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Today – Part 1: Uncertainty

Only a degree of belief 

Use probability theory

Assign to each sentence a numerical degree of belief.

Not degree of truth! 

Summarizing the uncertainty that comes from laziness, ignorance.

Random variables

Joint and marginal distributions

Conditional distributions

Product rule, chain rule, Bayes' rule

Inference

Independence, conditional independence



Uncertainty

 General situation:

 Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor 
readings or symptoms)

 Unobserved variables: Agent needs to reason about 
other aspects (e.g. where an object is or what disease is 
present)

 Model: Agent knows something about how the known 
variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge



Random Variables

 A random variable is some aspect of the world about which we 
(may) have uncertainty
 R = Is it raining?
 T = Is it hot or cold?
 D = How long will it take to drive to work?
 L = Where is the ghost?

 We denote random variables with capital letters
 Like variables in a CSP, random variables have domains

 R in {true, false}   (often write as {+r, -r})
 T in {hot, cold}
 D in [0, )
 L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions
 Associate a probability with each value

 Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

 Weather: 



Shorthand notation:

OK if all domain entries are unique

Probability Distributions
 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values

 A probability (lower case value) is a single number

 Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

Size of distribution if n variables with domain sizes d?

 For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint

distribution because every event is a sum of sample points

Chapter 13 12



Probabilistic Models

 A probabilistic model is a joint distribution 
over a set of random variables

 Probabilistic models:
 (Random) variables with domains 
 Assignments are called outcomes
 Joint distributions: say whether assignments 

(outcomes) are likely
 Normalized: sum to 1.0
 Ideally: only certain variables directly interact

 Constraint satisfaction problems:
 Variables with domains
 Constraints: state whether assignments are 

possible
 Ideally: only certain variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W



Events

 An event is a set E of outcomes

 From a joint distribution, we can calculate the 
probability of any event

 Probability that it’s hot AND sunny?
 Probability that it’s hot?
 Probability that it’s hot OR sunny?

 Typically, the events we care about are partial 
assignments, like P(T=hot)

 

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

 P(+x, +y) ?

 P(+x) ?

 P(-y OR +x) ?

 

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables 
 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y



Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is all I know

NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

Note: the less specific belief remains valid after more evidence arrives,
but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, 49ersWin) = P (cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Chapter 13 15



Conditional Probabilities
 A simple relation between joint and conditional probabilities

 In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

 P(+x | +y) ?

 P(-x | +y) ?

 P(-y | +x) ?

 



Conditional Distributions

 Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Quiz: Normalization Trick

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

 P(X | Y=-y) ?



Probabilistic Inference

 Probabilistic inference: compute a desired 
probability from other known probabilities (e.g. 
conditional from joint)

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90
 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95
 P(on time | no accidents, 5 a.m., raining) = 0.80
 Observing new evidence causes beliefs to be updated



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

Chapter 13 17



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Chapter 13 18



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28

Chapter 13 19



Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

Chapter 13 20



Normalization

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables

Chapter 13 21



Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H =h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???

Chapter 13 22



Inference by Enumeration

 P(W)?

 P(W | winter)?

 P(W | winter, hot)?

S T W P

summe
r

hot sun 0.30

summe
r

hot rain 0.05

summe
r

cold sun 0.10

summe
r

cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



 Obvious problems:
 Worst-case time complexity O(dn) 

 Space complexity O(dn) to store the joint distribution

Inference by Enumeration



Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A, B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache, Catch,Cavity,Weather)
= P(Toothache, Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?

Chapter 13 23



Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P (catch|toothache,¬cavity) = P (catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Chapter 13 24



Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust

form of knowledge about uncertain environments.

Chapter 13 25



Bayes’ Rule

Product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) =
P (s|m)P (m)

P (s)
=

0.8 × 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!

Chapter 13 26



Quiz: Bayes’ Rule

 Given:

 What is P(W | dry) ? 

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n

Chapter 13 27



Wumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i, j] contains a pit

Bij = true iff [i, j] is breezy
Include only B1,1, B1,2, B2,1 in the probability model

Chapter 13 28



Specifying the probability model

The full joint distribution is P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

Apply product rule: P(B1,1, B1,2, B2,1 |P1,1, . . . , P4,4)P(P1,1, . . . , P4,4)

(Do it this way to get P (Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . , P4,4) = Π4,4
i,j = 1,1P(Pi,j) = 0.2n × 0.816−n

for n pits.

Chapter 13 29



Observations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1

known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, b)

Grows exponentially with number of squares!

Chapter 13 30



Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

Define Unknown = Fringe ∪ Other
P(b|P1,3, Known,Unknown) = P(b|P1,3, Known, Fringe)

Manipulate query into a form where we can use this!

Chapter 13 31



Using conditional independence contd.

P(P1,3|known, b) = α
∑

unknown
P(P1,3, unknown, known, b)

= α
∑

unknown
P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑

fringe

∑

other
P(b|known,P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
∑

fringe

∑

other
P(b|known,P1,3, fringe)P(P1,3, known, fringe, other)

= α
∑

fringe
P(b|known,P1,3, fringe)

∑

other
P(P1,3, known, fringe, other)

= α
∑

fringe
P(b|known,P1,3, fringe)

∑

other
P(P1,3)P (known)P (fringe)P (other)

= α P (known)P(P1,3)
∑

fringe
P(b|known,P1,3, fringe)P (fringe)

∑

other
P (other)

= α′ P(P1,3)
∑

fringe
P(b|known,P1,3, fringe)P (fringe)

Chapter 13 32



Using conditional independence contd.

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

OK

 1,1  2,1  3,1

 1,2  2,2

 1,3

OKOK

B

B

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16

P(P1,3|known, b) = α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉

Chapter 13 33
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Today – Part 2: Probabilistic Reasoning

Bayesian networks

Systematic way to represent the independence and conditional 
independence relationships.
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Constructing Bayesian Networks

Quiz: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm
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Constructing Bayesian Networks

MaryCalls, JohnCalls, Earthquake, Burglary, Alarm
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Variable elimination algorithm

Annotate each part of expression with the name of the 
corresponding factor

Each factor is a matrix indexed by the values of its argument 
variables

f
4
(A) and f

5
(A) corresponding to P(j | a) and P(m| a) depend just on 

A because J and M are fixed by the query.
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Variable elimination algorithm

f
3
(A,B,E) will be a 2×2×2 matrix

A B E p(A|B,E)

T T T 0.95

T T F 0.94

T F T 0.29

T F F 0.01

F T T 0.05

F T F 0.06

F F T 0.71

F F F 0.999
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Variable elimination algorithm

“x” operator is not ordinary matrix multiplication but instead the 
pointwise product operation

The pointwise product of two factors f
1
 and f

2
 yields a new factor f 

whose variables are the union of the variables in f
1
 and f

2
 and 

whose elements are given by the product of the corresponding 
elements in the two factors.
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Variable elimination algorithm

Pointwise product operation:
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Variable elimination algorithm

Summation operation: Summing out a variable from a product of 
factors is done by adding up the submatrices formed by fixing the 
variable to each of its values in turn
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Variable elimination algorithm

A B E f
3
(A,B,E)

T T T 0.95

T T F 0.94

T F T 0.29

T F F 0.01

F T T 0.05

F T F 0.06

F F T 0.71

F F F 0.999
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Variable elimination algorithm

The trick to notice is that any factor that does not depend on the 
variable to be summed out can be moved outside the summation.

Different orderings cause different intermediate factors to be 
generated during the calculation

Idea: Eliminate whichever variable minimizes the size of the next 
factor to be constructed.


