Motor skills and robots

» Two basic set of skills ?
» 3 m roll, 6 m sit-up, 8 m crawl, 1 y walk.. predictable
» Family
» Child-size robots: Rich spectrum of physical behaviors, skill acquisition

» Use of humanoid robots, philosophy is different

Emre Ugur CMPES8Y
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Humanoid robots used in DevRob

ASIMO
QRIO
CB

CB

Pneubom-13
(Pneuborn-
711)

Repliee R1
(Geminoid)
Infanoid
Alfletto

KASPAR

COG

Manufacturer

1T

(Italy)
Aldebaran
(France)

Honda
(Japan)
Sony
(Japan)
SARCOS
(USA)

JST ERATO
(Japan)

JST ERATO
(Japan)

ATR, Osaka,
Kokoro
(Japan)
NICT
(Japan)
Osaka
(Japan)
Hertfordshire
(UK)

MIT

(USA)

DOFs

Actuator
type
Electric

Electric

Electric
Electric
Hydraulic
Pneumatic
Pneumatic
Electric
(Pneumatic)
Electric
Pneumatic
and electric
Electric

Electric

Actuators

position

Whole-
body
Whole-
body

Whole-
body
Whole
body
Whole
body
Whole
body
Whole
body

Head
(upper
body)
Upper
body
Upper
body
Upper
body
Upper
body

Soft
sensitive
skin

Yes

No

Yes

No

Human-
like

appearance

No

No

Yes
(Yes)

Child

size

Yes

Yes

Yes

Yes
(No)

Yes

Yes

Height/
welight

105 cm
22 kg
58cm
4.8 kg

130 cm
48 kg
58 cm
7.3 kg
157 cm
92 kg
130 ¢m
33 kg
75 ¢m
39 kg

(150 ¢cm)

43 cm
3 kg

50 cm
15 kg

History
(Model)

2008

2005 (AL-01)
2009
(Academic)
2011 (All
New ASIMO)
2003
(SDR-4X-I1)
2006

2007

2000

2004

(2007)

2001

2011

2008

1999

Main research
references

Metta et al., 2008
Parmiggiani et al., 2012
Gouaillier et al. 2008

Sakagami et al., 2002
Hirose & Ogawa, 2007
Kuroki et al., 2003
Cheng et al., 2007b
Minato et al., 2007
Narioka et al., 2009
Minato et al., 2004
(Sakamoto et al., 2007)
Kozima, 2002
Ishihara et al,, 2011
Dautenhahn et al.,

2009
Brooks et al., 1999
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ICub

Open-source

IIT — robotcup.org
3.5y:105 cm tall, 22 kg
53 dof, hands and upper torso

Tendon-driven hand actuators

2 cameras, 1 microphone

vy vvy VY vVvY 9% Y%

3 gyroscopes, 3 accelerometers,
compass

\ 4

4 force/torque sensors

\ 4

Tactile:

» Palm and fingertip

» Distributed sensorized skin
» Position encoders
» YARP middleware

Emre Ugur CMPES8Y



Robotics and Autonomous Systems 59 (2011) 580-595

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Goal emulation and planning in perceptual space using learned affordances

Emre Ugur®*%* Erhan Oztop 9, Erol Sahin®

*NICT, Biological ICT Group. Kyoto, japan

bPATR Cognitive Mechanisms Labs., Kyvoto, Japan

¢ Middie East Technical Liniversity. Department of Computer Engineering KOVAN Research Lab.. Ankara Turkey
4 Dsaka University, School of Engineering Science. Osoka, Japan

ARTICLE INFO ABSTRACT

Article history: In this paper, we show that through self-interaction and self-observation, an anthropomorphic robot

