What is Reinforcement Learning?

® Anapproach to Artificial Intelligence
® Learning from interaction
® Goal-oriented learning

® Learning about, from, and while interacting with an
external environment

® Learning what to do—how to map situations to
actions—so as to maximize a humerical reward
signal

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Complete Agent

®* Temporally situated

® Continual learning and planning

* Object is to affect the environment

* Environment is stochastic and uncertain

Environment

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Key Features of RL

® |Learner is not told which actions to take
®* Trial-and-Error search
® Possibility of delayed reward

= Sacrifice short-term gains for greater long-
term gains

®* The need to explore and exploit

* Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Examples of Reinforcement Learning

® Robocup Soccer Teams Stone & Veloso, Riedmiller et al.
= World's best player of simulated soccer, 1999; Runner-up 2000

®* Tnventory Management Van Roy, Bertsekas, Lee & Tsitsiklis
= 10-15% improvement over industry standard methods

¢ Dynamic Channel Assignmen‘r Singh & Bertsekas, Nie & Haykin
= World's best assigner of radio channels to mobile telephone calls
g p

® Elevator Control cCrites & Barto
= (Probably) world's best down-peak elevator controller

* Many Robots

= navigation, bi-pedal walking, grasping, switching between skills...

®* TD-Gammon and Jellyfish Tesauro, Dahl
= World's best backgammon player

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Supervised Learning

Training Info = desired (target) outputs

}

S ised L I

Error = (target output — actual output)

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties™)

}

mputs EEP . M Outputs (“actions”)

Objective: get as much reward as possible

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Elements of RL

Model of
environment

* Policy: what to do
®* Reward: what is good

® Value: what is good because it predicts reward
® Model: what follows what

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



e-Greedy Action Selection

[1 Greedy action selection:

a,

= a; =argmaxQ,(a)
[1 e-Greedy:

{ a, with probability 1 — ¢
a =

t random action with probability &

. .. the simplest way to balance exploration and exploitation



Softmax Action Selection

[1 Softmax action selection methods grade action
probs. by estimated values.

[1 The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play ¢ with probability
00/(0)/7
22:1 eQr(b)/T

where 71s the
“computational temperature”




The Agent-Environment Interface

- )
>[ Agent |
state rreward action
S t &
[ T
| 1 h
| S+1 | Environment

Agent and environment interact at discrete time steps: ¢=20,1, 2, ...

Agent observes state at stepz: s, €5
produces action at step¢: a, € A(s,)

gets resulting reward: 7, €R

t+1

and resulting next state: s,

—@ .FHIQ crt+2@ olt3 St43)—"""
' J a NG \ 7 4 +3

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction




The Agent Learns a Policy

Policy at step ¢, 7, :
a mapping from states to action probabilities

7T, (s, a) = probability thata, = a when s, = s

[1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

[] Roughly, the agent’s goal is to get as much reward as 1t
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Goals and Rewards

[1 Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it 1s surprisingly flexible.

[1 A goal should specify what we want to achieve, not how
we want to achieve it.

L] A goal must be outside the agent’s direct control—thus
outside the agent.

[1 The agent must be able to measure success:
» explicitly;
» frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Returns

Suppose the sequence of rewards after step £1s :

7;+19rt+29’/2+39

What do we want to maximize?

In general,

we want to maximize the expected return, E{R, }, for each step ¢.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r +r ,++r,

where T 1s a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

o0
— 2 _ k
]zr =l +7/rt+2 Ty Vi3 T = 27/ Vi kr1o
k=0

where 7,0 <y <1, 1s the discount rate.

shortsighted 0 <— y — 1 farsighted

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track.
_— U -

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

= return = number of steps before failure

As a continuing task with discounted return:
reward = —1 upon failure; 0 otherwise

= return = —y*, for k steps before failure

In either case, return 1s maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Another Example

Get to the top of the hill
as quickly as possible.

reward = —1 for each step where not at top of hill

— return = —number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10



A Unified Notation

[1 In episodic tasks, we number the time steps of each
episode starting from zero.

[1 We usually do not have to distinguish between episodes, so
we write S, instead of S, ; for the state at step ¢ of
episode J.

[1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

@ rp=+1 r,=+1 rg=+1 ©r4:8
.—»(: >—><:>—> re =

[ We can cover all cases by writing R =>

k=0
where ycan be 1 only if a zero reward absorbing state is always reached.

+k+1°

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11



The Markov Property

[] By “the state” at step #, the book means whatever information 1s
available to the agent at step ¢ about its environment.

[1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

[1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

7,

i

t—l’at—l"“’rl’SO’aO}:
=s'.r

Pr{StH Tl = I"| Stﬂat}

, L
for all s, , and histories s,,a,,7,s,_,a,_,,...,1,8,,a,.

