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Constructing Bayesian Networks

Quiz: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm
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Constructing Bayesian Networks
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Variable elimination algorithm

Annotate each part of expression with the name of the 
corresponding factor

Each factor is a matrix indexed by the values of its argument 
variables

f
4
(A) and f

5
(A) corresponding to P(j | a) and P(m| a) depend just on 

A because J and M are fixed by the query.
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Bayesian Networks

Compact (# of parameters)
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Variable elimination algorithm

Annotate each part of expression with the name of the 
corresponding factor

Each factor is a matrix indexed by the values of its argument 
variables

f
4
(A) and f

5
(A) corresponding to P(j | a) and P(m| a) depend just on 

A because J and M are fixed by the query.
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Variable elimination algorithm

f
3
(A,B,E) will be a 2×2×2 matrix

A B E p(A|B,E)

T T T 0.95

T T F 0.94

T F T 0.29

T F F 0.01

F T T 0.05

F T F 0.06

F F T 0.71

F F F 0.999
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Variable elimination algorithm

“x” operator is not ordinary matrix multiplication but instead the 
pointwise product operation

The pointwise product of two factors f
1
 and f

2
 yields a new factor f 

whose variables are the union of the variables in f
1
 and f

2
 and 

whose elements are given by the product of the corresponding 
elements in the two factors.
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Variable elimination algorithm

Pointwise product operation:
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Variable elimination algorithm

Summation operation: Summing out a variable from a product of 
factors is done by adding up the submatrices formed by fixing the 
variable to each of its values in turn
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Variable elimination algorithm

A B E f
3
(A,B,E)

T T T 0.95

T T F 0.94

T F T 0.29

T F F 0.01

F T T 0.05

F T F 0.06

F F T 0.71

F F F 0.999

Quiz
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Variable elimination algorithm

The trick to notice is that any factor that does not depend on the 
variable to be summed out can be moved outside the summation.

Different orderings cause different intermediate factors to be 
generated during the calculation

Idea: Eliminate whichever variable minimizes the size of the next 
factor to be constructed.
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Variable elimination algorithm



Complexity of Exact Inference
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Multiply connected network

Singly connected networks (or polytrees) are networks where there is
at most one undirected path between any two nodes in the networks.

The time and space complexity of exact inference in polytrees is
linear in the number of CPT entries.

For multiply connected networks, variable elimination can have
exponential time and space complexity in the worst case.
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Approximate Inference Methods

Since exact inference is intractable in large networks, we consider
approximate inference methods that are much faster.

Monte Carlo

Direct sampling methods
Markov chain sampling

Variational methods

Loopy propagation
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Direct sampling methods

What is sampling?

Sampling consists in generating a finite number of samples (values) from a
known probability distribution.

Example

Sampling from a Bernoulli distribution P (Coin) =< 0.5, 0.5 >, where
Coin ∈ {heads, tails}, consists in flipping a coin a number of times and
observing the results, e.g. {heads, tails, tails, heads, tails, . . . }.
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Direct sampling methods

Why do we use sampling methods?

Sampling is often used to compute E[f(x)], where x is a random variable
and E[f(x)] cannot be computed in a closed form (or efficiently).

Example

To compute E[
√
|x|] where x ∼ N (0, 1) (standard normal distribution),

we generate samples {0.0591, 1.7971, 0.2641, 0.8717,−1.4462}, and get

E[
√
x] ≈

√
|0.0591|+

√
|1.7971|+

√
|0.2641|+

√
|0.8717|+

√
|−1.4462|

5 ≈ 0.85
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Direct sampling methods

Sample events from a network that has no evidence associated with it.

Each variable is sampled in turn, in topological order.

The probability distribution from which the value is sampled is conditioned
on the values already assigned to the variable’s parents.

Section 14.5. Approximate Inference in Bayesian Networks 531

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements
foreach variable Xi in X1, . . . , Xn do

x[i]← a random sample from P(Xi | parents(Xi))
return x

Figure 14.13 A sampling algorithm that generates events from a Bayesian network. Each
variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.

It is easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution
specified by the network. First, let SPS (x1, . . . , xn) be the probability that a specific event is
generated by the PRIOR-SAMPLE algorithm. Just looking at the sampling process, we have

SPS (x1 . . . xn) =

n∏

i=1

P (xi | parents(Xi))

because each sampling step depends only on the parent values. This expression should look
familiar, because it is also the probability of the event according to the Bayesian net’s repre-
sentation of the joint distribution, as stated in Equation (14.2). That is, we have

SPS (x1 . . . xn) = P (x1 . . . xn) .