Received 13 August 2010 equipped with a range camera can learn object affordances and use this knowledge for planning. In the

gi‘j”" ed ‘“2391"'15’5"1 form first step of learning, the robot discovers commonalities in its action-effect experiences by discovering
anuary

effect categories. Once the effect categories are discovered, in the second step, affordance predictors for
each behavior are obtained by learning the mapping from the object features to the effect categories.
After learning, the robot can make plans to achieve desired goals, emulate end states of demonstrated
actions, monitor the plan execution and take corrective actions using the perceptrual structures employed

Accepted 9 April 2011
Available online 17 April 2011

i?;:;;:; or discovered during learning. We arzue that the learning system proposed shares crucial elements with
Developmental robotics the development of infants of 7-10 months age, who explore the environment and learn the dynamics of
Sensorimotor leaming the objects through goal-free exploration. In addition, we discuss goal emulation and planning in relation
Manipulation to older infants with no symbolic inference capability and non-linguistic animals which utilize object
Perception affordances to make action plans.

Cognitive robotics © 2011 Elsevier BV. All rights reserved.
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Check confidence ‘1
Check pixel position s}
Check amplitude

Detect objects
Delete borders
Compute features

(a) Photograph of setup (b) Range image

Emre Ugur CMPES8Y 6/70




(vertical)

IﬂL Dot

E 3 = © s i H 5
= = S g T 8 £ Histogram of polar angles Histogram of azimuthal angles
2 2 5 = % E 2 (represents shape in (represents shape in
'_:'30 © > 2 o o ul:_n vertical, inclination) horizontal, azimuth)
" s £5885 _
z(frnntal} (lateral) = TC; o Ti:; % = -
> o e
E % g é é ‘E" Represents normal vector distribution
CMPES8Y —

Emre Ugur




(bj) (b)) ()
feffect,of _fOi _foi

CMPES8Y



Visibility + Position+ Shape
features
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Visibility channel Position channel Shape channel
(1 feature) (6 features) (36 features)
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Change in

Visibility  Position Shape Explanation

R RN IR AR fnnmnm Ilé

Impossible § _ E Disappeared &

effect : = = s Dragged
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effect : E i : Rotated
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effect : 5 5 Rotated

IEIREAR RRRNREEH-TARRNRRRRARNN RRRRRRRRRRNNT III'|_'|'IIIIIII (LLIVELLILERELR LI LTT IIIIIIIIIIIIF

Fig. 5. Impossible or rare effect categories that are formed through Cartesian
product of channel-specific categories for push-rigcht behavior. Some of the
categories can be created due to inaccuracies in simulator and some of them do
occur very rarely.
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Decrease max. number of categories

Train
Clustering — 2-class  — ACCEPT
Potential SVMs (E,E) Accuracies
effect
Effect categories of
features of ch channel All
ch channel entity
features

(a) Channel-specific effect category discovery for each channel ci in the
lower-level
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(b) All-channel effect category discovery in the upper-level
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TABLE 11
THE EFFECT CATEGORIES (CAT.) DISCOVERED BY 2-LEVEL

CHANNEL-BASED CLUSTERING.

Channel Cat. Prototype 2-categur_}-' Predic- Accep-
vector accuracy table? ted?
s O
Visibility | 2 cat | oo j v
0.40 79.73 % Vv
3cat. | O.11 64.42 % X X
Tactile 0.00 68.82 % X
0.38 80.15 %
2t o o4 80.15 % 5 v
19, 2, 1] 67.00 % X
3 cat. | [0, 0, 0] 81.14 % Vv X
Position [12,-4,12] 79.20 % Vv
] 12, 1, 0] 78.2 %
2eal o392 | 782 % :ﬁ v
Large 71347 % X
3 cat. | Large 69.77 % X X
Shape Small ?1.2_? Yo \
5 cat Large 70.5 % X \
-7 | Small 70.5 % X )
[ cat. | NA. NA. Vv Vv
CMPE58Y
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Pus

y 3 ¢’ [Push~forward|
OBSERVE ~ /

( |Pu5h-fnrward|

| |Pu5h-furward|
IMITATE

(a) Snapshots. (b) Range images. (c) Features. (d) Search tree and generarted final plan.
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Range Image

