Example

Suppose we choose the ordering M, J, A, B, E

J|M) = P(J)? No

AlJ, M) = P(A[J)? P(A|J, M) = P(A)? No
B|A,J, M) = P(B|A)? Yes

B|A, J, M) = P(B)? No
)
)

|B, A, J,M) = P(E|A)? No
|B, A, J,M) = P(E|A,B)? Yes

Chapter 14.1-3 17



Example contd.

Burglary
Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1+ 2+ 4 + 2+ 4 =13 numbers needed

Chapter 14.1-3 18




Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
broke broke

battery
flat blockeg broke

deac

Chapter 14.1-3 19



Example: Car insurance
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Constructing Bayesian Networks

» Quiz: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm



Constructing Bayesian Networks

» MaryCalls, JohnCalls, Earthquake, Burglary, Alarm

MarvyCalls
JohnCalls
Earthquake
Y
Burglary
Alarm



Variable elimination algorithm

P(B|j,m)=aP(B P(e P(a| B, e) m|a
P(B|j Z Z | (Ja) P(m|a)
f1 (B) © fo (E) f3 (A B,E) f4(A) f5(A)
» Annotate each part of expression with the name of the
corresponding factor

» Each factor is a matrix indexed by the values of its argument
variables

» f,(A) and f_(A) corresponding to P(j | a) and P(m| a) depend just on
A because J and M are fixed by the query.

o PGla)\ _ (090 o ( P(mla) \ _ (0.70
fa(4) = (P(j ﬂa.)) B (o.oa) fs(A4) = (P(m ﬂa.)) B (0.01)



Bayesian Networks

» Compact (# of parameters)

P(E)
002

A | P

t | .70
r oz

:

P(Xy,...,X,) = Hf’zlP(X};|X1, ..., Xi—1) (chain rule)
= [I'_ ,P(X;|Parents(X;)) (by construction)




Constructing Bayesian Networks

» MaryCalls, JohnCalls, Earthquake, Burglary, Alarm



Constructing Bayesian Networks

» MaryCalls, JohnCalls, Earthquake, Burglary, Alarm

MarvyCalls
JohnCalls
Earthquake
Y
Burglary
Alarm



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) /®
=P(B,j,m)/P(j,m)

= aP (B, j,m) }Zﬁ\l
=« 2, 2, P(B,e,a,j,m) @ @

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

=« 2 22y P(B)P(e)P(a|B,e)P(jla)P(m|a)

= aP(B) 2. P(e) 2, P(a|B, e)P(jla)P(m]a)

Recursive depth-first enumeration: O(n) space, O(d") time

Chapter 14.4-5 4



Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) < a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) < ENUMERATE-ALL(VARS[b7], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMpPTY?(vars) then return 1.0
Y« FIRST(vars)
if Y has value y in e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return », P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with Y = y

Chapter 14.4-5




Evaluation tree

P(jla)
.90

P(mla)
.70

Enumeration is inefficient: repeated computation
e.g., computes P(7|a)P(m|a) for each value of e

P(alb,e)

O

P(jlma)
.05

P(ml—a)
.01

P(malb,e)
.05

O

P(alb,—e)
94

.06

P(jlma)
.05

P(ml—a)
.01

Chapter 14.4-5

P(malb—e)




Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(BJj,m)
— aP(B) %, Ple) S Plal B, e) P(jla) P(mla)
B E A J M
= aP(B)2.P(e)2,P(a|B,e)P(jla) fula)
= aP(B)2.P(e)2,P(a|B,e)f;(a)fiula)
= aP(B)L.P(e) b fala, b e) f,(a )fu(ﬂ)
= aP(B)2.P(e)f (b, P) (sum out A)
= aP(B)fzis(b) (sum out E)
= afp(b) X frau(b)

Chapter 14.4-5 7



Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

DpfiX oo X fy=fix o X fidy fipn X oo X fy=fix oo X fix fx
assuming fi...., [; do not depend on X

