Machine Learning



Two types of learning in Al

Deductive: Deduce rules/facts from already known
rules/facts. (We have already dealt with this)

(A=>B=C|)=(4=C)

Inductive: Learn new rules/facts from a data set D.

D ={x(n),y(n)},., y=(4=C)

We will be dealing with the latter, inductive learning, now



Learning from Examples

» Which component is to be improved?
» A direct mapping from conditions on the current state to actions.
» A means to infer relevant properties of the world from the percepts.
» Information about the way the world evolves.
» Utility information indicating the desirability of world states.
» Action-value information indicating the desirability of actions.

P Goals that describe classes of states whose achievement maximizes the
agent’s utility.
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Learning from feedback

» What feedback is available to learn from

» In unsupervised learning the agent learns patterns in the input even
though no explicit feedback is supplied (e.g. clustering)

» In supervised learning the agent observes some example input—
output pairs and learns a function that maps from input to output

Supervised vs. Unsupervised
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In reinforcement learning the agent learns from a series of reinforcements rewards or
punishments



Supervised Learning

The task of supervised learning 1s this:

Given a training set of /V example input—output pairs

(x1,y1). (x2.92).... (TN.YN) |
where each y; was generated by an unknown function y = f(x),
discover a function /A that approximates the true function f.

Here 2 and y can be any value; they need not be numbers. The function h is a hypothesis.'

» Output is discrete: Classification
» Qutput Is continuous: Regression



Supervised learning

Consistent linear fit Consistent 7t order Consistent 6t order it

f(f) f(i) polynomial fit f(i) polynomial fit. f(f)
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(a) (b) () (d)
» Fitting a function of a single variable to some data points.

Consistent sinusoidal

» fis unknown — approximate with h selected from a hypothesis
space, H (e.g. the set of polynomials).

» Consistent hypothesis if it agrees with all the data

» Ockham’s razor: Select the simplest consistent hypothesis
» Simpler hypotheses that may generalize better.
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Attribute based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where | will/won’t wait for a table:

Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T | F | F T | Some| $3%% F T | French| 0-10 T
X5 Tl F | F T | Full $ F F | Thai | 30-60 F
X3 F| T | F F | Some| $§ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai | 10-30 T
X; T | F T F | Full | $3% F T | French| >60 F
Xg F| T | F T | Some| $3% T T | Italian | 0-10 T
X~ F| T | F F | None| $ T F | Burger| 0-10 F
X3 F| F | F T | Some| $% T T | Thai | 0-10 T
Xo F| T | T F | Full $ T F | Burger| >60 F
X0 T | T | T T | Full | $%% F T | Iltalian | 10-30 F
X11 F| F | F F | None| $ F F | Thai | 0-10 F
X9 T | T T T | Full $ F F | Burger | 30-60 T

*Alt(ernate), Fri(day), Hun(gry), Pat(rons), Res(ervation), Est(imated waiting time)




Decision Trees

» Decision trees are one possible representation for hypotheses
Goal < (PathyV PathaV --)

Patrons? This is our true function.
Can we learn this tree from examples?

None ome Full

WaitEstimate?

Alternate? Hungry?

No Yes No Yes
Reservatlon‘? Fri/Sat? Alternate?
Yes
Bar? Raining?
No No Yes
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Inductive learning of decision trees

» Simplest: Construct a decision tree with one leaf for every
example = memory based learning.
Not very good generalization.

» Advanced: Split on each variable so that the purity of each split
Increases (i.e. either only yes or only no)

» Purity measured,e.g, with entropy




Byl Attributes Targe:
Alt\Bar| Fri|Hun| Pat | Price | Roin| Res| Type | Est | WillWei
Xy | T{F|F| T |Some| §85 F | T |Feach| 0-10) T
X, |T{F|F| TRl S§ | F|F|Thil3-60] F
Xy | F|T|F|F |Some § | F|F |Buger|0-10) T
Xy |\ T\ F|T| T |FRll|$ | F|F|Thilie:30] T
. . = Xo | T{F|T| F|Full| 38| F|T|Fech 60| F
Xs |FIT|F|T |Sme| $§|T|T|halano-10] T
ecision Tree Learnin g
Xs | F{F|F| T |Sme| $§| T |T|Thi|0-10| T
X, |F{T|T|F|Rll| § | T|F |Buger|>60| F
Xo | T|T|T\| T |Fll|$$5| F T |halan1030) F
Xy | F{F|F| F |None| § | F|F|Thi|0l0| F
T\ T|T| TR} § | F|F|Buger3-60) T