(4)

Push-right Push-forward Push-forward Push=forward Push-right Grasp & Lift Finished
W L . d _,T_..‘
B

Features

L

Behavior
Execution

Fig. 13. The execution steps of a 7-step plan that was generated to bring the object to the observed position in Fig. 12(a) top.
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» Find effect categories through clustering

» Initial feature — effect categories
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Learning Object Affordances: From Sensory--Motor Related Articles
coordination to Imitation Face recognition with radial basis function

{RBF) neural networks

View Document 161 1336 Extraction of rules from artificial neural
. Paper Full networks for nonlinear regression
Citations Text Views
View All
4 ~ Luis Montesano ; ~ Manuel Lopes ; ~ Alexandre Bernardino ; ~ JosE Santos-Victor View all Authors
Author(s)

Abstract Authors Figures References Citations Keywords Metrics Media
Abstract:

Affordances encode relationships between actions, objects, and effects. They play an important role on basic cognitive
capabilities such as prediction and planning. We address the problem of learning affordances through the interaction of a robot
with the environment, a key step to understand the world properties and develop social skills. We present a general model for
learning object affordances using Bayesian networks integrated within a general developmental architecture for social robots.
Since learning is based on a probabilistic model, the approach is able to deal with uncertainty, redundancy, and irrelevant
information. We demonstrate successful learning in the real world by having an humanoid robot interacting with objects. We
illustrate the benefits of the acquired knowledge in imitation games.

Published in: |IEEE Transactions on Robotics ( Volume: 24, Issue: 1, Feb. 2008 )
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Learning Object Affordances: From Sensory—Motor
Coordination to Imitation

Luis Montesano, Manuel Lopes, Alexandre Bernardino, Member, IEEE, and José Santos-Victor, Member, IEEE

Abstract—Affordances encode relationships between actions,
objects, and effects. They play an important role on basic cog-
nitive capabilities such as prediction and planning. We address the
problem of learning affordances through the interaction of a robot
with the environment, a key step to understand the world prop-
erties and develop social skills. We present a general model for
learning object affordances using Bayesian networks integrated
within a general developmental architecture for social robots. Since
learning is based on a probabilistic model, the approach is able to

deal with uncertainty, redundancy, and irrelevant information. We
demonstrate successful learning in the real world by having an hu-
manoid robot interacting with objects. We illustrate the benefits of
the acquired knowledge in imitation games.
Index Terms—Affordances, biorobotics, cognitive robotics, hu- inputs | outputs function
manoid robots, learning. (0,A4) E Predict effect
(O, F) A Action recognition & planning
A E @ Object recognition & selection
I. INTRODUCTION (4, E) J g

UMANS can solve many complex tasks on a routine basis,  Fig. 1. Affordances as relations between (A)ctions, (O)bjects, and (E)ffects
e.g.. by selecting, amongst a vast repertoire, the actions that can be used to address different purposes: predict the outcome of an action,

. ) ) : - ) plan actions to achieve a goal, or recognize objects or actions.
to exert on an object to obtain a certain desired effect. A painter

Emre Ugur CMPES8Y



(a)

Fig. 2. Examples of actions as seen by the robot. (a) Grasping.(b) Tapping.

“ig. 3. Experimental setup. The Robot’s workspace consists of a white table
ind some colored objects with different shapes (left). Objects on the table are
‘epresented and categorized according to their size, shape and color, e.g., the
‘ball” and “square™ class (right).

