Machine Learning

Two types of learning in Al

Deductive: Deduce rules/facts from already known rules/facts. (We have already dealt with this)

$$(A \Longrightarrow B \Longrightarrow C) \Longrightarrow (A \Longrightarrow C)$$

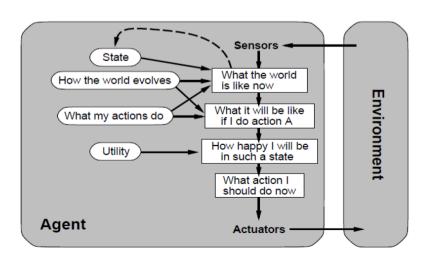
Inductive: Learn <u>new</u> rules/facts from a data set D.

$$D = \{\mathbf{x}(n), y(n)\}_{n=1...N} \Longrightarrow (A \Longrightarrow C)$$

We will be dealing with the latter, inductive learning, now

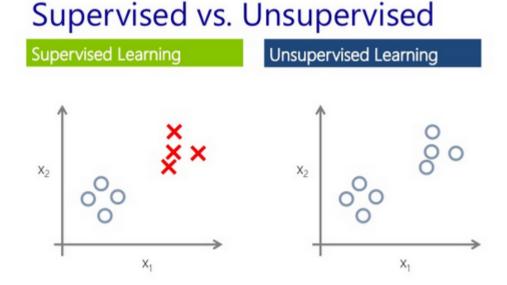
Learning from Examples

- Which component is to be improved?
 - A direct mapping from conditions on the current state to actions.
 - A means to infer relevant properties of the world from the percepts.
 - Information about the way the world evolves.
 - Utility information indicating the desirability of world states.
 - Action-value information indicating the desirability of actions.
 - Goals that describe classes of states whose achievement maximizes the agent's utility.



Learning from feedback

- What feedback is available to learn from
 - In unsupervised learning the agent learns patterns in the input even though no explicit feedback is supplied (e.g. clustering)
 - In supervised learning the agent observes some example input output pairs and learns a function that maps from input to output



In reinforcement learning the agent learns from a series of reinforcements rewards or punishments

Supervised Learning

The task of supervised learning is this:

Given a **training set** of N example input–output pairs

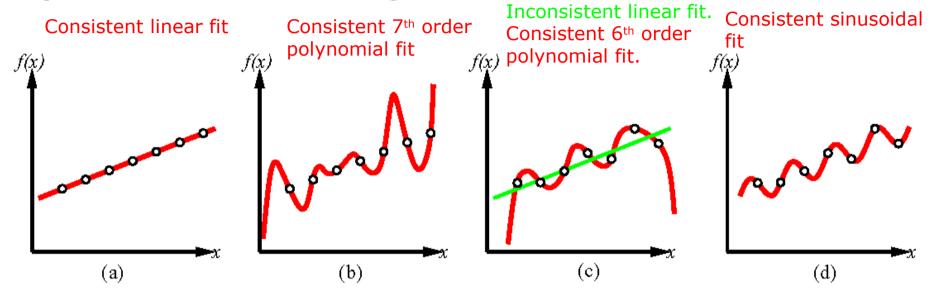
$$(x_1,y_1),(x_2,y_2),\ldots(x_N,y_N),$$

where each y_j was generated by an unknown function y = f(x), discover a function h that approximates the true function f.

Here x and y can be any value; they need not be numbers. The function h is a **hypothesis**. 1

- Output is discrete: Classification
- Output is continuous: Regression

Supervised learning



- Fitting a function of a single variable to some data points.
- f is unknown → approximate with h selected from a hypothesis space, H (e.g. the set of polynomials).
- Consistent hypothesis if it agrees with all the data
- Ockham's razor: Select the simplest consistent hypothesis
 - Simpler hypotheses that may generalize better.

Attribute based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

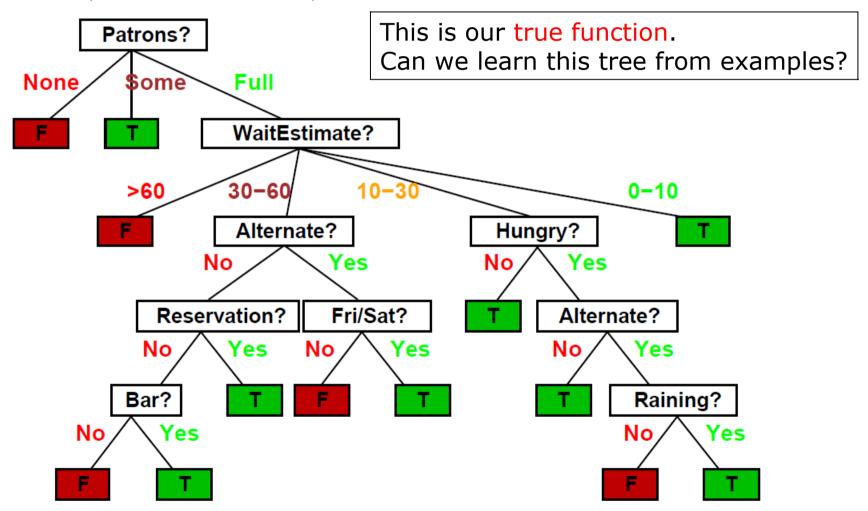
Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

^{*}Alt(ernate), Fri(day), Hun(gry), Pat(rons), Res(ervation), Est(imated waiting time)