Aim: find a small tree consistent with the training exampleé

Idea: (recursively) choose “most significant” attribute as root of
(sub)tree

Patrons?

None / MFU" Patrons?
None Some Full

Yes Hungry?

Patrons?

Patrons?

Some Full
| Yes | | Hungry? |
No Yes

French Italian Thai Burger Burger

| Frisat? | [Yes]
No Yes

No Yes
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Exanple Attributes T
Alt|Bar| Fri|Hun| Pat | Price | Roin| Res| Type | Est | WillWe

Xy | T{F|F| T |Sme| §8| F | T |Fench0-10| T

X, | T F|F|T|Rd| § | F|F|Thil30:60 F

X | F|T|F Some| § | F | F |Buger|0-10) T

Xy | TUF|T|T|RI| § | F|F|Thijio-30) T

- = L] X | TIF|T Ful | $88 | F | T |French| 60| F
X |F{T|F|T|S%me § | T |T | haanjo010) T

ost information attribute e
X |F{F|F| T |Sme 8| T |T|Thifo10) T

X |FIT|T Ful | § | T | F |Buger| >60| F

Xo |T{ T|T| T |Fl|$8|F|T|halan|i0-30
Xy |FIF|F None| § | F | F|Thai|0-10| F
T\ T|T| TR} § | F|F|Buger3-60) T

Choosing attribute:

Idea: a good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

Patrons? Type?

No%‘\ull French Italian Thai Burger

l.e. gives more information about classification
l.e. decreases uncertainty



Attribute with most information gain

» In terms of entropy
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» Entropy is a measure of the uncertainty of a random variable

» Acquisition of information corresponds to a reduction in entropy
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15

0.5

The entropy is maximal when
all possibilities are equally
likely.

The goal of the decision tree
is to decrease the entropy in
each node.

Entropy is zero in a pure "yes”
node (or pure "no” node).



Attribute with most information gain

» In terms of entropy

» Entropy is a measure of the uncertainty of a random variable
» Acquisition of information corresponds to a reduction in entropy

The entropy is maximal when
all possibilities are equally
likely.

Very impure group Less impure Minimum

impurity

The goal of the decision tree
is to decrease the entropy in
each node.

Entropy is zero in a pure “yes”
node (or pure "no” node).
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Attribute with most information gain

» In terms of entropy
» Entropy is a measure of the uncertainty of a random variable
» Acquisition of information corresponds to a reduction in entropy

Information Gain = entropy(parent) — [average entropy(children)]

¢ A
child _(1’ 1o gzl_’ _[i log, iJ:o.TS
entropy \ 17 17) \17 17

Entire population (30 instances) -
instances

child
entropy

parent _(_'.]022_ —[—-log o

entropy 13 instances

17
(Weighted) Average Entropy of Children = (5 0. 787}{

Information Gain= 0.996 - 0.615 = 0.38 an
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Attribute with most information gain

» In terms of entropy
» Entropy is a measure of the uncertainty of a random variable
» Acquisition of information corresponds to a reduction in entropy

» Entropy of a random variable with only one value

» No information gain from observing its value.
» Entropy of an unfair coin that comes up heads 99% of the time?
» Entropy of a fair coin?

Entropy: Z P(vy)

= -3 Pl ton Pl

H(Fair) = —(0.51log5 0.5 + 0.5 log, O 5) =1

H(Loaded) = —(0.991og, 0.99 + 0.01 log, 0.01) ~ 0.08 bits



Entropy cont'd

Entropy of 3 () = —(glog, g + (1 — ¢) log, (1 — ¢))'ith probability q:

If a training set contains p positive examples and n negative
examples, then what is the entropy of the goal attribute?