This simple fact makes it easy to answer questions by using samples.
In any sampling algorithm, the answers are computed by counting the actual samples

generated. Suppose there are N total samples, and let NPS (x1, . . . , xn) be the number of
times the specific event x1, . . . , xn occurs in the set of samples. We expect this number, as a
fraction of the total, to converge in the limit to its expected value according to the sampling
probability:

lim
N→∞

NPS (x1, . . . , xn)

N
= SPS (x1, . . . , xn) = P (x1, . . . , xn) . (14.5)

For example, consider the event produced earlier: [true, false , true, true]. The sampling
probability for this event is

SPS (true , false, true , true) = 0.5× 0.9× 0.8× 0.9 = 0.324 .

Hence, in the limit of large N , we expect 32.4% of the samples to be of this event.
Whenever we use an approximate equality (“≈”) in what follows, we mean it in exactly

this sense—that the estimated probability becomes exact in the large-sample limit. Such an
estimate is called consistent. For example, one can produce a consistent estimate of theCONSISTENT

probability of any partially specified event x1, . . . , xm, where m ≤ n, as follows:

P (x1, . . . , xm) ≈ NPS (x1, . . . , xm)/N . (14.6)

That is, the probability of the event can be estimated as the fraction of all complete events
generated by the sampling process that match the partially specified event. For example, if

Generate several samples x and calculate the frequency of each instance.
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Example
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Example

1 Sample from P (Cloudy) =< 0.5, 0.5 >, value is true.

2 Sample from P (Sprinkler | Cloudy = true) =< 0.1, 0.9 >, value is false.

3 Sample from P (Rain | Cloudy = true) =< 0.8, 0.2 >, value is true.

4 Sample from
P (WetGrass | Sprinkler = false,Rain = true) =< 0.9, 0.1 >, value is
true.
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Rejection sampling

Direct sampling is useful for estimating a joint probability
P (x1, x2, . . . , xn) when there is no evidence (no known value for any
variable).

The same idea can be used to estimate P (X | e), where X is any variable
and e is an evidence (the value(s) of certain variable(s)).

1 Generate samples from the prior distribution specified by the network.

2 Reject all those that do not match the evidence.

3 Estimate P̂ (x| e) is obtained by counting the number of samples
where X = x.

P̂ (x| e) = number of samples (x, e)

number of samples (e)
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Example of rejection sampling

We wish to estimate P (Rain | Sprinkler = true), using 100
samples.

Of the 100 samples,

73 have Sprinkler = false and are rejected,
27 have Sprinkler = true. Of the 27,

8 have Rain = true,
and 19 have Rain = false.

Thus,

P (Rain|Sprinkler = true) ≈ normalize(< 8, 19 >) =< 0.296, 0.704 > .

47 / 63



Rejection sampling
Section 14.5. Approximate Inference in Bayesian Networks 533

function REJECTION-SAMPLING(X , e, bn ,N ) returns an estimate of P(X |e)
inputs: X , the query variable

e, observed values for variables E
bn , a Bayesian network
N , the total number of samples to be generated

local variables: N, a vector of counts for each value of X , initially zero

for j = 1 to N do
x← PRIOR-SAMPLE(bn)
if x is consistent with e then

N[x ]←N[x ]+1 where x is the value of X in x
return NORMALIZE(N)

Figure 14.14 The rejection-sampling algorithm for answering queries given evidence in a
Bayesian network.

describing how the algorithm works; then we show that it works correctly—that is, generates
consistent probability estimates.

LIKELIHOOD-WEIGHTING (see Figure 14.15) fixes the values for the evidence vari-
ables E and samples only the nonevidence variables. This guarantees that each event gener-
ated is consistent with the evidence. Not all events are equal, however. Before tallying the
counts in the distribution for the query variable, each event is weighted by the likelihood that
the event accords to the evidence, as measured by the product of the conditional probabilities
for each evidence variable, given its parents. Intuitively, events in which the actual evidence
appears unlikely should be given less weight.

Let us apply the algorithm to the network shown in Figure 14.12(a), with the query
P(Rain |Cloudy = true,WetGrass = true) and the ordering Cloudy, Sprinkler, Rain, Wet-
Grass. (Any topological ordering will do.) The process goes as follows: First, the weight w
is set to 1.0. Then an event is generated:

1. Cloudy is an evidence variable with value true . Therefore, we set

w ← w×P (Cloudy = true) = 0.5 .

2. Sprinkler is not an evidence variable, so sample from P(Sprinkler |Cloudy = true) =
〈0.1, 0.9〉; suppose this returns false .

3. Similarly, sample from P(Rain |Cloudy = true) = 〈0.8, 0.2〉; suppose this returns
true .

4. WetGrass is an evidence variable with value true . Therefore, we set

w ← w×P (WetGrass = true |Sprinkler = false ,Rain = true) = 0.45 .

