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What is Reinforcement Learning?

• An approach to Artificial Intelligence
• Learning from interaction
• Goal-oriented learning
• Learning about, from, and while interacting with an 

external environment
• Learning what to do—how to map situations to 

actions—so as to maximize a numerical reward 
signal
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Complete Agent

• Temporally situated
• Continual learning and planning
• Object is to affect the environment
• Environment is stochastic and uncertain

  

Environment

actionstate

reward
Agent
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Key Features of RL

• Learner is not told which actions to take
• Trial-and-Error search
• Possibility of delayed reward

Sacrifice short-term gains for greater long-
term gains

• The need to explore and exploit
• Considers the whole problem of a goal-directed 

agent interacting with an uncertain environment
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Examples of Reinforcement Learning
• Robocup Soccer Teams Stone & Veloso, Riedmiller et al.

World’s best player of simulated soccer, 1999; Runner-up 2000

• Inventory Management Van Roy, Bertsekas, Lee & Tsitsiklis
10-15% improvement over industry standard methods

• Dynamic Channel Assignment Singh & Bertsekas, Nie & Haykin
World's best assigner of radio channels to mobile telephone calls

• Elevator Control Crites & Barto
(Probably) world's best down-peak elevator controller

• Many Robots
navigation, bi-pedal walking, grasping, switching between skills...

• TD-Gammon and Jellyfish Tesauro, Dahl
World's best backgammon player
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Supervised Learning

Training Info  =  desired (target) outputs

Supervised Learning 
SystemInputs Outputs

Error  =  (target output  – actual output)
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Reinforcement Learning

Training Info  =  evaluations (“rewards” / “penalties”)

RL
SystemInputs Outputs (“actions”)

Objective:  get as much reward as possible
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Elements of RL

• Policy: what to do
• Reward: what is good
• Value: what is good because it predicts reward
• Model: what follows what

Policy

Reward

Value
Model of

environment



ε-Greedy Action Selection

❐ Greedy action selection:

❐ ε-Greedy:

at = at
* = arg max

a
Qt(a)

{ at
*  with probability 1 − ε

random action with probability ε
at =

. . . the simplest way to balance exploration and exploitation



Softmax Action Selection

❐ Softmax action selection methods grade action 
probs. by estimated values.

❐ The most common softmax uses a Gibbs, or 
Boltzmann, distribution:

Choose action a on play t with probability

                    
eQt (a) τ

eQt (b) τ
b=1

n∑
,

where τ is the
“computational temperature”



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Agent-Environment Interface

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

  

Agent and environment interact at discrete time steps :  t = 0,1, 2, K
     Agent observes state at step t :     st ∈S
     produces action at step t :   at ∈ A(st )
     gets resulting reward :     rt +1 ∈ℜ
     and resulting next state:   st +1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a
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The Agent Learns a Policy

Policy at step t, πt :
              a mapping from states to action probabilities

               πt (s, a) =  probability that at = a when st = s

❐ Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it 
can over the long run.
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Goals and Rewards

❐ Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.

❐ A goal should specify what we want to achieve, not how 
we want to achieve it.

❐ A goal must be outside the agent’s direct control—thus 
outside the agent.

❐ The agent must be able to measure success:
explicitly;
frequently during its lifespan.
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Returns

  

Suppose the sequence of rewards after step t is :
                         rt +1, rt+ 2 , rt + 3, K
What do we want to maximize?

In general,  

we want to maximize the expected return,  E Rt{ },  for each step t.

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze. 

 Rt = rt +1 + rt +2 +L + rT ,
where T is a final time step at which a terminal state is reached, 
ending an episode.
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Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.  

Discounted return:

  

            Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +L = γ krt + k +1,
k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted  0 ← γ → 1  farsighted
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An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

As an episodic task where episode ends upon failure:
reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As  a continuing task with discounted return:
reward  = −1 upon failure; 0 otherwise

⇒   return =  −γ k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Get to the top of the hill
as quickly as possible. 

Return is maximized by minimizing 
number of steps to reach the top of the hill. 
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A Unified Notation

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

❐ In episodic tasks, we number the time steps of each 
episode starting from zero.

❐ We usually do not have to distinguish between episodes, so 
we write       instead of         for the state at step t of 
episode j.

❐ Think of each episode as ending in an absorbing state that 
always produces reward of zero:

❐ We can cover all cases by writing

st st, j

                                                                Rt = γ krt +k +1,
k =0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.
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The Markov Property

❐ By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

❐ Ideally, a state should summarize past sensations so as to retain 
all “essential” information, i.e., it should have the Markov 
Property:

 

Pr st +1 = ′ s ,rt +1 = r st ,at ,rt , st −1,at −1,K,r1,s0 ,a0{ }=

                                                             Pr st +1 = ′ s ,rt +1 = r st ,at{ }
for all ′ s , r, and histories st ,at ,rt , st −1,at −1,K,r1, s0 ,a0. 
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Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition probabilities:

reward probabilities:

Ps ′ s 
a = Pr st +1 = ′ s st = s,at = a{ }   for all s, ′ s ∈ S, a ∈ A(s).

Rs ′ s 
a = E rt +1 st = s,at = a,st +1 = ′ s { }   for all s, ′ s ∈ S, a ∈ A(s).
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An Example Finite MDP

Recycling Robot

❐ At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge. 

❐ Searching is better but runs down the battery; if runs out of 
power while searching, has to be rescued (which is bad).