H(GQQQB( P )

pTn

The restaurant training set in Figure 18.3 has p = n = 6, so the
corresponding entropy IS?

B(0.5)

How can | use entropy measure in selecting attributes?



Information gain, I.e. reducing entropy

» An attribute A with d distinct values divides the training set E into
subsets E, . .. ,E, Each subset E, has positive and negative

examples (p, and n )

» Along that branch, we will need an additional B(py/(pr + ni)) bits
of information to answer the question.

» The expected entropy after testing attribute A:
d

Remainder(A) = Z Petle p(_Pk_)

p+n Prt1
k=1

» Information gain, expected reduction in entropy:

Gain(A) = B(55) — Remainder(A) seceee

Gain(Patrons) = 1 — [5B(9) + 5B(]) + 5B(3)] = 0.541bits, " ¢Tee oo



000000 :
Type? QUIZ
French Italian Thai Burger I . . . .
nformation gain with selecting Type?
0 6 00 00 J g yp
O o 00 o0
Gain( Type) =
Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price| Rain| Res | Type | Est | WillWait d

Xe | T)F|F T [Some| §85| F | T |french 0-10) T | Remainder(A) = § pk‘H?»krB Dk
X, | T FF| T Rl § | F|F| Thai|30-60] F ( ) ptn (pk‘|‘nke)
Xy |F| T|F| F|Sme| § | F|F|Buger|0-10] T k=1

Xe T F{T| T |Fal| § | F|F|Thil10:30] T

. _ p .

YoV TUFITIF Rl sss| F T rea se0| F | Gain(A) = B(55) — Remainder(A)
Xe | F| T|F| T |Some| $§ | T | T |ltalian| 0-10] T

X | F| T|F| F [Nonef § | T | F |Burger|0-10] F

Xe | F| FF| T |Some| $§ | T | T | Thi|0-10] T

Xe | F{ T|T| F |Fdl| § | T|F |Burger| 60| F — o, o o', o
17l 7] 7 | 5| |7 || om| ¢ D@ (qlogy q + (1 = q)logy(1 — ¢
Xy | F| F|F| F Nome| § | F | F | Thail|0-10] F

Xe | T T|T| T Fal| § | F|F |Burger\30-60f T




Decision tree learning example

FExample Attributes Target

Alt \Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Lst | WillWait
X, TIWF | F T | Some| $$% = T | French| 0-10 T
X TIWF | F T | Full ) = F | Thai |30-60 F
A | te rn a te ? X; F T F F | Some| % F F | Burger| 0-10 T
X, TWF | T T | Full § = F | Thai |10-30 T
X; TWF | T F | Full | $%% F T | French| =60 F
Yes No Xs F T F T |Some| 383 T T | ltalian | 0-10 T
X FIIT | F F |None| § T F | Burger| 0-10 F
Xy F Il F F T |Some| $$ T T | Thai | 0-10 T
Xy FWNT | T F | Full § T F | Burger| =60 F
Xio TWT | T T | Full | 558 F T | ftalian | 10-30 F
X1 F I F F F | Nonel| $ I3 F | Thai | 0-10 F
3 T, 3 F 3 T, 3 F Xio TWT | T T | Full ) = F | Burger | 30-60 T

Entropy:i — 7 In 3/ — :7 In :7 +£
12 6 6 6 6/| 12

Entropy decrease = 0

|
BN
=]
B
|
N
=
N
I



Decision tree learning example

FExample Attributes Target

Alt \Bar |\F'ri | Hun | Pat | Price | Rain | Res | Type | Lst | WillWait
X, TIWFI||F T | Some| $3% F T | French| 0-10 T
B a r'? Xs T F || F T | Full ) F F | Thai | 30-60 F
- X; F T || F F | Some| § F F | Burger| 0-10 T
Xy TWF T T | Full ) F F | Thai |10-30 T
X T F T F Full | $5% F T | French| =60 F
Yes No Xs F T || F T |Some| 383 T T | ltalian | 0-10 T
X FIN T (I F F | None| § T F | Burger| 0-10 F
Xy F Il F F T |Some| $$ T T | Thai | 0-10 T
Xy FWNT \NT | F | Full ) T F | Burger| =60 [F
Xio TWT || T T | Full | 558 F T | ftalian | 10-30 F
X1 F I F F F | Nonel| $ £ F | Thai | 0-10 F
3 T, 3 F 3 T, 3 F Xio TWNWT || T T | Full ) = F | Burger | 30-60 T