Here WEIGHTED-SAMPLE returns the event [true, false , true, true] with weight 0.45, and
this is tallied under Rain = true .

To understand why likelihood weighting works, we start by examining the sampling
probability SWS for WEIGHTED-SAMPLE. Remember that the evidence variables E are fixed
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Likelihood weighting

Rejection sampling is not efficient because it wastes a lot of samples (all
the samples that do not agree with the provided evidence).

Can we simply force the evidence variables to agree with the provided
values, and sample only the non-evidence variables?
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Temporal probability models

Chapter 15, Sections 1–5

Chapter 15, Sections 1–5 1



Independence

 Two variables are independent in a joint distribution if:

 Says the joint distribution factors into a product of two simple 
ones

 Usually variables aren’t independent!

 Can use independence as a modeling assumption
 Independence can be a simplifying assumption
 Empirical  joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity}?

 Independence is like something from CSPs: what?



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence

 P(Toothache, Cavity, Catch)

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, -cavity) = P(+catch| -cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | 

Cavity)
 One can be derived from the other easily



Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

 X is conditionally independent of Y given Z

      if and only if:

      or, equivalently, if and only if



Probability Recap

Conditional probability

Product rule

Chain rule 

X, Y independent if and only if:

X and Y are conditionally independent given Z if and only if:



Reasoning over Time or Space

Often, we want to reason about a sequence of observations

 Speech recognition

 Robot localization

 User attention

 Medical monitoring

Need to introduce time (or space) into our models



Markov Models

● Future states depend only on the current state not on the events that occurred before it

● Value of X at a given time is called the state

 Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)

 Stationarity assumption: transition probabilities the same at all times

X2X1 X3 X4



Joint Distribution of a Markov Model

 Joint distribution:

 More generally:

X2X1 X3 X4



Chain Rule and Markov Models

 From the chain rule, every joint distribution over                                 can be written as:

 Assuming that
                                                                   and

    results in the expression posited on the previous slide: 

X2X1 X3 X4



Chain Rule and Markov Models

 From the chain rule, every joint distribution over                                         can be written as:

 Assuming that for all t: 

    gives us the expression posited on the earlier slide: 

X2X1 X3 X4



Example Markov Chain: Weather

 States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

 Initial distribution: 1.0 sun

CPT P(Xt | Xt-1):



Quiz: Example Markov Chain: Weather

Initial distribution: 1.0 sun

What is the probability distribution after one step?
P(X2 = sun) = ?

rain sun

0.9

0.7

0.3

0.1



Example Markov Chain: Weather

Initial distribution: 1.0 sun

What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1



Mini-Forward Algorithm

Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

 From initial observation of sun

 From initial observation of rain

 From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…



 Stationary distribution:
 The distribution we end up with is called 

the stationary distribution           of the chain
 It satisfies

Stationary Distributions

 For most chains:
 Influence of the initial distribution gets 

less and less over time.
 The distribution we end up in is 

independent of the initial distribution



Quiz: Stationary Distributions

Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7



Quiz: Stationary Distributions

Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Probability	
  Recap	
  

§  Condi)onal	
  probability	
  

§  Product	
  rule	
  

§  Chain	
  rule	
  	
  
	
  
	
  
	
  

§  X,	
  Y	
  independent	
  if	
  and	
  only	
  if:	
  

§  X	
  and	
  Y	
  are	
  condi)onally	
  independent	
  given	
  Z	
  if	
  and	
  only	
  if:	
  



Hidden	
  Markov	
  Models	
  



Hidden	
  Markov	
  Models	
  

§  Markov	
  chains	
  not	
  so	
  useful	
  for	
  most	
  agents	
  
§  Need	
  observa)ons	
  to	
  update	
  your	
  beliefs	
  

§  Hidden	
  Markov	
  models	
  (HMMs)	
  
§  Underlying	
  Markov	
  chain	
  over	
  states	
  X	
  
§  You	
  observe	
  outputs	
  (effects)	
  at	
  each	
  )me	
  step	
  

X5 X2 

E1 

X1 X3 X4 

E2 E3 E4 E5 



Example:	
  Weather	
  HMM	
  

Rt	
   Rt+1	
   P(Rt+1|Rt)	
  

+r	
   +r	
   0.7	
  

+r	
   -­‐r	
   0.3	
  

-­‐r	
   +r	
   0.3	
  

-­‐r	
   -­‐r	
   0.7	
  

Umbrellat-­‐1	
  

Rt	
   Ut	
   P(Ut|Rt)	
  