Pointwise product of factors f; and f:

= f(Z1,. . T, YLy e oy Yky 21y -5 1)

Chapter 14.4-5 8



Variable elimination algorithm

P(B|j,m)=aP(B P(e P(a| B, e) m|a
P(B|j Z Z | (Ja) P(m|a)
f1 (B) © fo (E) f3 (A B,E) f4(A) f5(A)
» Annotate each part of expression with the name of the
corresponding factor

» Each factor is a matrix indexed by the values of its argument
variables

» f,(A) and f_(A) corresponding to P(j | a) and P(m| a) depend just on
A because J and M are fixed by the query.

[ PGla)\ {090 [ P(mla) \ {070
fa(4) = (P(j ﬂa.)) a (0.05) f5(4) = (P(m ﬂa.)) a (0.01)



Variable elimination algorithm

P(B|j,m)=aP(B P(e P(a|B,e)P(jla m|a
P(B|j Z Z | (ja) P(m|a)

f1 (B) © fo (E) f3 (A B,E) f4(A) f5(A)
gy ((PUTa) ) _ (090 f5(A) — P(m|a) \ (0.70
A PG -a) ) T\ 005 T Pm-a) ) T 001
» f.(A,B,E) will be a 2x2x2 matrix
A B E p(A|B,E)
T T T 0.95 — ———
Burglary P(B) /.;Earh uake\\\ P(!:;]
T T - 0.94 Caunsor) P25 e N
T F T 029 - B E P(A)
T F F 0.01 Alarm ) | o | o
F T T 005 jf ! ..(.i)l
F T F 0.06 B
F F T 0.71 Comncatis ) foo | (Marscai) 1 T2
o f |05 —_— f |01
F F F 0.999

Emre Ugur




Variable elimination algorithm

P(B|j,m)=aP(B ZP ZP | B,e)P(j|a)P(m|a)

f1 (B) © fo (E) f‘g(A B,E) f4(A) f5(A)

P(B|j,m)=af (B fog xZ&ABE}xﬁ(H} fs(A)

» “X” operator is not ordinary matrix multiplication but instead the
pointwise product operation

» The pointwise product of two factors f, and f, yields a new factor f
whose variables are the union of the variables in f, and f, and

whose elements are given by the product of the corresponding
elements in the two factors.



Variable elimination algorithm

P(B|j,m)=afi(B)x Y f(E)x Y f3(A, B, E)xf4(A) x f5(A)

» Pointwise product operation:

A B f1(A.B) B C fo(B,C) A B C f3(A, B, C)
T T 3 T T 2 T T T 3 x.2=.06
T F J T F 8 T T F 3 x .8=.24
F T 9 F T .0 T F T 7 x .6=.42
F F . F F 4 T F F 7 x . 4=.28
F T T 9 x.2=.18
F T F 9 x .8=.72
F F T 1 x .6=.06
F F F 1 x . 4=.04
Figure 14.10  [llustrating pointwise multiplication: fi (A, B) x fa( B, ') = f3(A, B, C),




Variable elimination algorithm

P(B|j,m)=afi(B)x Y f(E)x Y f3(A, B, E)xf4(A) x f5(A)
» Summation operation: Summing out a variable from a product of

factors is done by adding up the submatrices formed by fixing the
variable to each of its values in turn

f(B,C) = ng(At B,C)=13(a,B.C) +f3(—a,B.C)

_ (06 24 (18 .72 _ (.24 .96
— o\ 42 .28 06 .04 )~ \ 48 32 )



Variable elimination algorithm

P(B|j,m)=a«aPB ZP ZP(J,|B6 (jla)P(m|a)
- A W
f1 (B) fo (E) fs(A,B,E) f4(A) f5(A)
Quiz
P(B|j,m)=af (B ng E)x|Y f3(A, B, E) x f4(A) x f5(A)
[ P(Gila) \  [0.90 [ P(ml|a) \ [ 0.70
fa(4) = (P( jl=a) ]~ \ 0.05 f5(4) = P(m|-a) ] — \ 0.01
A B E f,(A,B,E) . N
T T T 0.95 @igia@ ] (B
T T F 0.94 T o
T F F 0.01 — / 29
F T T 0.05 SR
F T F 0.06 ] T A [P(M)
= F T om Qo) ;L] - Chamcilis ;2
F F F 0.999