Entropy:i — 7 In 3/ — :7 In :7 +£
12 6 6 6 6/| 12

Entropy decrease =

|
R
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AN
|
A
=3
R
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Decision tree learning example

FExample Attributes Target

Alt | Ban| Fril Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T FI| F T | Some| $3% F T | French| 0-10 T
: X T FI| F T | Full § F F | Thai | 30-60 F
Sat/ FrI? X; F T F F | Some| % F F | Burger| 0-10 T
X, T| FI| T T | Full § = F | Thai |10-30 T
X; T| FY)| T F | Full | $%% F T | French| =60 F
Yes No Xs F T F T |Some| 383 T T | ltalian | 0-10 T
X F| T\l F F |None| § T F | Burger| 0-10 F
Xy Fl F F T |Some| $$ T T | Thai | 0-10 T
Xy F{ TV TN F | Full ) T F | Burger| =60 [F
Xio T | T T T | Full | 558 F T | ftalian | 10-30 F
X1 F | F F F | Nonel| $ £ F | Thai | 0-10 F
2 T, 3 F 4 T, 3 F Xio T| T T T | Full ) = F | Burger | 30-60 T

Entropyzi—z/lnz/—:g/ln:g/ +l—éylnéy—71n:7 =
12 5 5 5 5/| 12 7 7 7 7

Entropy decrease =



Decision tree learning example

FExample Attributes Target

Alt | Bar | Fri| Hun || Pat | Price | Rain | Res | Type | Lst | WillWait
X, T| F | F T ||Some| $5% = T | French| 0-10 T
Xs T| F | F T |} Full ) = F | Thai |30-60 F
H u n g ry? X3 F T F F lSome| % F F | Burger| 0-10 T
Xy T| F | T T |} Full ) i F | Thai |10-30 T
X T | F T F Full | $5% F T | French| =60 F
Yes No Xs F T | F T [lSome| 3§38 T T | ltalian | 0-10 T
X Fl| T | F F_WWNone| $ T F | Burger| 0-10 F
Xy F| F | F T [Some| $$ T T | Thai | 0-10 T
Xy F| T T F || Full $ T F | Burger| =60 F
Xio T| T | T T || Full | 558 F T | ftalian | 10-30 F
X1 F | F F F [\Wone| $ 3 F | Thai | 0-10 F
5 T, 2 F 1 T, 4 F X T| T | T T |} Full ) = F | Burger | 30-60 T

Entropy:l — 7 In 5/ — 2/ In 7 +i
12 7 7 7 7] 12

Entropy decrease =

|
A
=]
A
|
o
=]
ol
I



Decision tree learning example

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price| Rain | Res | Type | Est | WillWait
X, T| F | F T | Some| $3% F T | French| 0-10 T
HI Xs T| F | F T | Full ) F F | Thai | 30-60 F
Ra Inmn g ? X F| T | F F |Some| § F F | Burger| 0-10 T
Xy T| F| T T | Full ) F F | Thai |10-30 T
X T | F T F Full | $5% F T | French| =60 F
Yes No Xs F T | F T |Some| 383 T T | ltalian | 0-10 T
X F| T | F F | Nene| § T F | Burger| 0-10 F
Xy F| F | F T |Some| $$ T T | Thai | 0-10 T
Xy F{ T | T | F | Ful $ T F | Burger| =60 [F
Xio r| 7| 7T T | Full | 558 F T | ftalian | 10-30 F
X1 F| F F F | None| § F F | Thai | 0-10 F
2 T, 2 F 4 T, 4 F X T| T | T T | Full $ F F | Burger| 30-60 T

