

P(B|j.m)=afi(B)x Y f(E)x Y f3(A,B.E) x fi(A) x f5(A)

» Pointwise product operation:

e | B fi(A, B) B ' folB,C") A B ' fs(A. B.C)
T T 3 T T 2 T T T 3 x .2=.06
T F v T F 8 T T F S x .8=.24
F T 9 F T 6 T F T T x 6= .42
F F N F F 4 T F F g %X . 4=.28
F T T 9 x.2=.18
F T F O x .8=.72
F F T d < .6=.06
F F F d x . 4=.04
Figure 14.10  [llustrating pointwise multiplication: f1 (A, ) x f2( B. C') = f3( A, B, ().




Variable elimination algorithm

P(B|j.m)=afi(B)x Y f(E)x Y f3(A, B.E)xfi(A) x f5(A)

» Summation operation: Summing out a variable from a product of
factors is done by adding up the submatrices formed by fixing the
variable to each of its values in turn

B 06 .24 A8 .72\ [ .24 .96
a 42 .28 T 06 .04 ) \ 48 32 ) °

f(B.C) = ZQ(A.B.(_") — f3(a. B.C) +f3(—a. B.C)



Variable elimination algorithm

P(B|j,m)= BZPe ZPa|Bc (jla) P(m|a)
fl(B) (L', f3(A.B.E) f4(A) f5(A)

P(B|j,m)=af (B Zb (E) x Zf;;(A.B.E) x f4(A) x f5(A)

, B P(jla) ~( 0.90 . B P(m|a) [ 0.70
fa(4) = (1’(_,‘ w)) B (().()5) fs(d) = (1’(111 | —w)) B (().()1 )

f,(A,B,E) P

A B E , 4
T T T 0.95 Bu,g.l.un '::—?]' ‘Z':_‘l:-"urth(114(1_&3*:_:?, ’;:f:'
T T F 0.94
T F T 0.29 DL s

) Alarm :  f o4
T F F 0.01 x — -4-;;/ f t 29

N fO S 1
F T T 0.05 / | -
F T F 0.06 ’ A TAD N [a]Am
F F T 0.71 ( JohnCalls ) |: |90 ( MaryCalls ') |, | 70
N— | os e | f |01

F F F 0.999 :




Variable elimination algorithm
P(B|j.m) = af(B) x Zf-_,(E) X Zf;;u. B.E) x fy(A) x f5(A)

» The trick to notice is that any factor that does not depend on the
variable to be summed out can be moved outside the summation.
ng(ﬁ) x f3(A, B, E) x f4(A) x f5(A) = f4(A) x f5(A) x Zf) F) x f3(A, B, F)

» Different orderings cause different intermediate factors to be
generated during the calculation

P(B|j.m)=af(B) Zn A) x f5 (. Zf, ) x f3(A. B, F)

» |dea: Eliminate whichever variable minimizes the size of the next
factor to be constructed.