— o —
Pr{SHl =8,ha = I”l S5dys

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Markov Decision Processes

[1 If a reinforcement learning task has the Markov Property, it 1s
basically a Markov Decision Process (MDP).
[] If state and action sets are finite, it 1s a finite MDP.
[1 To define a finite MDP, you need to give:
= state and action sets
= one-step “dynamics” defined by transition probabilities:
P: =Pr{s

= S" s, =S,a, = a} for all 5,5 € S, a € A(s).

= reward probabilities:

a _ _ . /
R, = E{r[+1 s, =s,a,=a,s,, =S } for all s,s" € S, a € A(s).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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An Example Finite MDP

Recycling Robot

[1 At each step, robot has to decide whether 1t should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

[] Searching 1s better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

[1 Decisions made on basis of current energy level: h gh,l ow.

[ 1 Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14



Recycling Robot MDP

S = {hi gh, | ow} R***°" = expected no. of cans while searching
A(hi gh) = {sear ch, wai t } R"™" = expected no. of cans while waiting
A(l ow) = {sear ch,wai t, r echar ge} Reeh > R

1, R 18, —3

B Rsearch

1, 0 recharge
®

sear ch

wai t
1o Rsearch 1_3, Rsearch 1, R

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15



Value Functions

[1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:

State - value function for policy 7 :

VE(S): Eﬂ {Rf | St :S}: Eﬂ{zyk’/ﬂkﬂ | St — S}
k=0

[1 The value of taking an action in a state under policy 7
is the expected return starting from that state, taking that
action, and thereafter following 7 :

Action - value function for policy 7 :

Qﬁ(sa CZ) — E;z{Rt| S, =5,4, :a}: Eﬂ{zyk’;-i—k—l-l | S, =8,4, =a}
k=0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Bellman Equation for a Policy 7

The basic 1dea:
2 3
R =r +yn, vV s+,
2
t+1+7/(t+2+7/t+3+7/ ’/;+4.”)
+ 7R

t+1 r+1

So: Vi(s)=E, <{Rtl S, :S}
= E;z %Hl + yV(SHl)St = S}

Or, without the expectation operator:

V7 (s) = 2 a(s.a) ) PoL[RE + 7V (s)]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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More on the Bellman Equation

V7i(s)= Z (s, a)z P [Rfs, +yV” (s’)]

This 1s a set of equations (in fact, linear), one for each state.
The value function for 7 1s its unique solution.

Backup diagrams:

(@) 2 (b) >4

for " for Q"

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1R



Gridworld

[1 Actions: north,sout h, east , west ; deterministic.

[1 If would take agent off the grid: no move but reward = —1

[1 Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

AN BN
+5‘
#0] | B’ 4%—>
A f Actions
(@)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Optimal Value Functions

[ For finite MDPs, policies can be partially ordered:
727" ifand onlyif V" (s)=V" (s) foralls €S

[1 There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all 7 *.

[1 Optimal policies share the same optimal state-value function:
V'(s)=maxV"(s) forall s €S
[1 Optimal policies glso share the same optimal action-value
function:
O'(s,a)= max O”(s,a) forall s €S and a € A(s)

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 71



Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

V7(s)=max Q" (S Q)

acd(s)
— ?elg(x)E -+ yV*(sm)‘ S, =S8,a, = a}
= max ZP“ [R“ + yV*(S’)]
a cA(s) (3 s
max
The relevant backup diagram: 2
r
S

V'is the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Bellman Optimality Equation for Q%

Q*(S,Cl) =F Vi + }/IIlaaXQ*(SHba’)‘SI =S,a, = a}
= ZPSC;’ |:R?S' + 7/mE}XQ* (S’,Cl’)]

0 S

The relevant backup diagram: g

max

Q is the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Why Optimal State-Value Functions are Useful

Any policy that i1s greedy with respect to V' is an optimal policy.

Therefore, given V: one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

A B\ 22.0(24.4/22.0/19.4/17.5 — <—I—> « <—I—> “«—
) \
+5 19.8/22.0{19.8/17.8/16.0 IR 1 il . P
40| | B’ 17.819.817.8/16.0{14.4 Lit1gad
16.0{17.8/16.0{14.4/13.0 T_, 1 J 4_T 4_T
A"f 14.4/16.0{14.4/13.0{11.7 t, + o T
a) gridworld b) V* ) ¥

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V(s) =0, for all s € S
Repeat
A — 0
For each s € S:
v «— V(s)
V(s) < Xam(s,a) Xg Poo[Roe + V()]
A — max(A, v —V(s)|)
until A < 6 (a small positive number)
Qutput V = V7