Emre Ugur




Variable elimination algorithm
P(B|jm)=afi(B)x Y f(E)x Y f3(A,B,E)xf4(A) x f5(A)

» The trick to notice is that any factor that does not depend on the
variable to be summed out can be moved outside the summation.
ng ) % f5(A, B, E) x £4(A) x £5(A) = f4(A) x £5(A) x ng E) x f3(A. B, F)

» Different orderings cause different intermediate factors to be
generated during the calculation

P(B|jm)=af (B XZQ ) x f5(A fog ) x f3(A. B. F)

» |dea: Eliminate whichever variable minimizes the size of the next
factor to be constructed.



Variable elimination algorithm

"'-..ﬁ---- . --’:-
( Alarm )

. JohnCalls I




Complexity of Exact Inference

Burglary

[~ ~

c[re) clrm)
10 @ @ ED
| 50 7120

S R|PW)
t ot 99
APt t f| 90
R St 90
f o1 f fl 00
Singly connected network Multiply connected network

@ Singly connected networks (or polytrees) are networks where there is
at most one undirected path between any two nodes in the networks.

@ The time and space complexity of exact inference in polytrees is
linear in the number of CPT entries.

@ For multiply connected networks, variable elimination can have
exponential time and space complexity in the worst case.

4
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Approximate Inference Methods

Since exact inference is intractable in large networks, we consider
approximate inference methods that are much faster.

@ Monte Carlo

e Direct sampling methods
e Markov chain sampling

@ Variational methods

@ Loopy propagation

40 /63



Direct sampling methods

What is sampling?

Sampling consists in generating a finite number of samples (values) from a
known probability distribution.

v

Example

Sampling from a Bernoulli distribution P(Coin) =< 0.5,0.5 >, where
Coin € {heads,tails}, consists in flipping a coin a number of times and
observing the results, e.g. {heads, tails, tails, heads, tails, . .. }.

41/63



Direct sampling methods

Why do we use sampling methods?

Sampling is often used to compute E[f(z)], where z is a random variable
and E[f(z)] cannot be computed in a closed form (or efficiently).

Example

To compute E[y/|z|] where z ~ N(0, 1) (standard normal distribution),
we generate samples {0.0591,1.7971,0.2641,0.8717, —1.4462}, and get
E[\/Z] ~ \/|0.0591|+\/|1.7971|+\/|0.25641|+\/|0.8717|+\/|—1.4462| ~0.85

42 /63



Direct sampling methods

Sample events from a network that has no evidence associated with it. J

Each variable is sampled in turn, in topological order. J

The probability distribution from which the value is sampled is conditioned
on the values already assigned to the variable's parents. J

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X7, ..., X,,)

X < an event with n elements
foreach variable X; in X1,..., X, do

x[i] + a random sample from P(X; | parents(X;))
return x

Generate several samples x and calculate the frequency of each instance. J

43 /63



Example

C | P©S) < p C | P(R)
{10 | Gprinkier) (rain ) [ 50
£l .50 f1 20

S R|PW)
t t | 99
t f | 90
f ot] 90
f f1 00
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Example

@ Sample from P(Cloudy) =< 0.5,0.5 >, value is true.
@ Sample from P(Sprinkler | Cloudy = true) =< 0.1,0.9 >, value is false.
© Sample from P(Rain | Cloudy = true) =< 0.8,0.2 >, value is true.

© Sample from
P(WetGrass | Sprinkler = false, Rain = true) =< 0.9,0.1 >, value is
true.

