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Constructing Bayesian Networks

Quiz: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm
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Variable elimination algorithm

Annotate each part of expression with the name of the 
corresponding factor

Each factor is a matrix indexed by the values of its argument 
variables

f
4
(A) and f

5
(A) corresponding to P(j | a) and P(m| a) depend just on 

A because J and M are fixed by the query.
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Bayesian Networks

Compact (# of parameters)
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Constructing Bayesian Networks

MaryCalls, JohnCalls, Earthquake, Burglary, Alarm
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Variable elimination algorithm

Annotate each part of expression with the name of the 
corresponding factor

Each factor is a matrix indexed by the values of its argument 
variables

f
4
(A) and f

5
(A) corresponding to P(j | a) and P(m| a) depend just on 

A because J and M are fixed by the query.

f_45 (A) = (0.9x0.7 0.05x0.01) = (0.063 0.0005)

f345 (A,B,E)

fs345(B,E)f2s345(B,E)
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Variable elimination algorithm

f
3
(A,B,E) will be a 2×2×2 matrix

A B E p(A|B,E)

T T T 0.95

T T F 0.94

T F T 0.29

T F F 0.01

F T T 0.05

F T F 0.06

F F T 0.71

F F F 0.999

f_45 (A) = (0.9x0.7 0.05x0.01) = (0.063 0.0005)
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Variable elimination algorithm

“x” operator is not ordinary matrix multiplication but instead the 
pointwise product operation

The pointwise product of two factors f
1
 and f

2
 yields a new factor f 

whose variables are the union of the variables in f
1
 and f

2
 and 

whose elements are given by the product of the corresponding 
elements in the two factors.
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Variable elimination algorithm

Pointwise product operation:
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Variable elimination algorithm

Summation operation: Summing out a variable from a product of 
factors is done by adding up the submatrices formed by fixing the 
variable to each of its values in turn
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Variable elimination algorithm

A B E f
3
(A,B,E)

T T T 0.95

T T F 0.94

T F T 0.29

T F F 0.01

F T T 0.05

F T F 0.06

F F T 0.71

F F F 0.999

Quiz
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Variable elimination algorithm

The trick to notice is that any factor that does not depend on the 
variable to be summed out can be moved outside the summation.

Different orderings cause different intermediate factors to be 
generated during the calculation

Idea: Eliminate whichever variable minimizes the size of the next 
factor to be constructed.
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Variable elimination algorithm



Complexity of Exact Inference
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Multiply connected network

Singly connected networks (or polytrees) are networks where there is
at most one undirected path between any two nodes in the networks.

The time and space complexity of exact inference in polytrees is
linear in the number of CPT entries.

For multiply connected networks, variable elimination can have
exponential time and space complexity in the worst case.
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Approximate Inference Methods

Since exact inference is intractable in large networks, we consider
approximate inference methods that are much faster.

Monte Carlo

Direct sampling methods
Markov chain sampling

Variational methods

Loopy propagation
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Direct sampling methods

What is sampling?

Sampling consists in generating a finite number of samples (values) from a
known probability distribution.

Example

Sampling from a Bernoulli distribution P (Coin) =< 0.5, 0.5 >, where
Coin ∈ {heads, tails}, consists in flipping a coin a number of times and
observing the results, e.g. {heads, tails, tails, heads, tails, . . . }.
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Direct sampling methods

Why do we use sampling methods?

Sampling is often used to compute E[f(x)], where x is a random variable
and E[f(x)] cannot be computed in a closed form (or efficiently).

Example

To compute E[
�
|x|] where x ∼ N (0, 1) (standard normal distribution),

we generate samples {0.0591, 1.7971, 0.2641, 0.8717,−1.4462}, and get

E[
√
x] ≈

√
|0.0591|+

√
|1.7971|+

√
|0.2641|+

√
|0.8717|+

√
|−1.4462|

5 ≈ 0.85
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Direct sampling methods

Sample events from a network that has no evidence associated with it.

Each variable is sampled in turn, in topological order.

The probability distribution from which the value is sampled is conditioned
on the values already assigned to the variable’s parents.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements
foreach variable Xi in X1, . . . , Xn do

x[i]← a random sample from P(Xi | parents(Xi))
return x

Generate several samples x and calculate the frequency of each instance.
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Example
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P(+w)=sum P(+w,s,r,c) = sum P(+w|s,r) P(s|c) P(s|r) P(c)

Cloudy=+c (0.5)
Sprinkler = -s (0.90)
Rain = +r  (0.80)
Wet = +w (0.90)



Example

1 Sample from P (Cloudy) =< 0.5, 0.5 >, value is true.

2 Sample from P (Sprinkler | Cloudy = true) =< 0.1, 0.9 >, value is false.

3 Sample from P (Rain | Cloudy = true) =< 0.8, 0.2 >, value is true.

4 Sample from
P (WetGrass | Sprinkler = false, Rain = true) =< 0.9, 0.1 >, value is
true.
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Rejection sampling

Direct sampling is useful for estimating a joint probability
P (x1, x2, . . . , xn) when there is no evidence (no known value for any
variable).