+r	
   +u	
   0.9	
  

+r	
   -­‐u	
   0.1	
  

-­‐r	
   +u	
   0.2	
  

-­‐r	
   -­‐u	
   0.8	
  

Umbrellat	
   Umbrellat+1	
  

Raint-­‐1	
   Raint	
   Raint+1	
  

§  An	
  HMM	
  is	
  defined	
  by:	
  
§  Ini)al	
  distribu)on:	
  
§  Transi)ons:	
  
§  Emissions:	
  

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)



Joint	
  Distribu)on	
  of	
  an	
  HMM	
  

§  Joint	
  distribu)on:	
  

§  More	
  generally:	
  

§  Ques)ons	
  to	
  be	
  resolved:	
  
§  Does	
  this	
  indeed	
  define	
  a	
  joint	
  distribu)on?	
  
§  Can	
  every	
  joint	
  distribu)on	
  be	
  factored	
  this	
  way,	
  or	
  are	
  we	
  making	
  some	
  assump)ons	
  about	
  the	
  
joint	
  distribu)on	
  by	
  using	
  this	
  factoriza)on?	
  

X5 X2 

E1 

X1 X3 

E2 E3 E5 

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)



§  From	
  the	
  chain	
  rule,	
  every	
  joint	
  distribu)on	
  over	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriden	
  as:	
  

§  Assuming	
  that	
  
	
  	
  

	
  	
  	
  	
  	
  
gives	
  us	
  the	
  expression	
  posited	
  on	
  the	
  previous	
  slide:	
  	
  

X1, E1, X2, E2, X3, E3

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

X2 

E1 

X1 X3 

E2 E3 

Chain	
  Rule	
  and	
  HMMs	
  

X2 ?? E1 | X1, E2 ?? X1, E1 | X2, X3 ?? X1, E1, E2 | X2, E3 ?? X1, E1, X2, E2 | X3



Chain	
  Rule	
  and	
  HMMs	
  

§  From	
  the	
  chain	
  rule,	
  every	
  joint	
  distribu)on	
  over	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  can	
  be	
  wriden	
  as:	
  

§  Assuming	
  that	
  for	
  all	
  t:	
  	
  
§  State	
  independent	
  of	
  all	
  past	
  states	
  and	
  all	
  past	
  evidence	
  given	
  the	
  previous	
  state,	
  i.e.:	
  	
  

§  Evidence	
  is	
  independent	
  of	
  all	
  past	
  states	
  and	
  all	
  past	
  evidence	
  given	
  the	
  current	
  state,	
  i.e.:	
  
	
  	
  	
  	
  	
  
	
  

	
  	
  	
  	
  	
  	
  gives	
  us	
  the	
  expression	
  posited	
  on	
  the	
  earlier	
  slide:	
  	
  

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|X1, E1, . . . , Xt�1, Et�1)P (Et|X1, E1, . . . , Xt�1, Et�1, Xt)

Xt ?? X1, E1, . . . , Xt�2, Et�2, Et�1 | Xt�1

X2 

E1 

X1 X3 

E2 E3 

Et ?? X1, E1, . . . , Xt�2, Et�2, Xt�1, Et�1 | Xt

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)



Real	
  HMM	
  Examples	
  

§  Speech	
  recogni)on	
  HMMs:	
  
§  Observa)ons	
  are	
  acous)c	
  signals	
  (con)nuous	
  valued)	
  
§  States	
  are	
  specific	
  posi)ons	
  in	
  specific	
  words	
  (so,	
  tens	
  of	
  thousands)	
  

§  Machine	
  transla)on	
  HMMs:	
  
§  Observa)ons	
  are	
  words	
  (tens	
  of	
  thousands)	
  
§  States	
  are	
  transla)on	
  op)ons	
  

§  Robot	
  tracking:	
  
§  Observa)ons	
  are	
  range	
  readings	
  (con)nuous)	
  
§  States	
  are	
  posi)ons	
  on	
  a	
  map	
  (con)nuous)	
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Inference in Temporal Models

Filtering: This is the task of computing the belief state—the 
posterior distribution over the most recent state—given all 
evidence to date. P(X

t
 | e

1:t
).

Umbrella example?

Prediction: This is the task of computing the posterior distribution 
over the future state, given all evidence to date. P(X

t+k
 | e

1:t
) for 

some k>0. Example?

Smoothing: This is the task of computing the posterior distribution 
over a past state, given all evidence up to the present. That is, we 
wish to compute P(X

k
 | e

1:t
) for 0 ≤ k < t.

Most likely explanation: Given a sequence of observations, we 
might wish to find the sequence of states that is most likely to 
have generated those observations. argmax

x1:t
 P(x

1:t
 | e

1:t
).