4 2 2 2 2 8 4 4 4 4
Entropy=—|— / In / — In +—|— / In / — / In / =
12 4 4 4 411 12 8 8 8 8

Entropy decrease =



Decision tree learning example

FExample Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res || Type | Lst | WillWait
X, T| F | F T | Some| $3% = T |VFrench| 0-10 T
: X T| F | F T | Full § F F || Thai | 30-60 F
Re Se rva tl O n ? X; F T F F | Some| % F F |\Burger| 0-10 T
X, T| F | T T | Full i) F F || Thai | 10-30 T
X; T| F | T F | Full | $%% F T |\French| =60 F
Yes No Xs F T | F T |Some| 383 T T |\Vtalian| 0-10 T
X Fl T | F F_| None| $ T F_WBurger| 0-10 F
Xy Fl| F | F T |Some| $$ T T || Thai | 0-10 T
Xy F| T T F | Full $ T F ||Burger| =60 F
Xio T | T | T T | Full | 558 F T |Vtalian | 10-30 F
X1 Fl F F F | None| § F F || Thai | 0-10 F
3 T, 2 F 3 T, 4 F Xio T| T | T T | Full ) F F ||\Burger| 30-60 T

Entropyzi—:g/ln:g/—z/an/ +l—71n3/—éylnéy =
12 5 5 5 5/| 12 7 7 7 7

Entropy decrease =



Decision tree learning example

Example Attributes Target
Alt | Bar | Fri| Hurl| Pat | Price | Rain | Res | Type | Lst | WillWait
X T| F | F| T|[Some| 35$ F T | French| 0-10 T
Xo T | F IE T | Full $ 3 F | Thai |30-60 IE
Pa t rons ? X; F| T | F| F|lSomel § F F | Burger| 0-10 T
X T | F T T | Full $ i F | Thai |10-30 T
X T| F | T | F | Full ] 35 fF T | French| =60 F
X F| T | F| T\ Some| $$ T | T |lealian| 0~10 T
X F1 T [ F | FllNonel § T | F | Burger| 0-10 F
X5 F| F | F | T||Some| $3 T | T | Thai | 0-10 T
Xy F{ T | T | FI|| Full $ T F | Burger| =60 3
X T T | T T Full | $58 i T | ltalian | 10-30 IF
X1 F{ F | F F || None}  § r F | Thai | 0-10 F
X T | T | T T V| Full $ 3 F | Burger | 30-60 T
4T
2 0 0 2 2 4 4 4 0 0
Entropy=—|— In — In +—|— In — In
12 2 2 2 21 12 4 4 4

TIRVARYA
+—| — In —
12 6 6
Entropy decrease =

Jelnl7e]



Decision tree learning example

FExample Attributes Target
Alt | Bar | Fri| Hun | Pat | Price| Rain | Res | Type | Lst | WillWait
X, T| F | F T | Some| $3% = T | French| 0-10 T
H X, T| F | F T | Full § F F | Thai | 30-60 F
P Il Ce X; F T F F | Some] % F F | Burger| 0-10 T
X, T F | T T | Full § F F | Thai |10-30 T
X; T | F T F | Full | $%% F T | French| =60 F
$ $$$ Xo | Fl T F| 7 |Some| 88| 7| T |italien|o-20] T
X F{ T | F| F [Nonel % T F | Burger| 0-10 F
Xy F| F | F T | Some| $§ T T | Thai | 0-10 T
$$ Xo |FUTI T F Rl s | 71 F Buger| 60| F
X T T | T T | Full | $5% F T | ltalian | 10-30 F
3 T, 3 F 1 T, 3 F X1 F1l F F F | None] § F F | Thai | 0-10 F
Xio T| T | T T | Full ) F F | Burger| 30-60 T
2T
6 3 3 3 3 2 2 2 0 0
Entropyzﬁ— 6ln 6l 61n o +E_ 2ln s 2ln 5