❐ Decisions made on basis of current energy level: high, low.
❐ Reward = number of cans collected
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Recycling Robot MDP

  

S = high,low{ }
A(high) = search, wait{ }
A(low) = search,wait, recharge{ }  

Rsearch =  expected no. of cans while searching
Rwait =  expected no. of cans while waiting
                    Rsearch > Rwait

search

high low
1,  0

 1—β ,   —3

search

recharge

wait

wait

search1—α ,  R

β ,  R search

α, Rsearch

1,  R wait

1,  R wait
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Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

∑ 
 
 

 
 
 

❐ The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

❐ The value of taking an action in a state under policy π
is the expected return starting from that state, taking that 
action, and thereafter following π :

Action - value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ }= Eπ γ krt + k +1 st = s,at = a
k = 0

∞

∑ 
 
 

 
 
 
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Bellman Equation for a Policy π

The basic idea: 

  

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4 L

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4 L( )
= rt +1 + γ Rt +1

Vπ (s) = Eπ Rt st = s{ }
= Eπ rt +1 + γ V st +1( ) st = s{ }

So: 

Or, without the expectation operator: 

V π (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γV π ( ′ s )[ ]
′ s 

∑
a

∑
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More on the Bellman Equation

V π (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γV π ( ′ s )[ ]
′ s 

∑
a
∑

This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution.

Backup diagrams:

s,as

a

s’

r

a’

s’
r

(b)(a)

for V π for Qπ
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that 

move agent out of special states A and B as shown.

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Optimal Value Functions

π ≥ ′ π     if and only if  Vπ (s) ≥ V ′ π (s)  for all s ∈S
❐ For finite MDPs, policies can be partially ordered: 

❐ There are always one or more policies that are better than or 
equal to all the others. These are the optimal policies. We 
denote them all π *.

❐ Optimal policies share the same optimal state-value function:

❐ Optimal policies also share the same optimal action-value 
function:

V∗ (s) = max
π

Vπ (s)   for all  s ∈S

Q∗(s,a) = max
π

Qπ (s, a)  for all  s ∈S and a ∈A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.
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Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

s

a

s'

r

(a)

max

V ∗(s) = max
a ∈A (s)

Qπ ∗

(s,a)

= max
a ∈A (s)

E rt +1 + γV ∗(st +1) st = s,at = a{ }
= max

a ∈A (s)
Ps ′ s 

a

′ s 
∑ Rs ′ s 

a + γV ∗( ′ s )[ ]

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.V∗
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Bellman Optimality Equation for Q*

Q∗(s,a) = E rt +1 + γ max
′ a 

Q∗(st +1, ′ a ) st = s,at = a{ }
= Ps ′ s 

a Rs ′ s 
a + γ max

′ a 
Q∗( ′ s , ′ a )[ ]

′ s 
∑

s,a

a'

s'
r

(b)

max

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.Q*
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Why Optimal State-Value Functions are Useful

V∗Any policy that is greedy with respect to is an optimal policy.

V∗Therefore, given     , one-step-ahead search produces the 
long-term optimal actions.

E.g., back to the gridworld:

a) gridworld b) V* c) ≠*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A’

B’+10

+5

π*
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Iterative Policy Evaluation
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A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Iterative Policy Eval
for the Small Gridworld

 0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk  for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

optimal 
policy

random 
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

π = equiprobable random action choices
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Policy Improvement

Suppose we have computed       for a deterministic policy π.Vπ

For a given state s, 
would it be better to do an action                 ? a ≠ π(s)

 Qπ (s,a) = Eπ rt +1 + γ V π(st +1 ) st = s, at = a{ }
= Ps ′ s 

a

′ s 
∑ Rs ′ s 

a +γ Vπ ( ′ s )[ ]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if

                            Qπ (s,a) > V π (s)
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Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s,a)

= argmax
a

Ps ′ s 
a

′ s 
∑ Rs ′ s 

a + γ V π ( ′ s )[ ]

Do this for all states to get a new policy ′ π that is 

greedy with respect to V π :

Then V ′ π ≥ Vπ
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Policy Iteration

 π0 → V π 0 → π1 → Vπ1 → Lπ * → V * → π *

policy evaluation policy improvement
“greedification”
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Policy Iteration
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Generalized Policy Iteration

Generalized Policy Iteration (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 
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Chapter 6: Temporal Difference Learning

Objectives of this chapter: 

❐ Introduce Temporal Difference (TD) learning
❐ Focus first on policy evaluation, or prediction, methods
❐ Then extend to control methods
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TD Prediction

Policy Evaluation (the prediction problem): 
for a given policy π, compute the state-value function Vπ

Recall: Simple every - visit Monte Carlo method :

V(st ) ← V(st) +α Rt − V (st )[ ]

target: the actual return after time t

The simplest TD method, TD(0) :

V(st ) ← V(st) +α rt +1 + γ V (st+1 ) − V(st )[ ]

target: an estimate of the return
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Simplest TD Method

T T T TT

T T T T T

st+1
rt+1

st

V(st ) ← V(st) + α rt +1 + γ V (st+1 ) − V(st )[ ]

TTTTT

T T T T T
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Learning An Action-Value Function

Estimate Qπ  for the current behavior policy π.

st+2,at+2st+1,at+1

rt+2rt+1st st+1st ,at
st+2

After every transition from a nonterminal state st , do this :

Q st , at( )← Q st , at( )+ α rt +1 +γ Q st +1,at +1( )− Q st ,at( )[ ]
If st +1 is terminal,  then Q(st +1, at +1 ) = 0.
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Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate: 



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Windy Gridworld

S G

0 0 0 01 1 1 12 2

standard
moves

king's
moves

undiscounted, episodic, reward = –1 until goal
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Results of Sarsa on the Windy Gridworld

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

170

Episodes

Time steps

S G

0 0 0 01 1 1 12 2
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Q-Learning: Off-Policy TD Control

One - step Q - learning :

Q st , at( )← Q st , at( )+ α rt +1 +γ max
a

Q st+1, a( )− Q st , at( )[ ]
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Cliffwalking

ε−greedy, ε = 0.1