The same idea can be used to estimate P (X | e), where X is any variable
and e is an evidence (the value(s) of certain variable(s)).

1 Generate samples from the prior distribution specified by the network.

2 Reject all those that do not match the evidence.

3 Estimate P̂ (x| e) is obtained by counting the number of samples
where X = x.

P̂ (x| e) = number of samples (x, e)

number of samples (e)
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Example of rejection sampling

We wish to estimate P (Rain | Sprinkler = true), using 100
samples.

Of the 100 samples,

73 have Sprinkler = false and are rejected,
27 have Sprinkler = true. Of the 27,

8 have Rain = true,
and 19 have Rain = false.

Thus,

P (Rain|Sprinkler = true) ≈ normalize(< 8, 19 >) =< 0.296, 0.704 > .
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Rejection sampling

function REJECTION-SAMPLING(X , e, bn ,N ) returns an estimate of P(X |e)
inputs: X , the query variable

e, observed values for variables E
bn , a Bayesian network
N , the total number of samples to be generated

local variables: N, a vector of counts for each value of X , initially zero

for j = 1 to N do
x← PRIOR-SAMPLE(bn)
if x is consistent with e then

N[x ]←N[x ]+1 where x is the value of X in x
return NORMALIZE(N)
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Likelihood weighting

Rejection sampling is not efficient because it wastes a lot of samples (all
the samples that do not agree with the provided evidence).

Can we simply force the evidence variables to agree with the provided
values, and sample only the non-evidence variables?
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Temporal probability models

Chapter 15, Sections 1–5

Chapter 15, Sections 1–5 1



Independence

 Two variables are independent in a joint distribution if:

 Says the joint distribution factors into a product of two simple 
ones

 Usually variables aren’t independent!

 Can use independence as a modeling assumption
 Independence can be a simplifying assumption
 Empirical  joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity}?

 Independence is like something from CSPs: what?



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence

 P(Toothache, Cavity, Catch)

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, -cavity) = P(+catch| -cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | 

Cavity)
 One can be derived from the other easily



Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

 X is conditionally independent of Y given Z

      if and only if:

      or, equivalently, if and only if



Probability Recap

Conditional probability

Product rule

Chain rule 

X, Y independent if and only if:

X and Y are conditionally independent given Z if and only if:



Reasoning over Time or Space

Often, we want to reason about a sequence of observations

 Speech recognition

 Robot localization

 User attention

 Medical monitoring

Need to introduce time (or space) into our models



Markov Models

● Future states depend only on the current state not on the events that occurred before it

● Value of X at a given time is called the state

 Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)

 Stationarity assumption: transition probabilities the same at all times

X2X1 X3 X4



Joint Distribution of a Markov Model

 Joint distribution:

 More generally:

X2X1 X3 X4



Chain Rule and Markov Models

 From the chain rule, every joint distribution over                                 can be written as:

 Assuming that
                                                                   and

    results in the expression posited on the previous slide: 

X2X1 X3 X4



Chain Rule and Markov Models

 From the chain rule, every joint distribution over                                         can be written as:

 Assuming that for all t: 

    gives us the expression posited on the earlier slide: 

X2X1 X3 X4



Example Markov Chain: Weather

 States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

 Initial distribution: 1.0 sun

CPT P(Xt | Xt-1):



Quiz: Example Markov Chain: Weather

Initial distribution: 1.0 sun

What is the probability distribution after one step?
P(X

2
 = sun) = ?

rain sun

0.9

0.7

0.3

0.1



Example Markov Chain: Weather

Initial distribution: 1.0 sun

What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1



Mini-Forward Algorithm

Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

 From initial observation of sun

 From initial observation of rain

 From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…



 Stationary distribution:
 The distribution we end up with is called 

the stationary distribution   of the chain
 It satisfies

Stationary Distributions

 For most chains:
 Influence of the initial distribution gets 

less and less over time.
 The distribution we end up in is 

independent of the initial distribution



Quiz: Stationary Distributions

Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7



Quiz: Stationary Distributions

Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Probability	
  Recap	
  

§  Condi)onal	
  probability	
  

§  Product	
  rule	
  

§  Chain	
  rule	
  	
  
	
  
	
  
	
  

§  X,	
  Y	
  independent	
  if	
  and	
  only	
  if:	
  

§  X	
  and	
  Y	
  are	
  condi)onally	
  independent	
  given	
  Z	
  if	
  and	
  only	
  if:	
  



Hidden	
  Markov	
  Models	
  



Hidden	
  Markov	
  Models	
  

§  Markov	
  chains	
  not	
  so	
  useful	
  for	
  most	
  agents	
  
§  Need	
  observa)ons	
  to	
  update	
  your	
  beliefs	
  

§  Hidden	
  Markov	
  models	
  (HMMs)	
  
§  Underlying	
  Markov	
  chain	
  over	
  states	
  X	
  
§  You	
  observe	
  outputs	
  (effects)	
  at	
  each	
  )me	
  step	
  

������
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Example:	
  Weather	
  HMM	
  

Rt	
   Rt+1	
   P(Rt+1|Rt)	
  

