
adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

What is Reinforcement Learning?

• An approach to Artificial Intelligence
• Learning from interaction
• Goal-oriented learning
• Learning about, from, and while interacting with an

external environment
• Learning what to do—how to map situations to

actions—so as to maximize a numerical reward
signal

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Complete Agent

• Temporally situated
• Continual learning and planning
• Object is to affect the environment
• Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Key Features of RL

• Learner is not told which actions to take
• Trial-and-Error search
• Possibility of delayed reward

Sacrifice short-term gains for greater long-
term gains

• The need to explore and exploit
• Considers the whole problem of a goal-directed

agent interacting with an uncertain environment

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Examples of Reinforcement Learning
• Robocup Soccer Teams Stone & Veloso, Riedmiller et al.

World’s best player of simulated soccer, 1999; Runner-up 2000

• Inventory Management Van Roy, Bertsekas, Lee & Tsitsiklis
10-15% improvement over industry standard methods

• Dynamic Channel Assignment Singh & Bertsekas, Nie & Haykin
World's best assigner of radio channels to mobile telephone calls

• Elevator Control Crites & Barto
(Probably) world's best down-peak elevator controller

• Many Robots
navigation, bi-pedal walking, grasping, switching between skills...

• TD-Gammon and Jellyfish Tesauro, Dahl
World's best backgammon player

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Supervised Learning

Training Info = desired (target) outputs

Supervised Learning
SystemInputs Outputs

Error = (target output – actual output)

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties”)

RL
SystemInputs Outputs (“actions”)

Objective: get as much reward as possible

adapted from R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Elements of RL

• Policy: what to do
• Reward: what is good
• Value: what is good because it predicts reward
• Model: what follows what

Policy

Reward

Value
Model of

environment

ε-Greedy Action Selection

❐ Greedy action selection:

❐ ε-Greedy:

at = at
* = arg max

a
Qt(a)

{ at
* with probability 1 − ε

random action with probability ε
at =

. . . the simplest way to balance exploration and exploitation

Softmax Action Selection

❐ Softmax action selection methods grade action
probs. by estimated values.

❐ The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play t with probability

eQt (a) τ

eQt (b) τ
b=1

n∑
,

where τ is the
“computational temperature”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Agent-Environment Interface

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Agent and environment interact at discrete time steps : t = 0,1, 2, K
 Agent observes state at step t : st ∈S
 produces action at step t : at ∈ A(st)
 gets resulting reward : rt +1 ∈ℜ
 and resulting next state: st +1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

The Agent Learns a Policy

Policy at step t, πt :
 a mapping from states to action probabilities

 πt (s, a) = probability that at = a when st = s

❐ Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Goals and Rewards

❐ Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it is surprisingly flexible.

❐ A goal should specify what we want to achieve, not how
we want to achieve it.

❐ A goal must be outside the agent’s direct control—thus
outside the agent.

❐ The agent must be able to measure success:
explicitly;
frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Returns

Suppose the sequence of rewards after step t is :
 rt +1, rt+ 2 , rt + 3, K
What do we want to maximize?

In general,

we want to maximize the expected return, E Rt{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

 Rt = rt +1 + rt +2 +L + rT ,
where T is a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

 Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +L = γ krt + k +1,
k =0

∞

∑
where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted 0 ← γ → 1 farsighted

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure
⇒ return = number of steps before failure

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise

⇒ return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Another Example

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Get to the top of the hill
as quickly as possible.

Return is maximized by minimizing
number of steps to reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

A Unified Notation

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

❐ In episodic tasks, we number the time steps of each
episode starting from zero.

❐ We usually do not have to distinguish between episodes, so
we write instead of for the state at step t of
episode j.

❐ Think of each episode as ending in an absorbing state that
always produces reward of zero:

❐ We can cover all cases by writing

st st, j

 Rt = γ krt +k +1,
k =0

∞

∑
where γ can be 1 only if a zero reward absorbing state is always reached.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

The Markov Property

❐ By “the state” at step t, the book means whatever information is
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

❐ Ideally, a state should summarize past sensations so as to retain
all “essential” information, i.e., it should have the Markov
Property:

Pr st +1 = ′ s ,rt +1 = r st ,at ,rt , st −1,at −1,K,r1,s0 ,a0{ }=

 Pr st +1 = ′ s ,rt +1 = r st ,at{ }
for all ′ s , r, and histories st ,at ,rt , st −1,at −1,K,r1, s0 ,a0.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP.
❐ To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition probabilities:

reward probabilities:

Ps ′ s
a = Pr st +1 = ′ s st = s,at = a{ } for all s, ′ s ∈ S, a ∈ A(s).

Rs ′ s
a = E rt +1 st = s,at = a,st +1 = ′ s { } for all s, ′ s ∈ S, a ∈ A(s).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

An Example Finite MDP

Recycling Robot

❐ At each step, robot has to decide whether it should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

❐ Searching is better but runs down the battery; if runs out of
power while searching, has to be rescued (which is bad).