Decision Trees

Decision trees are one possible representation for hypotheses

 $Goal \Leftrightarrow (Path_1 \vee Path_2 \vee \cdots)$



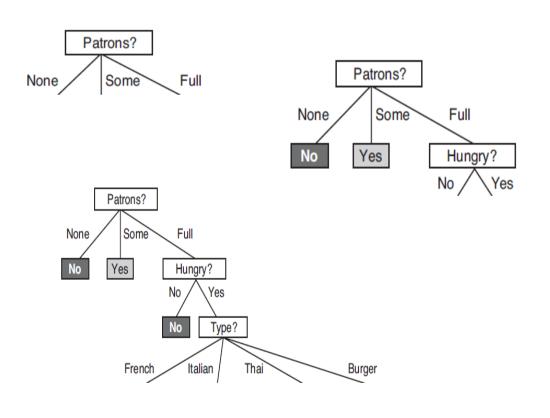
Inductive learning of decision trees

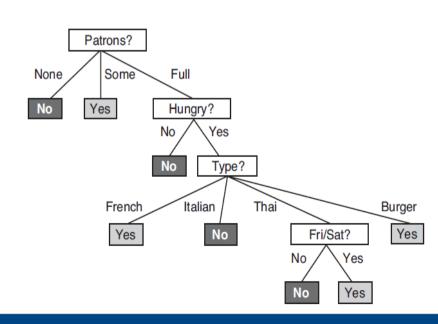
- Simplest: Construct a decision tree with one leaf for every example = memory based learning. Not very good generalization.
- Advanced: Split on each variable so that the purity of each split increases (i.e. either only yes or only no)
- Purity measured, e.g, with entropy

Decision Tree Learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree



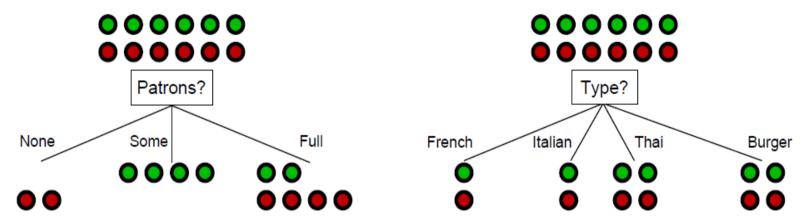


Most information attribute

Example					At	tributes	3				Target
Едапріе	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	T	F	F	T	Some	555	F	T	French	0-10	T
X_2	Τ	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	Τ	F	F	Some	5	F	F	Burger	0-10	T
X_4	Τ	F	T	T	Full	5	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0-10	T
X_7	F	T	F	F	None	5	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	Т	T	F	Full	5	T	F	Burger	>60	F
X_{10}	Τ	Τ	T	T	Full	555	F	T	Italian	10-30	F
X ₁₁	F	F	F	F	None	5	F	F	Thai	0-10	F
X_{12}	Τ	T	T	T	Full	\$	F	F	Burger	30-60	T

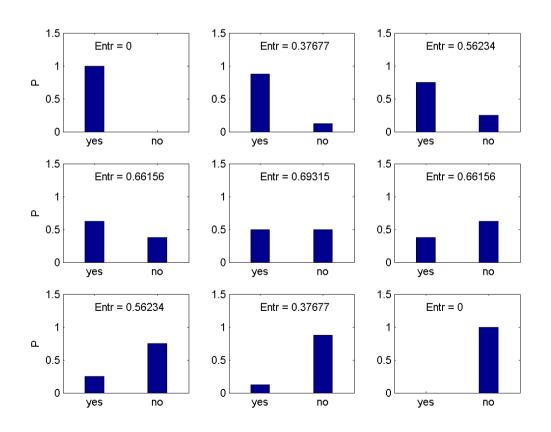
Choosing attribute:

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



- i.e. gives more information about classification
- i.e. decreases uncertainty

- In terms of entropy
 - Entropy is a measure of the uncertainty of a random variable
 - Acquisition of information corresponds to a reduction in entropy

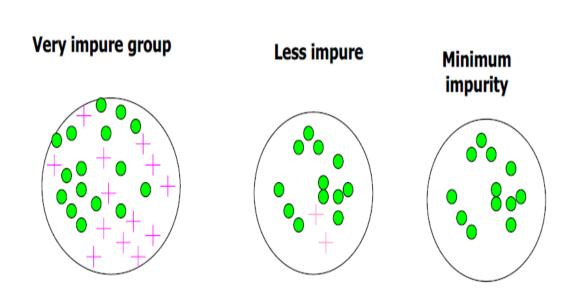


The entropy is maximal when all possibilities are equally likely.

The goal of the decision tree is to decrease the entropy in each node.

Entropy is zero in a pure "yes" node (or pure "no" node).

- In terms of entropy
 - Entropy is a measure of the uncertainty of a random variable
 - Acquisition of information corresponds to a reduction in entropy



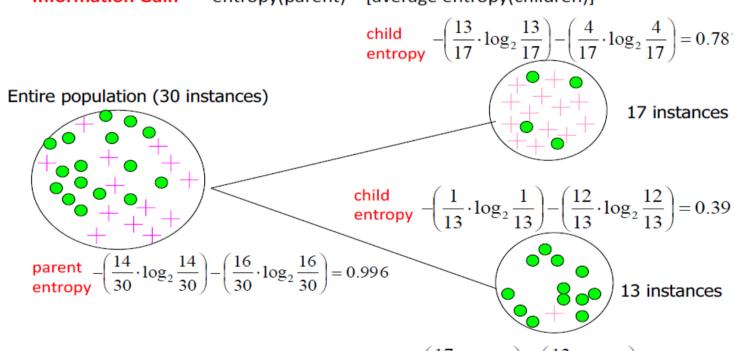
The entropy is maximal when all possibilities are equally likely.

The goal of the decision tree is to decrease the entropy in each node.

Entropy is zero in a pure "yes" node (or pure "no" node).

- In terms of entropy
 - Entropy is a measure of the uncertainty of a random variable
 - Acquisition of information corresponds to a reduction in entropy

Information Gain = entropy(parent) - [average entropy(children)]



(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information Gain = 0.996 - 0.615 = 0.38

- In terms of entropy
 - Entropy is a measure of the uncertainty of a random variable
 - Acquisition of information corresponds to a reduction in entropy
- Entropy of a random variable with only one value
 - No information gain from observing its value.
- Entropy of an unfair coin that comes up heads 99% of the time?
- Entropy of a fair coin?