45 /63



Rejection sampling

Direct sampling is useful for estimating a joint probability

P(x1,z2,...,2,) when there is no evidence (no known value for any
variable).

The same idea can be used to estimate P(X | e), where X is any variable
and e is an evidence (the value(s) of certain variable(s)).

© Generate samples from the prior distribution specified by the network.
@ Reject all those that do not match the evidence.

@ Estimate P(z| e) is obtained by counting the number of samples
where X = z.

Pla| ) number of samples (x, e)
X =
number of samples (e)

46 /63



Example of rejection sampling

e We wish to estimate P(Rain | Sprinkler = true), using 100
samples.

@ Of the 100 samples,

o 73 have Sprinkler = false and are rejected,
e 27 have Sprinkler = true. Of the 27,

o 8 have Rain = true,
o and 19 have Rain = false.

@ Thus,

P(Rain|Sprinkler = true) ~ normalize(< 8,19 >) =< 0.296,0.704 > .

47 /63




Rejection sampling

function REJECTION-SAMPLING(X , e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: N, a vector of counts for each value of X, initially zero

for j =1to N do
X <— PRIOR-SAMPLE(bn)
if x is consistent with e then
N[z] < N[z]+1 where z is the value of X in x
return NORMALIZE(N)

48 /63



Likelihood weighting

Rejection sampling is not efficient because it wastes a lot of samples (all
the samples that do not agree with the provided evidence).

Can we simply force the evidence variables to agree with the provided
values, and sample only the non-evidence variables?

49 /63



TEMPORAL PROBABILITY MODELS

CHAPTER 15, SECTIONS 1-5

Chapter 15, Sections 1-5 1



Independence

" Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X1Y
Va,y P(x,y) = P(z)P(y)
" Says the joint distribution factors into a product of two simple
ones
* Usually variables aren’t independent!

" Can use independence as a modeling assumption
* Independence can be a simplifying assumption
* Empirical joint distributions: at best “close” to independent
" What could we assume for {Weather, Traffic, Cavity}?

" Independence is like something from CSPs: what?



Example: Independence?

P(T)

P (T, W) - P (T, W) = P(T)P(W)

P(W)




Example: Independence

“N fair, independent coin flips:

P(X1) P(X5) P(Xn)

P(X1,Xo,...Xpn)




Conditional Independence

" P(Toothache, Cavity, Catch)

" If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:
" P(+catch | +toothache, +cavity) = P(+catch | +cavity)

" The same independence holds if | don’t have a cavity:
" P(+catch | +toothache, -cavity) = P(+catch| -cavity)

" Catch is conditionally independent of Toothache given Cavity:
" P(Catch | Toothache, Cavity) = P(Catch | Cavity)

" Equivalent statements:
" P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
" P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch |
Cavity)
" One can be derived from the other easily



Conditional Independence

" Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

" X is conditionally independent of Y given Z
XiI_Y|Z
if and only if:

Vr,y, 2z P(x,ylz) = P(x|2) P(y|2)
or, equivalently, if and only if

Va,y, 2 Palz,y) = Pa|2)



Probability Recap

P
" Conditional probability P(x|y) = (,y)
P(y)
" Product rule P(z,y) = P(z|y)P(y)
" Chain rule P(X1,Xo,...Xn) = P(X1)P(X5|X1)P(X3|X1,X5)...

T
H P(leXla S 7Xi—1)

=1

, , , Vx,y: P(z,y) = P(z)P(y)
"X, Y independent if and only if:

"X and Y are conditionally independent given Z if and only if: X1Y|Z

Va,y, z 1 P(z,y|z) = P(x|2) P(ylz)



Reasoning over Time or Space

" Often, we want to reason about a sequence of observations
" Speech recognition
" Robot localization

" User attention

" Medical monitoring

" Need to introduce time (or space) into our models



Markov Models

* Future states depend only on the current state not on the events that occurred before it