+r	
   +r	
   0.7	
  

+r	
   -­‐r	
   0.3	
  

-­‐r	
   +r	
   0.3	
  

-­‐r	
   -­‐r	
   0.7	
  

Umbrellat-­‐1	
  

Rt	
   Ut	
   P(Ut|Rt)	
  

+r	
   +u	
   0.9	
  

+r	
   -­‐u	
   0.1	
  

-­‐r	
   +u	
   0.2	
  

-­‐r	
   -­‐u	
   0.8	
  

Umbrellat	
   Umbrellat+1	
  

Raint-­‐1	
   Raint	
   Raint+1	
  

§  An	
  HMM	
  is	
  defined	
  by:	
  
§  Ini)al	
  distribu)on:	
  
§  Transi)ons:	
  
§  Emissions:	
  

P (Xt | Xt1)
P (Et | Xt)

P (Xt | Xt1)

P (Et | Xt)



Joint	
  Distribu)on	
  of	
  an	
  HMM	
  

§  Joint	
  distribu)on:	
  

§  More	
  generally:	
  

§  Ques)ons	
  to	
  be	
  resolved:	
  
§  Does	
  this	
  indeed	
  define	
  a	
  joint	
  distribu)on?	
  
§  Can	
  every	
  joint	
  distribu)on	
  be	
  factored	
  this	
  way,	
  or	
  are	
  we	
  making	
  some	
  assump)ons	
  about	
  the	
  
joint	
  distribu)on	
  by	
  using	
  this	
  factoriza)on?	
  

������

���
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��� ��� ���

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)

TY

t=2

P (Xt|Xt1)P (Et|Xt)



§  From	
  the	
  chain	
  rule,	
  every	
  joint	
  distribu)on	
  over	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriden	
  as:	
  

§  Assuming	
  that	
  
	
  	
  

	
  	
  	
  	
  	
  
gives	
  us	
  the	
  expression	
  posited	
  on	
  the	
  previous	
  slide:	
  	
  

X1, E1, X2, E2, X3, E3

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

���

���

��� ���
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Chain	
  Rule	
  and	
  HMMs	
  

X2 ?? E1 | X1, E2 ?? X1, E1 | X2, X3 ?? X1, E1, E2 | X2, E3 ?? X1, E1, X2, E2 | X3



Chain	
  Rule	
  and	
  HMMs	
  

§  From	
  the	
  chain	
  rule,	
  every	
  joint	
  distribu)on	
  over	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriden	
  as:	
  

§  Assuming	
  that	
  for	
  all	
  t:	
  	
  
§  State	
  independent	
  of	
  all	
  past	
  states	
  and	
  all	
  past	
  evidence	
  given	
  the	
  previous	
  state,	
  i.e.:	
  	
  

§  Evidence	
  is	
  independent	
  of	
  all	
  past	
  states	
  and	
  all	
  past	
  evidence	
  given	
  the	
  current	
  state,	
  i.e.:	
  

	
  	
  	
  	
  	
  
	
  

	
  	
  	
  	
  	
  	
  gives	
  us	
  the	
  expression	
  posited	
  on	
  the	
  earlier	
  slide:	
  	
  

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)

TY

t=2

P (Xt|X1, E1, . . . , Xt1, Et1)P (Et|X1, E1, . . . , Xt1, Et1, Xt)

Xt ?? X1, E1, . . . , Xt2, Et2, Et1 | Xt1

���

���
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��� ���

Et ?? X1, E1, . . . , Xt2, Et2, Xt1, Et1 | Xt

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)

TY

t=2

P (Xt|Xt1)P (Et|Xt)



Real	
  HMM	
  Examples	
  

§  Speech	
  recogni)on	
  HMMs:	
  
§  Observa)ons	
  are	
  acous)c	
  signals	
  (con)nuous	
  valued)	
  
§  States	
  are	
  specific	
  posi)ons	
  in	
  specific	
  words	
  (so,	
  tens	
  of	
  thousands)	
  

§  Machine	
  transla)on	
  HMMs:	
  
§  Observa)ons	
  are	
  words	
  (tens	
  of	
  thousands)	
  
§  States	
  are	
  transla)on	
  op)ons	
  

§  Robot	
  tracking:	
  
§  Observa)ons	
  are	
  range	
  readings	
  (con)nuous)	
  
§  States	
  are	
  posi)ons	
  on	
  a	
  map	
  (con)nuous)	
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Inference in Temporal Models

Filtering: This is the task of computing the belief state—the 
posterior distribution over the most recent state—given all 
evidence to date. P(X

t
 | e

1:t
).

Umbrella example?

Prediction: This is the task of computing the posterior distribution 
over the future state, given all evidence to date. P(X

t+k
 | e

1:t
) for 

some k>0. Example?

Smoothing: This is the task of computing the posterior distribution 
over a past state, given all evidence up to the present. That is, we 
wish to compute P(X

k
 | e

1:t
) for 0 ≤ k < t.

Most likely explanation: Given a sequence of observations, we 
might wish to find the sequence of states that is most likely to 
have generated those observations. argmax

x1:t
 P(x

1:t
 | e

1:t
).