Emre Ugur CMPES8Y 20/ 70




TABLE II
SUMMARY OF VARIABLES AND VALUES
Symbol Description Values

A Action grasp, tap, touch

H Height discretized in 10 values
C Color greeny, greens, vellow, blue
Sh Shape ball, box

S Size small, medium, big

V Object velocity small, medium, big
HV Hand velocity small, medium, big

Di Object-hand velocity small, medium, big

Ct Contact duration none, short, long




Emre Ugur

0.5

] |-|-|B|j
—zmall

long, 5)
=]
Cal

=
P

plH | Ct
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0 " " " : :
@ 018 0.2 022 0.24 0.26 028 0.3

height {m)

(a) (b)

Fig. 7. Tuning the height for grasping a ball. (a) Dependencies discovered
by the learning algorithm. The action and shape for this example are fixed and
color does not have an impact on the effects. Node labels are shown in Table IL
(b) CPD of height given the robot obtained a long contact (successful grasp).
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What, when how to learn

Question: What is the best strategy to learn?

» Optimize learning to maximize reward? Optimize task-
performance? Learn from mistakes?

Emre Ugur CMPES8Y



Homeostasis is the property of a system in
which variables are regulated so that

I ntrl nSIC M Otlvatl O n (I M) internal conditions remain stable and

relatively constant.

IM behaviors have no clear goal, purpose or r _.al function; performed
for their own sake.

» Serving the need of hunger (homoeostaticf/ﬁeed) IS considered extrinsic.

Advantages:

» Task-independent,
» Re-use of skills?
» IM is open-ended

Questions in IM: What to explore next?
» Novel situations that have not been experienced before.
» Situations that are easy to learn?

» Situations that add a lot of information to the world model?

Emre Ugur CMPES8Y 24170




Intrinsic Motivation (IM)

Knowledge based view (focus: properties of the environment)

» detect novel or unexpected features, objects or events in the
environment

» depends on current state of knowledge
» motivated to expand the knowledge base
» Novelty-based IM:
» Mismatch between experience and knowledge base

» [ ow/moderate/high level of novelty, which one to go?
» Prediction-based IM

» Explore unfamiliar “edges” of its knowledge base.
Curiosity & surprise

» Probe the environment, if does not behave as expected,
explore more!

Emie uUgui CMPES3Y



Intrinsic Motivation — Neural Bases

» Hippocampus

» Novel experience — activates a recurrent
pathway to VTA - release of dopamine for
new memory traces in hippocampus.

» Over repeated presentations — response
diminishes — habituation

» Frontal Eye Field (FEF) ﬁfﬁ 5
» Activity is anticipatory
» Increased activity when there is mismatch /C by

» Superior colliculus (SC) N\
» Short-term increase in dopamine :

» Detects ongoing actions unexpected
consequences

Neuron. 2005 Jun 2;46(5):703-13. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Lisman JE(1), Grace

Emre Ugur CMPES8Y



Intrinsic Motivation in Infants
Novelty in Infants, 1 - visual exploration

» Bronson, 1991

» 2 and 12 month olds

» 2 differences?

» Interpretation? Only attention to novel areas?

> Related to both novelty and control of the eyes.

Initial fixation

Emre Ugur CMPES8Y



Intrinsic Motivation in Infants
Novelty in Infants, 2 - novelty detection

» Habituation: the decrease in response to a stimulus as a result of repeated
presentation

» How can you detect novelty with this?

» Habituation — dishabituation

P Present male faces repeatedly, infants habituate.

P Present female faces in the post-habituation phase.
P Significant increase in looking time: something novel!

Emre Ugur CMPES8Y 28170




Review two paradigms to measure infant
perception

» Preferential looking » Habituation-dishabituation

Trial # (Habituation - dishabituation)

1
2 @
. )
(Fantz, 1956, infant looking chamber) 3 @
Trial #
4 @
5 @

Trial # (Dishabutiation )
1 @
: @
s @

~N~ oo o0~ W DN P

DODDDDD
000009
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Intrinsic Motivation Iin Infants
Novelty in Infants, 2 - novelty detection
» Change in novelty preference in infants:
» 0-2 months: prefer familiar objects
» 3-6 months: shift toward novel objects
» 6-12 months: robust performance for novel objects

» How to explain familarity — novelty preference?