Entropy:
$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

$$H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1$$

$$H(Loaded) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) \approx 0.08 \text{ bits}$$

Entropy cont'd

Entropy of $\epsilon B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))'$ ith probability q:

If a training set contains p positive examples and n negative examples, then what is the entropy of the goal attribute?

$$H(Goal) = B\left(\frac{p}{p+n}\right)$$

The restaurant training set in Figure 18.3 has p = n = 6, so the corresponding entropy is?

How can I use **entropy** measure in selecting attributes?

Information gain, i.e. reducing entropy

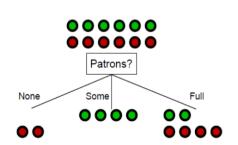
- An attribute A with d distinct values divides the training set E into subsets E_1, \ldots, E_d Each subset E_k has positive and negative examples $(p_k$ and p_k
- ▶ Along that branch, we will need an additional $B(p_k/(p_k+n_k))$ bits of information to answer the question.
- The expected entropy after testing attribute A:

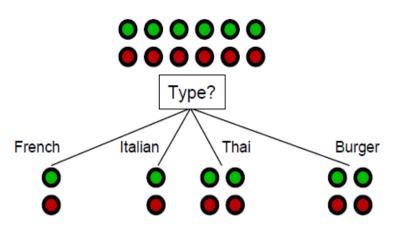
$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$

Information gain, expected reduction in entropy:

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

$$Gain(Patrons) = 1 - \left[\frac{2}{12}B(\frac{0}{2}) + \frac{4}{12}B(\frac{4}{4}) + \frac{6}{12}B(\frac{2}{6})\right] \approx 0.541 \text{ bits,}$$





Quiz

Information gain with selecting Type?

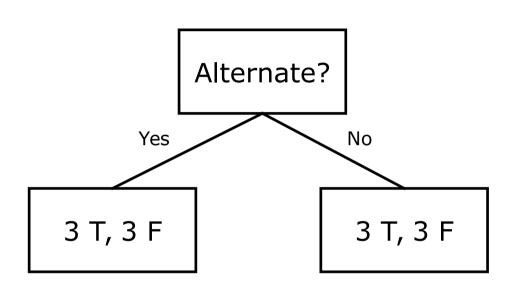
$$Gain(Type) =$$

Example					At	tributes	3				Target
22 tempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	T
X_2	Τ	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	Τ	F	Τ	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	Τ	F	Τ	Some	\$\$	Τ	Τ	Italian	0–10	Τ
X_7	F	Τ	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	Τ	Τ	Thai	0–10	T
X_9	F	Τ	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	Τ	Τ	Τ	Full	\$\$\$	F	Τ	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Remainder(A) =
$$\sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$

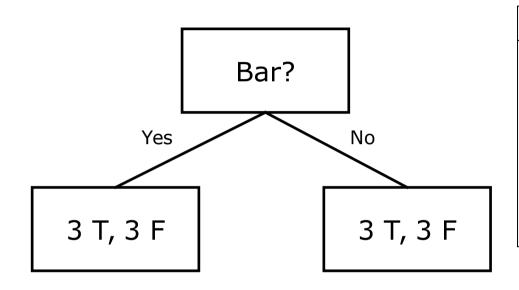
$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$



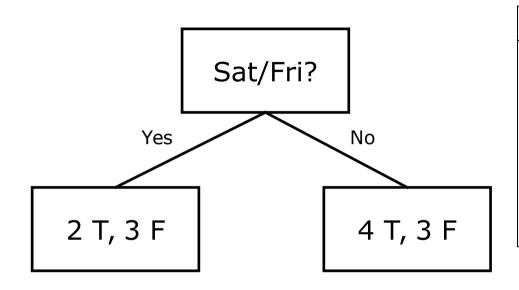
Example					At	tributes	3				Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Τ	F	T	Some	\$\$	T	Τ	Italian	0–10	T
X_7	F	Τ	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	Τ	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Τ	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	T	T	Full	\$	F	F	Burger	30–60	T

$$\operatorname{Entropy} = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] + \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} \ln \binom{$$



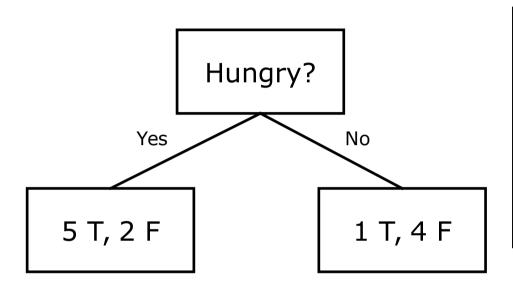
Example					At	tributes	}				Target
2.rempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	Τ	Τ	Full	\$	F	F	Thai	10-30	T
X_5	Τ	F	Τ	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	Τ	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Τ	Τ	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	Τ	T	Full	\$	F	F	Burger	30–60	T

$$\operatorname{Entropy} = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] + \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \ln \binom{3}{6} \right] = \frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} \ln \binom{$$



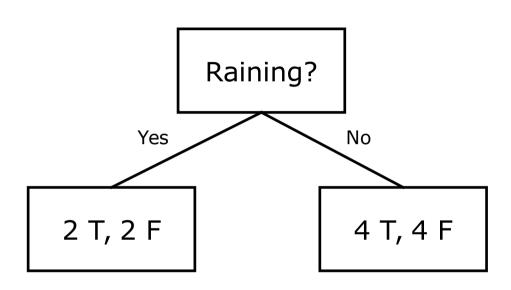
Example					At	tributes	3				Target
2.rempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	Τ
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	Τ	Full	\$	F	F	Burger	30–60	T

$$\operatorname{Entropy} = \frac{5}{12} \left[-\binom{2}{5} \ln \binom{2}{5} - \binom{3}{5} \ln \binom{3}{5} \right] + \frac{7}{12} \left[-\binom{4}{7} \ln \binom{4}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{2}{5} \ln \binom{2}{5} - \binom{3}{5} \ln \binom{3}{5} \right] + \frac{7}{12} \left[-\binom{4}{7} \ln \binom{4}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{5} \ln \binom{3}{5} - \binom{3}{5} \ln \binom{3}{5} \right] + \frac{7}{12} \left[-\binom{4}{7} \ln \binom{4}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{4}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{3}{7} \ln \binom{3}{7} - \binom{3}{7} \ln \binom{3}{7} \right] = \frac{5}{12} \left[-\binom{$$



