
n Discrete	environments

Can	tabular	methods	scale?

Tetris
10^60

Atari
10^308 (ram)   10^16992 (pixels)

Gridworld
10^1



n Continuous	environments	(by	crude	discretization)

Crawler
10^2

Hopper
10^10

Humanoid
10^100

Can	tabular	methods	scale?



Generalizing	Across	States
n Basic	Q-Learning	keeps	a	table	of	all	q-values

n In	realistic	situations,	we	cannot	possibly	learn	
about	every	single	state!

n Too	many	states	to	visit	them	all	in	training

n Too	many	states	to	hold	the	q-tables	in	memory

n Instead,	we	want	to	generalize:

n Learn	about	some	small	number	of	training	states	from	
experience

n Generalize	that	experience	to	new,	similar	situations

n This	is	a	fundamental	idea	in	machine	learning,	and	
we’ll	see	it	over	and	over	again



n Instead	of	a	table,	we	have	a	parametrized	Q	function:

n Can	be	a	linear	function	in	features:	

n Or	a	complicated	neural	net

n Learning	rule:

n Remember:	

n Update:

Approximate	Q-Learning
Q✓(s, a)

Q✓(s, a) = ✓0f0(s, a) + ✓1f1(s, a) + · · ·+ ✓nfn(s, a)

target(s0) = R(s, a, s0) + �max

a0
Q✓k(s

0, a0)

✓k+1  ✓k � ↵r✓


1

2
(Q✓(s, a)� target(s0))2

�����
✓=✓k



Connection	to	Tabular	Q-Learning
n Suppose	

n Plug	into	update:

n Compare	with	Tabular	Q-Learning	update:

✓ 2 R|S|⇥|A|, Q✓(s, a) ⌘ ✓sa

r✓sa


1

2
(Q✓(s, a)� target(s0))2

�

= r✓sa


1

2
(✓sa � target(s0))2

�

= ✓sa � target(s0)

Qk+1(s, a) (1� ↵)Qk(s, a) + ↵ [target(s0)]

✓sa  ✓sa � ↵(✓sa � target(s0))

= (1� ↵)✓sa + ↵[target(s0)]



n state:	naïve	board	configuration	+	shape	of	the	falling	piece	~1060 states!

n action:	rotation	and	translation	applied	to	the	falling	piece

n 22	features	aka	basis	functions	

n Ten	basis	functions,	0,	.	.	.	,	9,	mapping	the	state	to	the	height	h[k]	of	each	column.

n Nine	basis	functions,	10,	.	.	.	,	18,	each	mapping	the	state	to	the	absolute	difference	
between	heights	of	successive	columns:	|h[k+1]	−	h[k]|,	k	=	1,	.	.	.	,	9.

n One	basis	function,	19,	that	maps	state	to	the	maximum	column	height:	maxk h[k]

n One	basis	function,	20,	that	maps	state	to	the	number	of	‘holes’	in	the	board.

n One	basis	function,	21,	that	is	equal	to	1	in	every	state.

[Bertsekas &	Ioffe,	1996	(TD);	Bertsekas &	Tsitsiklis 1996	(TD);	Kakade 2002	(policy	gradient);	Farias &	Van	Roy,	2006	(approximate	LP)]

V̂�(s) =
21X

i=0

�i⇥i(s) = �>⇥(s)

�i

Engineered	Approximation	Example:	Tetris



Deep	Reinforcement	Learning

Pong Enduro Beamrider Q*bert

• From	pixels	to	actions
• Same	algorithm	(with	effective	tricks)
• CNN	function	approximator,	w/	3M	free	parameters



Recap: Approximate Q-Learning



● High-level idea - make Q-learning look like supervised learning.

● Two main ideas for stabilizing Q-learning.

● Apply Q-updates on batches of past experience instead of online:

○ Experience replay (Lin, 1993).

○ Previously used for better data efficiency.

○ Makes the data distribution more stationary.

● Use an older set of weights to compute the targets (target network):

○ Keeps the target function from changing too quickly.

DQN

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Target Network Intuition

s s’

● Changing the value of one action will 

change the value of other actions 

and similar states.

● The network can end up chasing its 

own tail because of bootstrapping.

● Somewhat surprising fact - bigger 

networks are less prone to this 

because they alias less.





	