Entropy decrease =



Decision tree learning example

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res || Type | Lst | WillWait
X, T| F | F T | Some| $3% = T |VFrench) 0-10 T
T e X T| F | F T | Full ) F F [} Thai |30-60 F
yp X3 F T F F | Some| % F F (\Burger| 0-10 T
X, T| F | T T | Full § F F |} Thai |10-30 T
Bu rger X, T| F | T | F | Ful | 335§ F T |Vrench] =60 F
X F| T | F| T |Some| 3§ T T |\ftalian | 0-10 T
X F| T | F| F |None| § T F Burger] 0-10 F
Xy Fl F F T |Some| $$ T T || Thai | 0-10 T
i Xy F| T T F | Full $ T F ||Burger] =60 F
1T,1F |Malian 2T, 2F | 5o | 7| v| v | 7 |mn|ss| r|r || r
X1 F | F F F | None| $ F F || Thai | 0-10 F
Xio T| T | T T | Full ) F F ||\Burger | 30-60 T

1T,1F || 2T, 2F

12 '_(j(;)hl(j7g ——(}4;-ln
AL VARVALIVA|E>

Entropy = 2_

4

12

In In




Decision tree learning example

FExample Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
I X, T| F | F T | Some| $3% F T | French) 0-10 T
E St . Wal tl n g X T| F | F T | Full ) F F | Thai |30-60 F
tl m e X; F T F F | Some| % F F | Burger| 0-10 T
X, T| F | T T | Full § i F | Thai |10-30 T
X; T| F | T F | Full | $%% F T | French) =60 F
Xs F T F T |Some| 383 T T | ltalian | 0-10 T
X F| T | F F |None| § T F | Burger| 0-10 F
Xy Fl F F T |Some| $$ T T | Thai | 0-10 T
Xy F{ T | T | F | Ful ) T F | Burger| =60 [P
Xuo T| 7T | T | T | Full | $3% F T | Italian | 10-30 F
X1 Fl F F F | None| § F F | Thai | 0-10 F
Xio T| T | T T | Full ) F F | Burger | 30-60 T

1T, 1F || 1T 1F

7
— In
12 ( 6
ALYARYA
( 2 2 2
Entropy decrease =

2

ozl 1
AARVARY

Entropy= o

2
+_
12

2

12
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Decision tree learning example

Patrons?

Largest entropy decrease (0.16)
achieved by splitting on Patrons.

Continue like this, making new
splits, always purifying nodes.

Emre Ugur




Decision tree learning example

Patrons?
Induced tree (from examples)
None Some Full
Hungry?
No Yes

No Yes

Emre Ugur




Decision tree learning example

Patrons?

True tree

WaitEstimate?

Alternate? Hungry?

No Yes No Yes
Reservation? Fri/Sat? Alternate?
No Yes No Yes No Yes
Bar? Raining?
No Yes No Yes

Emre Ugur




Decision tree learning example

Patrons?
Induced tree (from examples)
None Some Full
Cannot make it more complex
Hungry? than what the data supports.
No Yes

No Yes

Emre Ugur




How do we know It IS correct?

How do we know that 2 = f ?
(Hume's Problem of Induction)

— Try h on a new test set of examples
(cross validation)

...and assume the "principle of uniformity”, i.e. the result we get
on this test data should be indicative of results on future data.
Causality is constant.

Eare iJgur



Learning curve for the decision tree algorithm on 100 randomly
generated examples in the restaurant domain.
The graph summarizes 20 trials.
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Cross-validation

Use a “validation set”.

E ~FE
gen val

" Split your data set into two
D parts, one for training your
frain model and the other for
> validating your model.
The error on the validation
D, data is called “validation error”
7 (E,)

E

val



K-Fold Cross-validation

More accurate than using only one validation set.

K
1
EgenN<Eval>:?k§1 Eval(k)

Dtrain Dtrain Dval
Dval
D .
Dval Dtrain -
Eval(l) Eval(z) Eval(3)




How make learning work?

» Use simple hypotheses
» Always start with the simple ones first

» Constrain H with priors

» Do we know something about the domain?
» Do we have reasonable a priori beliefs on parameters?

» Use many observations
» Easy to say...

» Cross-validation...