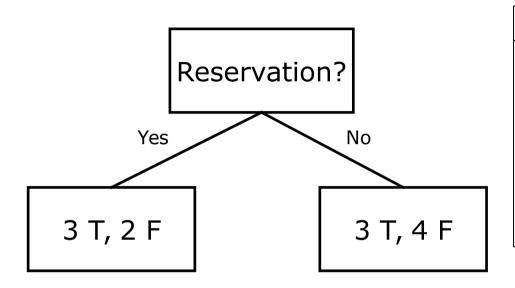
Example					At	tributes	3				Target
2.rempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	Τ	F	Τ	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$\operatorname{Entropy} = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{2}{7} \ln \binom{2}{7} \right] + \frac{5}{12} \left[-\binom{1}{5} \ln \binom{1}{5} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{4}{5} \ln \binom{4}{5} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{5}{7} \ln \binom{5}{7} - \binom{5}{7} \ln \binom{5}{7} \right] = \frac{7}{12} \left[-\binom{5}{7} \ln \binom{5}{7} - \binom{5}{7} - \binom{5}{7} \ln \binom{5}{7} - \binom{5}{7} - \binom{5}{7} - \binom{5}{7} - \binom{5}{7} - \binom{5}{7} - \binom{5}{7} -$$



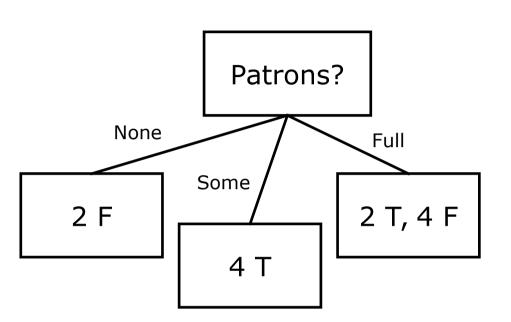
Example					At	tribute	8				Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	Τ	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	Τ	F	T	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	Τ	Thai	0–10	T
X_9	F	T	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	Τ	Τ	Τ	Full	\$\$\$	F	Τ	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Τ	T	T	Τ	Full	\$	F	F	Burger	30–60	T

$$\operatorname{Entropy} = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] + \frac{8}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} - \binom{4}{8} \ln \binom{4}{8} \right] = \frac{4}{12} \left[-\binom{4}{8} \ln \binom{4}{8} \ln \binom{$$



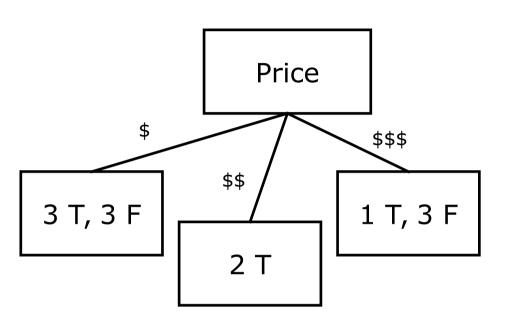
Example					At	tributes	}				Target
2. realipre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	Τ	F	Τ	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	Τ	Thai	0–10	T
X_9	F	T	Τ	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	Τ	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$\text{Entropy} = \frac{5}{12} \left[-\binom{3}{5} \ln \binom{3}{5} - \binom{2}{5} \ln \binom{2}{5} \right] + \frac{7}{12} \left[-\binom{3}{7} \ln \binom{3}{7} - \binom{4}{7} \ln \binom{4}{7} \right] = \frac{5}{12} \left[-\binom{3}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{4}{7} \right] = \frac{5}{12} \left[-\binom{3}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{4}{7} \right] = \frac{5}{12} \left[-\binom{3}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{4}{7} \right] = \frac{5}{12} \left[-\binom{3}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{4}{7} - \binom{4}{5} \ln \binom{4}{7} \right] = \frac{5}{12} \left[-\binom{3}{5} \ln \binom{3}{5} - \binom{4}{5} \ln \binom{4}{7} - \binom{4}{5} \ln \binom{4}{5} - \binom{4}{5} - \binom{4}{5} \ln \binom{4}{5} - \binom{4}{5} - \binom{4}{5} \ln \binom{4}{5} - \binom{$$



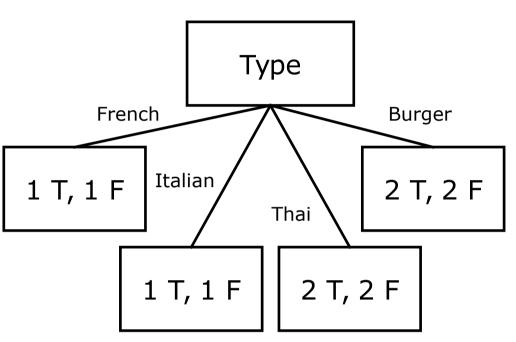
Example					A	ttributes	3				Target
Lampie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{2}{12} \left[-\binom{0}{2} \ln \binom{0}{2} - \binom{2}{2} \ln \binom{2}{2} \right] + \frac{4}{12} \left[-\binom{4}{4} \ln \binom{4}{4} - \binom{0}{4} \ln \binom{0}{4} \right] + \frac{6}{12} \left[-\binom{2}{6} \ln \binom{2}{6} - \binom{4}{6} \ln \binom{4}{6} \right] =$$