❐ Decisions made on basis of current energy level: high, low.
❐ Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Recycling Robot MDP

S = high,low{ }
A(high) = search, wait{ }
A(low) = search,wait, recharge{ }

Rsearch = expected no. of cans while searching
Rwait = expected no. of cans while waiting
 Rsearch > Rwait

search

high low
1, 0

 1—β , —3

search

recharge

wait

wait

search1—α , R

β , R search

α, Rsearch

1, R wait

1, R wait

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

∑







❐ The value of a state is the expected return starting from
that state; depends on the agent’s policy:

❐ The value of taking an action in a state under policy π
is the expected return starting from that state, taking that
action, and thereafter following π :

Action - value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ }= Eπ γ krt + k +1 st = s,at = a
k = 0

∞

∑







R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Bellman Equation for a Policy π

The basic idea:

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4 L

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4 L()
= rt +1 + γ Rt +1

Vπ (s) = Eπ Rt st = s{ }
= Eπ rt +1 + γ V st +1() st = s{ }

So:

Or, without the expectation operator:

V π (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γV π (′ s)[]
′ s

∑
a

∑

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

More on the Bellman Equation

V π (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γV π (′ s)[]
′ s

∑
a
∑

This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution.

Backup diagrams:

s,as

a

s’

r

a’

s’
r

(b)(a)

for V π for Qπ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that

move agent out of special states A and B as shown.

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)

State-value function
for equiprobable
random policy;
γ = 0.9

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Optimal Value Functions

π ≥ ′ π if and only if Vπ (s) ≥ V ′ π (s) for all s ∈S
❐ For finite MDPs, policies can be partially ordered:

❐ There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all π *.

❐ Optimal policies share the same optimal state-value function:

❐ Optimal policies also share the same optimal action-value
function:

V∗ (s) = max
π

Vπ (s) for all s ∈S

Q∗(s,a) = max
π

Qπ (s, a) for all s ∈S and a ∈A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

s

a

s'

r

(a)

max

V ∗(s) = max
a ∈A (s)

Qπ ∗

(s,a)

= max
a ∈A (s)

E rt +1 + γV ∗(st +1) st = s,at = a{ }
= max

a ∈A (s)
Ps ′ s

a

′ s
∑ Rs ′ s

a + γV ∗(′ s)[]

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.V∗

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Bellman Optimality Equation for Q*

Q∗(s,a) = E rt +1 + γ max
′ a

Q∗(st +1, ′ a) st = s,at = a{ }
= Ps ′ s

a Rs ′ s
a + γ max

′ a
Q∗(′ s , ′ a)[]

′ s
∑

s,a

a'

s'
r

(b)

max

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.Q*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Why Optimal State-Value Functions are Useful

V∗Any policy that is greedy with respect to is an optimal policy.

V∗Therefore, given , one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

a) gridworld b) V* c) ≠*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A’

B’+10

+5

π*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Iterative Policy Evaluation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Iterative Policy Eval
for the Small Gridworld

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = °

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

π = equiprobable random action choices

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Policy Improvement

Suppose we have computed for a deterministic policy π.Vπ

For a given state s,
would it be better to do an action ? a ≠ π(s)

 Qπ (s,a) = Eπ rt +1 + γ V π(st +1) st = s, at = a{ }
= Ps ′ s

a

′ s
∑ Rs ′ s

a +γ Vπ (′ s)[]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if

 Qπ (s,a) > V π (s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s,a)

= argmax
a

Ps ′ s
a

′ s
∑ Rs ′ s

a + γ V π (′ s)[]

Do this for all states to get a new policy ′ π that is

greedy with respect to V π :

Then V ′ π ≥ Vπ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Policy Iteration

 π0 → V π 0 → π1 → Vπ1 → Lπ * → V * → π *

policy evaluation policy improvement
“greedification”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

Policy Iteration

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

Chapter 6: Temporal Difference Learning

Objectives of this chapter:

❐ Introduce Temporal Difference (TD) learning
❐ Focus first on policy evaluation, or prediction, methods
❐ Then extend to control methods

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

TD Prediction

Policy Evaluation (the prediction problem):
for a given policy π, compute the state-value function Vπ

Recall: Simple every - visit Monte Carlo method :

V(st) ← V(st) +α Rt − V (st)[]

target: the actual return after time t

The simplest TD method, TD(0) :

V(st) ← V(st) +α rt +1 + γ V (st+1) − V(st)[]

target: an estimate of the return

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Simplest TD Method

T T T TT

T T T T T

st+1
rt+1

st

V(st) ← V(st) + α rt +1 + γ V (st+1) − V(st)[]

TTTTT

T T T T T

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

Learning An Action-Value Function

Estimate Qπ for the current behavior policy π.

st+2,at+2st+1,at+1

rt+2rt+1st st+1st ,at
st+2

After every transition from a nonterminal state st , do this :

Q st , at()← Q st , at()+ α rt +1 +γ Q st +1,at +1()− Q st ,at()[]
If st +1 is terminal, then Q(st +1, at +1) = 0.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Windy Gridworld

S G

0 0 0 01 1 1 12 2

standard
moves

king's
moves

undiscounted, episodic, reward = –1 until goal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Results of Sarsa on the Windy Gridworld

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

170

Episodes

Time steps

S G

0 0 0 01 1 1 12 2

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Q-Learning: Off-Policy TD Control

One - step Q - learning :

Q st , at()← Q st , at()+ α rt +1 +γ max
a

Q st+1, a()− Q st , at()[]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Cliffwalking

ε−greedy, ε = 0.1