Regression and Classification with Linear
Models



Recall Notation

(X,9,),(X5,¥,),... (Xy,yy)  training set

Where each y ;was generated by
an unknown function y = f(x)

Discover a function & that best

approximates the true%'xu%

hypothesis
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Loss Functions

Suppose the true prediction for input x 1s f(X) = y

but the hypothesis gives h(x) = y

L(x,y,y) = Utility(result of using y given input X)
— Utility(result of using y given input x)

Simplified version: L(y,y)
Absolute value loss: L(y,9) =y =3

Squared error loss:  L,(y,y) = (y - &)2
0/1 loss: L,,(y,y)=0ify =y, else 1

Generalization loss: expected loss over all possible examples
Empirical loss: average loss over available examples

11



Univariate Linear Regression

House price in $1000

500 1000 1500 2000 2500 3000 3500

House size in square feet
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Univariate Linear Regression contd.

W = [wo,wl] weight vector

h,(x)=wx+w,

Find weight vector that minimizes empirical loss,
e.g., La:

Loss(h,) = 3, L,(y . b, (x ) =E(yj ~hy(x)? =E(yf — (WX + W)’

l.e., find w*such that

w =arg min  Loss(h,,)

13



Weight Space

W)
N

X\X dclld.ll;
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Finding w*

Find weights such that:

7

N 0’) N

0 j=1 L
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Gradient Descent

J
w.<— w, —a—— Loss(w)

M

step size or
learning rate




Gradient Descent contd.

For one training example (x,y):

wys— wy+oa(y—-h,(x)) and w<w +a(y-h_(x))x

For N training examples:

W< W, + az(yj —h,(x;)) and w < w + ocE(yj —h,(x;))x;
j j

batch gradient descent

stochastic gradient descent: take a step for
one training example at a time

17



The Multivariate case

hSW(Xj) =Wot WX+t WX, =W +Ewixj,i
i

Augmented vectors: add a feature to each X by tacking on a 1: Xio= 1

Then:

h,(X)=W X, =W X, = Ewixj,l.
And batch gradient descent update becomes:

W< W, + aE(yj — hw(xj))xj,l.
j

18



The Multivariate case contd.

Or, solving analytically:
Let Y be the vector of outputs for the training examples

X data matrix: each row is an input vector

Solving this for w*: 'y = Xw

wh = (X"X) X'y

pseudo inverse

19



Linear Classification: hard thresholds
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Figure 18.15  FILES: . (a) Plot of two seismic data parameters, body wave magnitude =1 and surface

wave magnitude x2, for earthquakes (white circles) and nuclear explosions (black circles) occurring
between 1982 and 1990 in Asia and the Middle East (7). Also shown is a decision boundary between
the classes. (b) The same domain with more data points. The earthquakes and explosions are no longer

linearly separable.

22



Linear Classification: hard thresholds contd.

Decision Boundary:
e In linear case: linear separator, a hyperplane

Linearly separable:

e data is linearly separable if the classes can be
separated by a linear separator

Classification hypothesis:

h, (x) = Threshold(w- xX) where Threshold(z) =11f z=0 and O otherwise

1

0.5 9
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Perceptron Learning Rule

For a single sample (Xx,y):

W< w, + (x(y -h, (X))xl.

* If the output is correct, i.e., y =h_ (X), then the weights don't change
* Ify =1buth,(x) =0, then w, is increased when x, is positive and decreased when x, is negative.

* If y =0 but i (x) =1, then w, is decreased when x, is positive and increased when x, is negative.

Perceptron Convergence Theorem: For any data set
that’s linearly separable and any training procedure
that continues to present each training example, the
learning rule is guaranteed to find a solution in a finite
number of steps.
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Perceptron Performance
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Figure 18.16 FILES: . (a) Plot of total training-set accuracy vs. number of iterations through the
training set for the perceptron learning rule, given the earthquake/explosion data in Figure 18.14(a).
(b) The same plot for the noisy, non-separable data in Figure 18.14(b); note the change in scale of the
x-axis. (c) The same plot as in (b), with a learning rate schedule «(¢) =1000/(1000 + t). o5