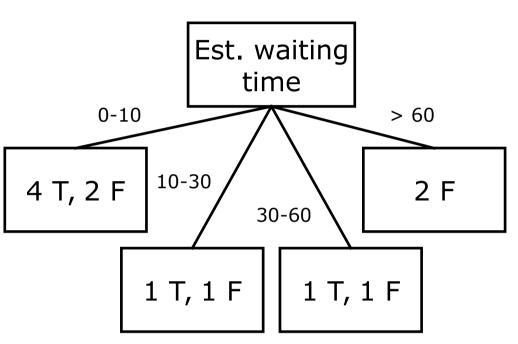
Example					A	ttributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	Τ
X_4	Τ	F	Τ	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	Τ	T	Italian	0–10	T
X_7	F	Τ	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy =
$$\frac{6}{12} \left[-\binom{3}{6} \ln \binom{3}{6} - \binom{3}{6} \ln \binom{3}{6} \right] + \frac{2}{12} \left[-\binom{2}{2} \ln \binom{2}{2} - \binom{0}{2} \ln \binom{0}{2} \right] + \frac{4}{12} \left[-\binom{1}{4} \ln \binom{1}{4} - \binom{3}{4} \ln \binom{3}{4} \right] =$$



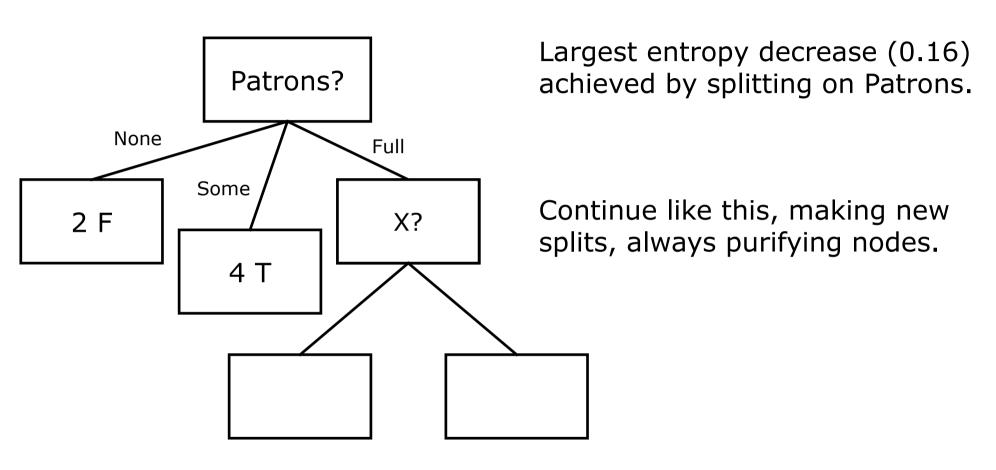
Example					At	tributes	3				Target
11. Carrier	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	Т	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	Τ	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	Τ	Τ	Full	\$	F	F	Burger	30–60	T

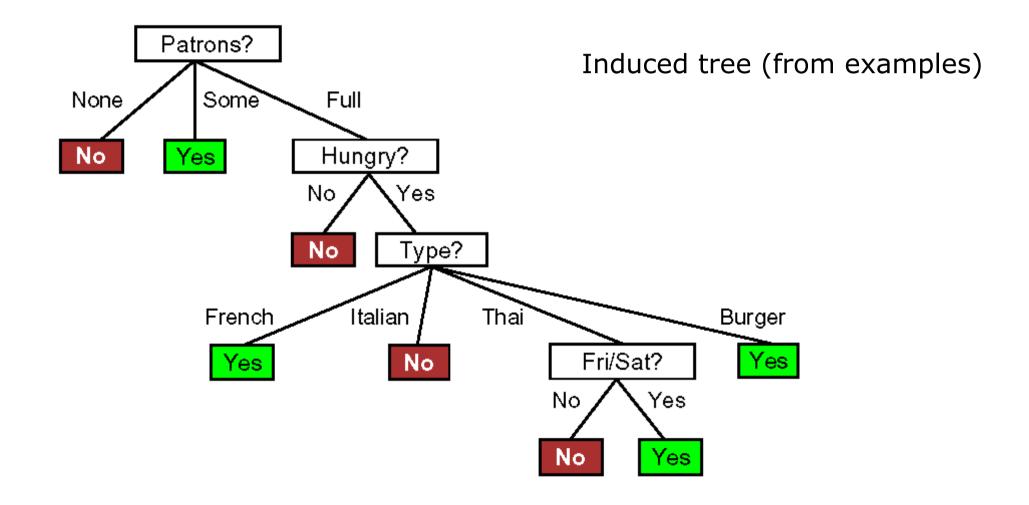
Entropy =
$$\frac{2}{12} \left[-\binom{1}{2} \ln \binom{1}{2} - \binom{1}{2} \ln \binom{1}{2} \right] + \frac{2}{12} \left[-\binom{1}{2} \ln \binom{1}{2} - \binom{1}{2} \ln \binom{1}{2} \right] + \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{4} \ln \binom{2}{4} - \binom{2}{4} \ln \binom{2}{4} \right] = \frac{4}{12} \left[-\binom{2}{$$