* Value of X at a given time is called the state

" Parameters: called transition probabilities or dynamics, specify how the state evolves
over time (also, initial state probabilities)
" Stationarity assumption: transition probabilities the same at all times



Joint Distribution of a Markov Model

P(X1)  P(XyXi-1)

" Joint distribution:
P(X1, X5, X3,X4) = P(X1)P(X3|X1)P(X3|X2)P(X4| X3)
" More generally:
P(X1,Xs,..., Xr)=P(X1)P(X2|X1)P(X3|X2)... P(Xp|X7_1)
T

= P(Xy) | | P(X4]X:-1)



Chain Rule and Markov Models

" From the chain rule, every joint distribution over X1, X2, X3, X4can be written as:
P(X1, X2, X3, X4) = P(X1)P(X2]| X1)P(X3]| X1, X2) P(X4| X1, Xo, X3)

" Assuming that

X3 Al X4 ‘ X9 and X4J_|_X1,X2 ‘ X3

results in the expression posited on the previous slide:

P(X1, X2, X3, X4) = P(X1)P(X2| X1)P(X3] X2) P(X4| X3)



Chain Rule and Markov Models

" From the chain rule, every joint distribution over Xl, XQ, Ceey XT can be written as:

T
P(X1,Xa,....X7) = P(X1) | [ P(X¢| X1, Xa, .., Xio1)

t=2
" Assuming that for all t:

Xt AL Xl)"'7Xt—2 ‘ Xt—l

gives us the expression posited on the earlier slide:

T
P(X1, Xs,..., Xr) = P(X1) | | P(X:|X:-1)
t=2



Example Markov Chain: Weather

" States: X = {rain, sun}

" Initial distribution: 1.0 sun

" CPT P(Xt | Xt—l): Two new ways of representing the same CPT
0.3 0.9
0.9
sun sun
(%
0
rain A rain
0.1 0.7

0.7



Quiz: Example Markov Chain: Weather

"Initial distribution: 1.0 sun

"What is the probability distribution after one step?
"P(X,=sun) =7



Example Markov Chain: Weather

"Initial distribution: 1.0 sun

"What is the probability distribution after one step?

P(X, =sun) = +
P(X, = sun| Xy =rain)P(X; = rain)

+0.3-0.0=0.9



Mini-Forward Algorithm

" Question: What’s P(X) on some day t?

P(x1) = known

P(:Ct) = Z P(xs_1,x¢)

Tt—1




Example Run of Mini-Forward Algorithm

" From initial observation of sun

< 0.0 > < 01 > < 016 > < 0.196 >~< o;; >

P(X)) P(X)) P(X;) P(X),) P(X.)
" From initial observation of rain

< 1.o> <0.7> <0.52> <0.412 >~< 0.25>

P(X,) P(X,) P(X;) P(X,) PX.)
" From yet another initial distribution P(X,):

(.7, . = (70 )

P(X}) P(X.)



Stationary Distributions

" For most chains: " Stationary distribution:
" Influence of the initial distribution gets " The distribution we end up with is called
less and less over time. the stationary distribution of the chain
" The distribution we end up in is " It satisfies P,

independent of the initial distribution

Po(X) = Pot1(X) = ZP(X‘%)POO(ZIZ)

006




Quiz: Stationary Distributions

" Question: What’s P(X) at time t = infinity? @

« & ® ‘t%”’
\ o, DD% m i(\\
P (sun) = P(sun|sun)Ps (sun) + P(sun|rain) Py (rain) j

Py (rain) = P(rain|sun) Py (sun) + P(rain|rain) Py (rain)




Quiz: Stationary Distributions

" Question: What’s P(X) at time t = infinity?