» Evgeny Sokolov, the stimulus-model comparator theory
» Gradually create an internal model of the observed stimuli
» Compare the stimulus with the model,
» If match, then inhibit the response.

» Limited visual processing does not allow stable model construction

Emre Ugur CMPES8Y 30/70




Intrinsic Motivation in Infants
Knowledge-based in Infants: Prediction

» In anticipation of an event — action based on outcome (e.g. gaze shift)

» \What actions?
» Studied with visual expectation paradigm (VexP)

» 2-month-olds learn to predict the upcoming locations of the images in regular
patterns, cannot deal with complex patterns. But 3-month-olds

Regular-alternating sequence Irregular sequence

= — B
Reflecting
Mirror X Mirror
/ Shde ﬁ
Projector
ameradll =—
Shide
Light E:P_' —— -—— 4-\ Projector
Colhimator —* \ T i
Mirror Z Y ; 2\
H '
Mirror Y - ‘-"\\ :
: 2 Way i il
~l Oscillating £
I @ Rear  Mirror Mirror
Projection
Screen
| —————

Haith, Marshall M., Cindy Hazan, and Gail S. Goodman. "Expectation and
anticipation of dynamic visual events by 3.5-month-old babies." Child
development (1988): 467-479.
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Intrinsic Motivation in Infants
Knowledge-based in Infants: Prediction

» In anticipation of an event — action based on outcome (e.g. gaze shift)

» \What actions?
» Tracking a ball occluded on the way
—1133 ms

» 3 months old: fail — narrow screen?

» 6 months old: succeed

» Screen + wall 300 ms

» Track and reach

0 ms

No-Wall Wall

Berthier, Neil E., et al. "Using object knowledge in visual
tracking and reaching." Infancy 2.2 (2001): 257-284.
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Intrinsic Motivation in Infants
Competence-based IM in Infants

» Reminder: what was that?

» Early emerging component: self-efficacy

» How to study?
» Contingency perception method — baby in the crib
» Video display of self&other — e.g. leg

» 3 months old — perfect match to self
and then others — autism spectrum
disorder

» Spontaneous play behavior

Age Type of play Example
0-2 years Functional or Gross activity: Running climbing, swinging kicking
sensorimotor dropping objects
1-5 years Constructive Fine motor skills for building: Stacking blocks, connecting
pieces of train rack
2-6 years Pretend or symbolic Cooking breakfast
6+ years Rule-based Checkers
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IM-based robots iIn RL framework

IM behaviors have no clear goal, purpose or biological
function; performed for their own sake.

P Serving the need of hunger (homoeostatic need) is ?
P Battery charge act is intrinsic or extrinsic motivated ?
P Intrinsic motivated action?

External environment

External environment

Actions Sensations
Actions rewards Sensations
Motivation
system
. |
Action B Action -

f— selection L selection

Autonomous agent

Autonomous agent

Externally motivated behavior Internally motivated behavior

Reward originates from environment: externally motivated Internally motivated

Oudeyer, Pierre-Yves, and Frederic Kaplan. "What is intrinsic motivation? a typology of computational approaches." Frontiers in neurorobotics 1 (2007): 6.
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A taxonomy of IM-based architectures by
Oudeyer and Kaplan (2007)
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Rewarding IM-based robots based on

Novelty Amount
» Choose novel events that the robot is uncertain ~ # Information gain motivation:
about P Choose events that result in
e*: kth sample from all possible set of events decrease in total uncertainty
P(e*,1): estimated probability of observing event at time t H(E,t): total entropy

r(eft)=C-(1-P(k 1) H(E,t)=— ) P(e",t)in(P(c" 1))

ekcE

» Above, uncertainty motivation. Seek novel and r(e",t)=C-(H(E,t)— H(E,t+1))
unfamiliar events.

» What if do not change much?