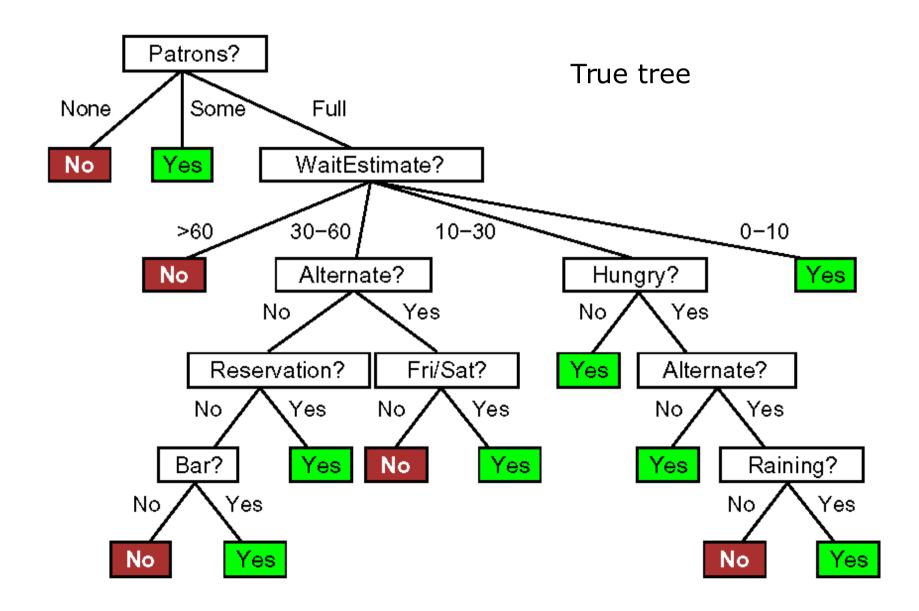


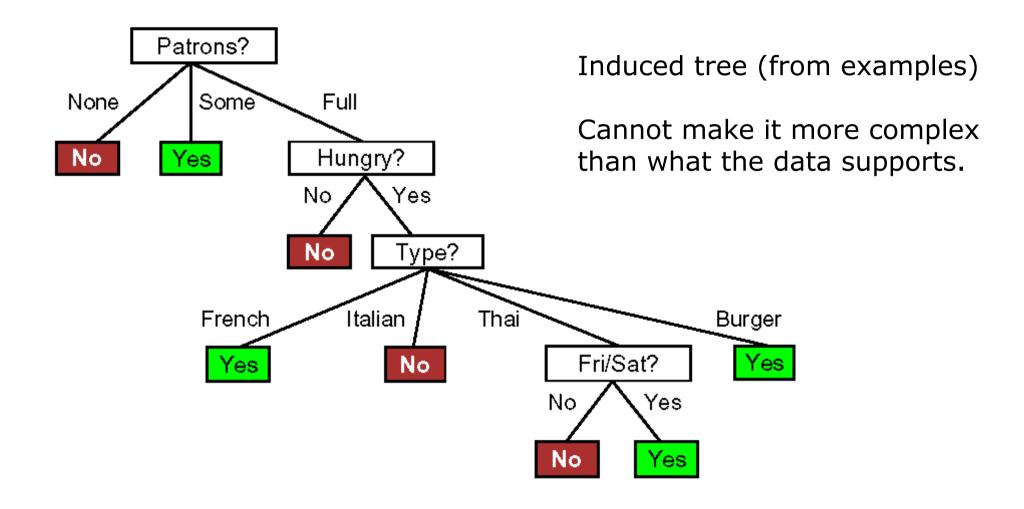
Example	Attributes										Target
11. Carrier	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Τ	F	F	Τ	Some	\$\$\$	F	T	French	0–10	Τ
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	Τ
X_4	T	F	Τ	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	\$\$	Τ	T	Italian	0–10	Т
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	<i>\$\$</i>	Τ	T	Thai	0–10	Τ
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Entropy=
$$\frac{6}{12} \left[-\binom{4}{6} \ln \binom{4}{6} - \binom{2}{6} \ln \binom{2}{6} \right] + \frac{2}{12} \left[-\binom{1}{2} \ln \binom{1}{2} - \binom{1}{2} \ln \binom{1}{2} \right] + \frac{2}{12} \left[-\binom{1}{2} \ln \binom{1}{2} - \binom{1}{2} \ln \binom{1}{2} \right] + \frac{2}{12} \left[-\binom{0}{2} \ln \binom{0}{2} - \binom{2}{2} \ln \binom{2}{2} \right] = 0.24$$







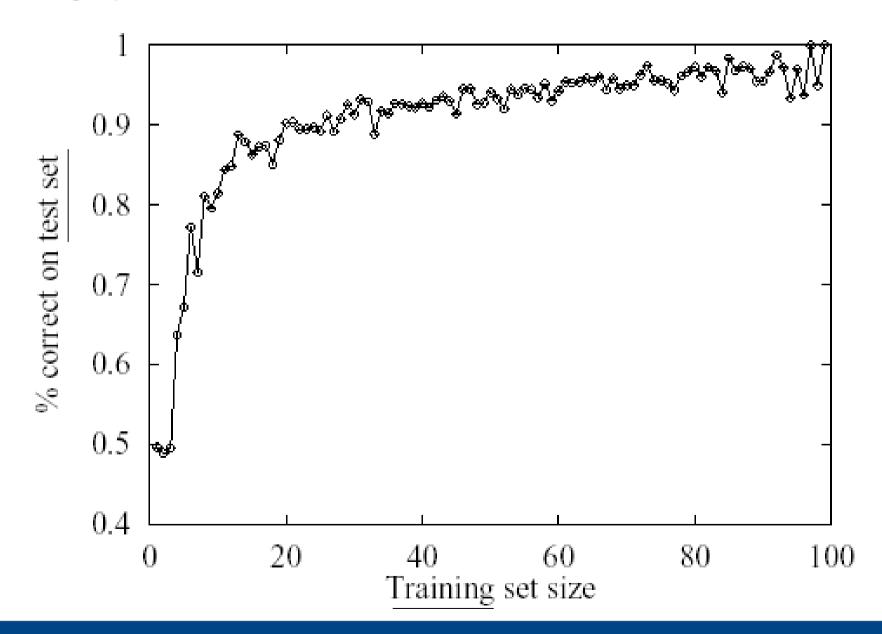


How do we know it is correct?

How do we know that $h \approx f$? (Hume's Problem of Induction)

- Try h on a new test set of examples (cross validation)

...and assume the "principle of uniformity", i.e. the result we get on this test data should be indicative of results on future data. Causality is constant. Learning curve for the decision tree algorithm on 100 randomly generated examples in the restaurant domain. The graph summarizes 20 trials.