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



A Small Gridworld

1 2 |3
4 |5 |6 |7
8 |9 [10 |11
actions P T

[1 An undiscounted episodic task

[1 Nonterminal states: 1, 2, .. ., 14;

r= -1
on all transitions

[1 One terminal state (shown twice as shaded squares)
[1 Actions that would take agent off the grid leave state unchanged
[1 Reward 1s —1 until the terminal state 1s reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Iterative Policy Eval

for the Small Gridworld Vi for e
Random Policy wrt. Vi
0.0 0.0 0.0/ 0.0 Pl
K=0 0.0{ 0.0/ 0.0/ 0.0 b
0.0{ 0.0/ 0.0/ 0.0 +lblb
0.0/ 0.0/ 0.0/ 0.0 bl
0.0|-1.0[-1.0|-1.0 — b
k=1 -1.0/-1.0|-1.0|-1.0 ' bl
-1.0/-1.0|-1.0|-1.0 ol
-1.0-1.0/-1.0 0.0 Fl| -
: . . 0.0]-1.7]-2.0]-2.0 — |
7 = equiprobable random action choices SR BT PY: WY Y Tl o
-2.0|-2.0|-2.0[-1.7 Hb| o
-2.0|-2.0/-1.7| 0.0 | —| -
0.0]-2.4]-2.9]-3.0 — |
k=3 -2.4|-2.9|-3.0[-2.9 T
-2.9|-3.0|-2.9|-2.4 RN
-3.0[-2.9|-2.4] 0.0 Ll S| -
0.0/-6.1]-8.4]-9.0 — |
k=10 -6.1|-7.7|-8.4|-8.4 T
-8.4|-8.4|-7.7]-6.1 R
-9.0|-8.4/-6.1 0.0 bl -] -
0.0]-14.]-20|-22. — |
K=o -14.|-18.|-20.|-20. 1
-20.|-20.|-18.|-14. "H P
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction -22.|-20.]-14.] 0.0 Ll 5| -

random
policy

optimal
policy



Policy Improvement

Suppose we have computed ¥~ for a deterministic policy 7.

For a given state s,
would it be better to do an action @ # 7($)?

The value of doing a in state s 1s:

O (s,0) = E {1 + 7V 7(5,,1)
= 2 PR+ V(]

S, =S,4, =a}

It 1s better to switch to action a for state s if and only 1f

Q" (s,a) > V" (s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Policy Improvement Cont.

Do this for all states to get a new policy 7’ that 1s

ogreedy with respectto V" :
7'(s) = argmax Q" (s, a)
= argmax ZP;*S, [7?,35, +y V" (S’)]

Then V" >V~

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Policy Iteration

7, >V o>V 5.1 >V o7

S

policy evaluation policy improvement
“oreedification”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Policy Iteration

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A —0
For each s € S:
v« V(s)
V(s) — Ly Pis? [R5 + 9V (s")]

A «— max(A, v — V(s)|)

until A < 6 (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € S:
b— m(s)
7(s) <« argmax, >, P, L’RES,- + ﬂ/V(s’)J
If b # 7(s), then policy-stable — false
If policy-stable, then stop; else go to 2

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation

n V

—>greedy(V)

A geometric metaphor for
convergence of GPI:

improvement
* starting v*
® V &t TT*
JT —a] V

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Chapter 6: Temporal Difference Learning

Objectives of this chapter:

[1 Introduce Temporal Difference (TD) learning
[1 Focus first on policy evaluation, or prediction, methods
[1 Then extend to control methods

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



TD Prediction

Policy Evaluation (the prediction problem):
for a given policy 7, compute the state-value function V'~

Recall:  Simple every - visit Monte Carlo method :
V(is)« V(s)+a|R -V(s)]

target: the actual return after time ¢
The simplest TD method, TD(0) :

V(s) < V(s)+alr,+rV(s,)—V(s)]
[ |

target: an estimate of the return

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Simplest TD Method

V(is)« V(s)+alr, +rV(s,)—V(s)]

\)

ie

Bkl

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction




Learning An Action-Value Function

Estimate Q" for the current behavior policy 7.

18 r
@ . t+1@ . t+2@_._ o
St» G St+1 %41 St+2 %0

After every transition from a nonterminal state s,, do this:

Q(St, at)(_ Q(Sw at)+ a[’?ﬂ Ty Q(St+l9at+l)_ Q(St9at )]

If s, 1s terminal, then O(s,,,,a_,)=0.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose o’ from s’ using policy derived from Q (e.g., e-greedy)
Q(s,a) — Q(s,a) + a[r +vQ(s',a’) — Q(s, a)]
s« s a+«—a

until s is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Windy Gridworld

s G Jf%

standard king's
moves moves

O 001112 2120

undiscounted, episodic, reward = —1 until goal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Results of Sarsa on the Windy Gridworld

170 |
150 A |
. .
| e |
100 A
Ep|50d95 o 0 01 1 1 2 2 1 0
50 -
0 -

0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Q-Learning: Off-Policy TD Control

One - step Q - learning :

06-4) ¢ 05,4 )+ ., +7max 06, a)- 06.q)

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s’
Q(s,a) — Q(s,a) + ofr + ymaxy Q(s', ') — Q(s, a)]
s« s

until s i1s terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Clifftwalking

Y

safe path

- optimal path
S The Cliff G

e—greedy, € = 0.1

Sarsa
=257
Reward _so- _
per Q-learning
epsiode
=757
-100 T | T T |
0 100 200 300 400 500
Episodes
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