@ @ @ @ .............. > !
) = P(sun|sun) Py (sun) + P(sun|rain)Ps (rain) Q
(ram) = P(rain|sun) Py (sun) + P(ram|ram (rain)

)
o (sun) + 0.3Ps (rain)
)

P (o) =07 X x
(ram) =0.1 (sun + 0.7P (rain) _
('ram) = 1/3P (sun)

rain rin 07

Py (sun) = 3/4
Also: P (sun) + P (rain) = 1 :> Py (rain) =1/4



Probability Recap

. . P(x,y)
Conditional probabilit P(x|y) =
P y | P
Product rule P(x,y) = P(x|y)P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(X3|X1)P(X3|X1,X2)...

mn
= |] P(Xi|X1,..., Xi—1)

1=1

X, Y independent if and only if: Vz,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z 1 P(z,y|z) = P(z|z)P(y|z)

X1UY|Z



Hidden Markov Models




Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs) O
= Underlying Markov chain over states X 0
= You observe outputs (effects) at each time step "D

(o)) -~




Example: Weather HMM

P(X: | Xi-1)

Rain, ,

\ \4
Umbrella, , Umbrella,

Rain,

P(E; | Xy)

= An HMM is defined by:

= |nitial distribution:
" Transitions:
=" Emissions:

P(X1)
P(X; | Xi—1)
P(E; | Xi)

Rain,,,

A4

Umbrella,,,

|

Ri | Rus | P(RualRY) Re | U | P(UJRY
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




Joint Distribution of an HMM

Y

P(X1, Er, X2, Eo, X3, E3) = P(X1)P(E1| X1)P(X2| X1)P(E2| X2) P(X3| X2) P(Es| X3)

= More generally: -

P<X17 E17 SR 7XT7 ET) — P<X1)P<E1‘X1) H P(Xt‘Xt—l)P(Et‘Xt>
t=2
= Questions to be resolved:
® Does this indeed define a joint distribution?
= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?



Chain Rule and HMMs

= From the chain rule, every joint distribution over X, F1, X5, F5, X3, F’3 can be written as:

P(X17E17X27E27X37E3> :P(X1>P(E1‘X1)P(X2‘X17El)P(EQ‘XlaElaXQ)
P(Xs3| X1, E1, Xo, E2)P(Es| X1, B, Xo, Ea, X3)

= Assuming that

Xo LBy | Xy, Eoll Xq,F | Xey, X3l Xy,E1,Ey | Xo, Esl Xy,F, X0, Es| X3

gives us the expression posited on the previous slide:

P(X1, E1, Xo, B, X5, E3) = P(X1)P(E1|X1)P(X2|X1)P(Es|X2)P(X35|Xs) P(Es| X3)



Chain Rule and HMMs

" From the chain rule, every joint distribution over X, E;,..., X, Ep can be written as:

T
P(Xy,Ey,..., X, Br) = P(X1)P(E\| X)) | | P(X4| X1, Bv, ..., Xieo1, By ) P(Ey| Xy, By, Xy B, X)

t=2

= Assuming that for all t:
= State independent of all past states and all past evidence given the previous state, i.e.:

Xy L X4, By, 0 X0, By 9, By 1 | Xiq
= Evidence is independent of all past states and all past evidence given the current state, i.e.:
By L X1,Ey,..., X0, B9, Xy 1, B 1 | Xy

gives us the expression posited on the earlier slide:

T
P(Xy,Ey,...,X7,E7) = P(Xl)P(El\Xl)HP(Xt|Xt—1)P(Et\Xt)
P



Real HMM Examples

= Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:
= QObservations are words (tens of thousands)
= States are translation options

= Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)



Inference In Temporal Models

» Filtering: This is the task of computing the belief state—the
posterior distribution over the most recent state—given all
evidence to date. P(X | e ).

» Umbrella example?

» Prediction: This is the task of computing the posterior distribution
over the future state, given all evidence to date. P(X,, | e ) for
some k>0. Example?

» Smoothing: This is the task of computing the posterior distribution

over a past state, given all evidence up to the present. That is, we
wish to compute P(X | e ) forO<k<t.

» Most likely explanation: Given a sequence of observations, we
might wish to find the sequence of states that is most likely to
have generated those observations. argmax .. P(x, .| e, ).