Cross-validation

Use a "validation set".

$$E_{gen} \approx E_{val}$$

D_{train}

Split your data set into two parts, one for training your model and the other for validating your model. The error on the validation data is called "validation error" (E)

 $E_{
m val}$

K-Fold Cross-validation

More accurate than using only one validation set.

$$E_{gen} \approx \langle E_{val} \rangle = \frac{1}{K} \sum_{k=1}^{K} E_{val}(k)$$

D_{train}

 $E_{\rm val}(1)$

D_{train}
D_{val}

 $E_{\rm val}(2)$

D_{val}
D_{train}

 $E_{\rm val}(3)$

How make learning work?

- Use simple hypotheses
- Always start with the simple ones first
- ightharpoonup Constrain f H with priors
- Do we know something about the domain?
- Do we have reasonable a priori beliefs on parameters?
- Use many observations
- Easy to say...
- Cross-validation...

Regression and Classification with Linear Models

Recall Notation

$$(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)$$
 training set

Where each y_j was generated by an unknown function $y = f(\mathbf{x})$

Discover a function h that best approximates the true function f

hypothesis

Loss Functions

```
Suppose the true prediction for input \mathbf{x} is f(\mathbf{x}) = y but the hypothesis gives h(\mathbf{x}) = \hat{y}
```

$$L(\mathbf{x}, y, \hat{y}) = Utility(\text{result of using } y \text{ given input } \mathbf{x})$$

- $Utility(\text{result of using } \hat{y} \text{ given input } \mathbf{x})$

Simplified version: $L(y, \hat{y})$

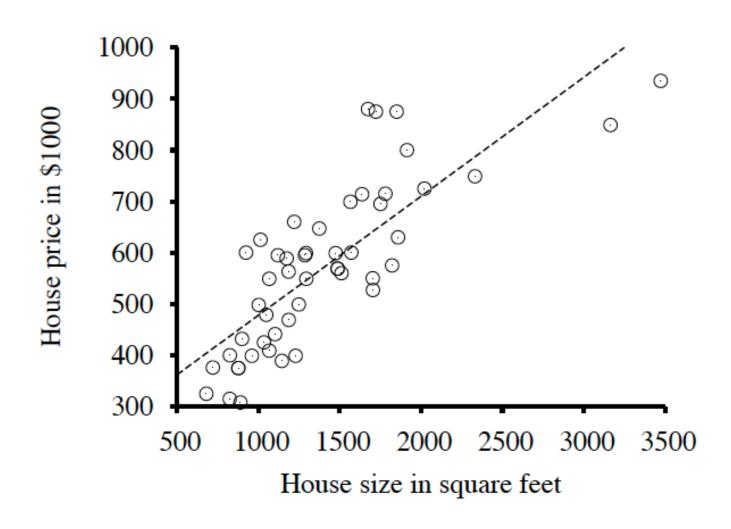
Absolute value loss:
$$L_1(y, \hat{y}) = |y - \hat{y}|$$

Squared error loss:
$$L_2(y,\hat{y}) = (y - \hat{y})^2$$

0/1 loss:
$$L_{0/1}(y,\hat{y}) = 0$$
 if $y = \hat{y}$, else 1

Generalization loss: expected loss over all possible examples Empirical loss: average loss over available examples

Univariate Linear Regression



Univariate Linear Regression contd.

$$\mathbf{w} = \begin{bmatrix} w_0, w_1 \end{bmatrix} \qquad \text{weight vector}$$

$$h_{\mathbf{w}}(x) = w_1 x + w_0$$

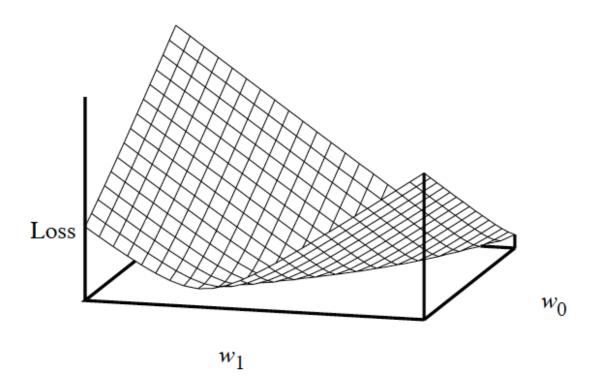
Find weight vector that minimizes empirical loss, e.g., L₂:

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j)) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

i.e., find w*such that

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} Loss(h_{\mathbf{w}})$$

Weight Space

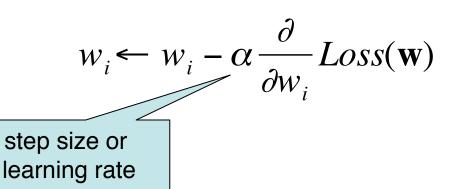


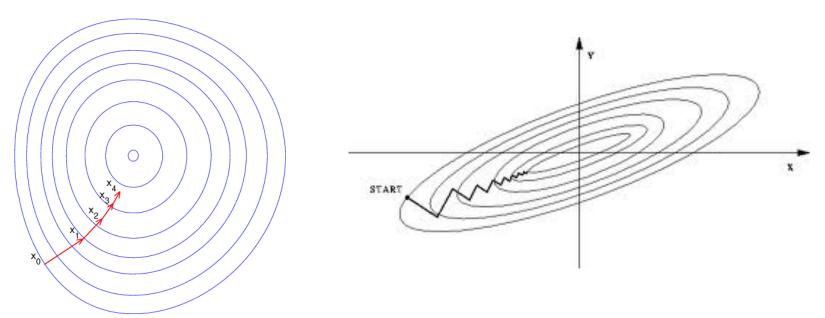
Finding w*

Find weights such that:

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0 \text{ and } \frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0$$

Gradient Descent





Gradient Descent contd.