» Somehow need to limit maximum novelty
(see next slide)
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Rewarding IM-based robots based on
Prediction Error

» Reward events that are unpredictable » Reward event that provide maximum

, , change in prediction error
SM (t): sensorimotor context upto time t

ITI(SM(t)): prediction of next context » Maximum Learning Progress

r(SM(t) = Ep(t) — B, (1)
r(SM(t)) = C - E,(t)

where
where EL(t) = [(SM(t) — (¢ + 1)
II(SM(t)) =e*(t+1)
~ Jurgen Schimidhuber:
E.(t) = ||€k(t +1) - e* (t+1)|| http://people.idsia.ch/~juergen/

» The robot can get lost! Beyond its “current’limits!

F (SM(t)) = Cy - e=Co1IB-(0-EZ |

Thresholded to moderate novelty

Emre Ugur CMPES8Y



Rewarding IM-based robots based on
Competence

» Focus is skills, skills have goals (g,), goal-directed behaviors occur in episodes
(t)

» Difference between expected goal and observed result

Ta(gr,ty) = t
» Reward? (9k:tg) = llgk(tg) — gr(ty)]]

» (mis) achievement of the intended goal. Favor large differences between
attempted and achieved goals

» Maximizing- mcompetence motlvatlon 7 boaf’s well-beyond skill level.

» Favor improvement!

r(RM(t), gk, ty) = C - (Ia(gr,tg — ©) — La(gr,ty))

Emre Ugur CMPES8Y 38/70




r(SM(t)) = E,(t) - E.(1)

Robots with prediction driven IM where
E(t) = ||V (SM(t) — " (t + 1))
Recall Schmidhuber's learning process based IM

http://people.idsia.ch/~juergen/

» Reward based on changes in the prediction error over time

» LP = difference in consecutive prediction errors

» The actions are rewarded because they leed improvement in prediction.

Oudeyer et al. Intelligent Adaptive Curiosity
» Life-long learning in continuous high-dimensional sensorimotor spaces

» Playground Experiments

Emre Ugur CMPES8Y 64 /70




Robots with prediction driven IM

» Environment
» An elephant toy on the ground
» A hanging toy

» An adult robot which automatically imitates if
the infant is looking and speaking

P 4 parametrized motor primitives
P turn head in various directions

» Open/close mouth while crouching with
varying strengths

» Vocalizing with various pitches and lengths

» Rocking leg with various angles and speed

» Sensory perception:
> Visual (salient visual properties)
» Auditory (other robot)

Oudeyer, Pierre-Yves, et al. "The playground experiment: Task-independent

P Tactile (Something in mouth) development of a curious robot.” Proceedings of the AAAI Spring Symposium

on Developmental Robotics. Stanford, California, 2005.
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Robots with prediction driven IM

. Perception of Errors in prediction in 4 activities
. Architecture IAC (2007, 2009, 2013) e -
Prediction l
of next
state

Prediction error

4 N
- o — i — T T T
Error feedback -
time
et _ - : % of time spent in each activity based on the
J ' P
i\ W

Progressive :
categorization ,

. time
of the sensorimotor spa

principle of maximizing learning progress

-

Oudeyer, Pierre-Yves, et al. "The playground experiment: Task-independent
development of a curious robot." Proceedings of the AAAI Spring Symposium
on Developmental Robotics. Stanford, California, 2005.
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Robots with prediction driven IM

No hard-coded strategy

Stage-like development

1. Unorganized babbling (with I h e

combined primitives)

2. Explore each primitive randomly P I 3 y g roun d

3. Act towards areas with objects,
e.g. localize to elephant, rock
towards the adult robot

EXperiment

The Discovery of
Communication

4. Shift focus to contingent action-
object pairs

Emergence of communication

Oudeyer, Pierre-Yves, et al. "The playground experiment: Task-independent
development of a curious robot." Proceedings of the AAAI Spring Symposium
on Developmental Robotics. Stanford, California, 2005.
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