For one training example (x,y):

$$w_0 \leftarrow w_0 + \alpha(y - h_{\mathbf{w}}(x))$$
 and $w_1 \leftarrow w_1 + \alpha(y - h_{\mathbf{w}}(x))x$

For *N* training examples:

$$w_0 \leftarrow w_0 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j))$$
 and $w_1 \leftarrow w_1 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j))x_j$

batch gradient descent

stochastic gradient descent: take a step for one training example at a time

The Multivariate case

$$h_{sw}(\mathbf{x}_{j}) = w_0 + w_1 x_{j,1} + \dots + w_n x_{j,n} = w_0 + \sum_{i} w_i x_{j,i}$$

Augmented vectors: add a feature to each \mathbf{x} by tacking on a 1: $x_{j,0} = 1$ Then:

$$h_{sw}(\mathbf{x}_j) = \mathbf{w} \cdot \mathbf{x}_j = \mathbf{w}^T \mathbf{x}_j = \sum_i w_i x_{j,i}$$

And batch gradient descent update becomes:

$$w_i \leftarrow w_i + \alpha \sum_j (y_j - h_{\mathbf{w}}(\mathbf{x}_j)) x_{j,i}$$

The Multivariate case contd.

Or, solving analytically:

Let y be the vector of outputs for the training examples

X data matrix: each row is an input vector

Solving this for w^* : y = Xw

$$\mathbf{w}^* = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

pseudo inverse

Linear Classification: hard thresholds

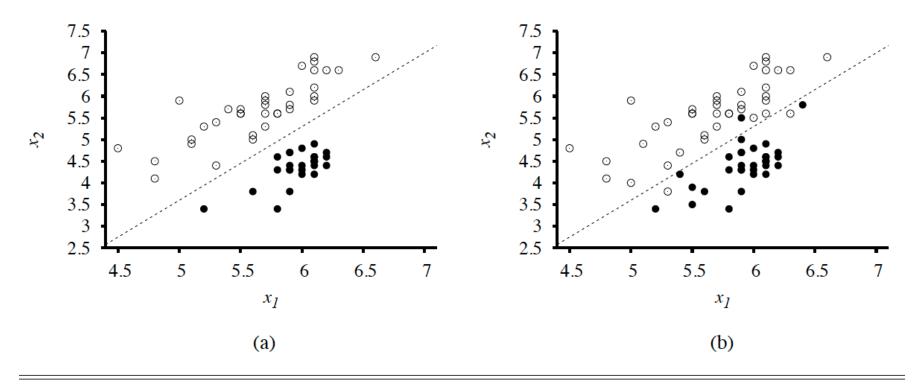
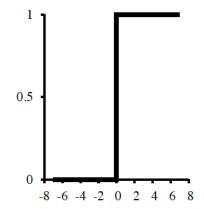


Figure 18.15 FILES: (a) Plot of two seismic data parameters, body wave magnitude x_1 and surface wave magnitude x_2 , for earthquakes (white circles) and nuclear explosions (black circles) occurring between 1982 and 1990 in Asia and the Middle East (?). Also shown is a decision boundary between the classes. (b) The same domain with more data points. The earthquakes and explosions are no longer linearly separable.

Linear Classification: hard thresholds contd.

- Decision Boundary:
 - In linear case: linear separator, a hyperplane
- Linearly separable:
 - data is <u>linearly separable</u> if the classes can be separated by a linear separator
- Classification hypothesis:

 $h_{\mathbf{w}}(x) = Threshold(\mathbf{w} \cdot \mathbf{x})$ where Threshold(z) = 1 if $z \ge 0$ and 0 otherwise



Perceptron Learning Rule

For a single sample (\mathbf{x}, y) :

$$w_i \leftarrow w_i + \alpha (y - h_{\mathbf{w}}(\mathbf{x})) x_i$$

- If the output is correct, i.e., $y = h_w(x)$, then the weights don't change
- If y = 1 but $h_{\mathbf{w}}(\mathbf{x}) = 0$, then w_i is *increased* when x_i is positive and *decreased* when x_i is negative.
- If y = 0 but $h_{\mathbf{w}}(\mathbf{x}) = 1$, then w_i is decreased when x_i is positive and increased when x_i is negative.

Perceptron Convergence Theorem: For any data set that's linearly separable and any training procedure that continues to present each training example, the learning rule is guaranteed to find a solution in a finite number of steps.

Perceptron Performance

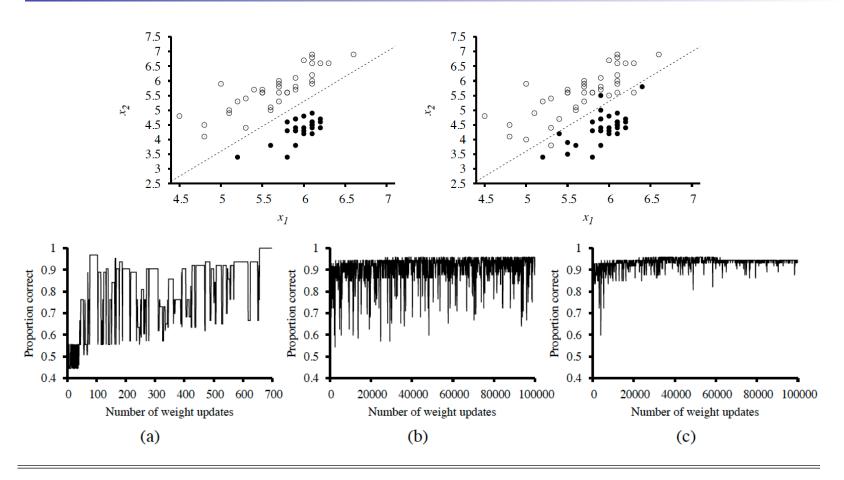


Figure 18.16 FILES: . (a) Plot of total training-set accuracy vs. number of iterations through the training set for the perceptron learning rule, given the earthquake/explosion data in Figure 18.14(a). (b) The same plot for the noisy, non-separable data in Figure 18.14(b); note the change in scale of the x-axis. (c) The same plot as in (b), with a learning rate schedule $\alpha(t) = 1000/(1000 + t)$.