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1.2. Challenges Adressed

Learning a trajectory from demonstration :

e Robustness

«  Movements represented by a set of differential equations

e Generalization

« Changing a goal parameter ensures adaptation to a new goal

e Correspondence

 Trajectory recorded in end-effector space, then mapped to joint
space
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2.1. DMP Formulations

. A trajectory is represented by the following set of differential equations:

Tv=K(g—Xx)—DvHg—Xx,)f(s)
TX=V
where
x and v are the position and velocity of the system
x, and g are the start and goal position
K proportional (spring) constant
D derivative (damping) constant

T 1s a temporal scaling factor

f 1s a non-linear function
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2.1. DMP Formulations

* For now, think of x as the angular position of a joint.

. v 1s the angular velocity, yy 1s the angular acceleration of this joint

. A PD controller would suffice for this joint to reach the goal angular position.
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Shamsuzzoha, M. and S. Skogestad (2010). The setpoint overshoot method: A simple and fast method for closed-loop PID tuning. J. Process Control

20, 1220-1234.
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2.1. DMP Formulations

. PD controller + non-linear perturbation:

Tv=K (g—Xx)—Dv+(g— X;) f (5) == Transformation system

TX=V

. The non-linear function is defined as:

2 Wwi(s)s with

f(s)= IZ e _’ Non-linear function

Y, =exp(—h, (s— Ci)z)

. Phase variable sis defined as:

TS=—0S

s(t)=exp (=2 1) s Canonical system
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2.2. How to learn?

1. Record a movement x(?7) where time 7 = 1,...,7 ( 7=duration)
+  Take derivative of x(7) =4 (), scale by 7 to get v(t)
- Take derivative of v(2) =y (¥)

2. Integrate the canonical system

*  Choose a and integrate the canonical system for all time
steps =1,...,T

3. Calculate fmrge (s) by:

—K (g— x)+Dv+TV
fiarget(s)= (g g—)Xo

where x, is set to x(0) and g is set to x(7)
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2.2. How to learn?

4. Minimize the squared error to find weights w.

./ — Z (ftarget (S) T f (S))z

Create s(?) for all time steps =1,...,T

Select a number of Gaussian functions, as well as each Gaussian’s center and
variance to derive ¢ (s) from

Find f(s) in terms of unknown weights w. LIJ,' — exp (_ h,' ( s— C,' )2)

Finding w. is a linear regression problem

fu, (s wy(s0) = w,(so)]
X = L|—’1(:51) W (:51) F o (S)Z Y, (s)
ko, (s) w,(s) - w,(s)d Y= s

W= (X" X)) (X" y)
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2.3. Reproduce the movement

* A movement plan is generated by :
*  Reusing weights w,

. Specifying a desired start and goal states. x. and ¢

Learned Task Specific
Weights w Parame.ters X, g

RN =

; v Position X
Canonical ﬁs’w i) »| Transformation :..»——*7 Velocity v
System System

L

™ Acceleration V

Fig. 1. Sketch of a one dimensional DMP: the canonical system drives
the nonlinear function f which perturbs the transformation system.
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2.4. Advantages and Drawbacks

Advantages Drawbacks

If g-x, is small, change in g may
result in huge accelerations

Robust to perturbations

Weights can be learned to generate
any trajectory

Tv=K (g—Xx)—Dv+(g— x,) T (5)

2 wy(s)s
f(5)=—
) Z Y, (s)
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74 Advantacses and Drawbacks

Advantages Drawbacks

If g-x, is small, change in g may
result in huge accelerations

Robust to perturbations

Weights can be learned to generate
any trajectory

Tv=K (g—Xx)—Dv+(g— Xx,) f (5) Tv=K (g—Xx)—Dv—K (g— x;) s+K f (s)

2 wy(s)s
F(s)="
’ Z Y, (s)
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2.4. Advantages and Drawbacks
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Fig. 2. Comparison of goal-changing results between old (Left) and
new (Right) DMP formulation in operational space (Y7,Y2) with one
transformation system for each dimension. The same original movement
(solid line) and goals are used for both formulations. The dashed lines show
the result of changing the goal before movement onset (Top) and during the
movement (Bottom).
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2.4. Advantages and Drawbacks

. New transformation syStem:

Tv=K (g—Xx)—Dv—-K (g— X,) s+K 1 (s)
_’ Transformation system

TX=V

. The non-linear function is defined as:

2. Wws)s with

f(s)= 'Z v (S _’ Non-linear function

Y, =exp(—h, (s— Ci)z)

. Phase variable s 1s defined as:

TS=—0S

_ —q
s(t)y=exp(—= 1) _’ Canonical system
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2.5. Adding terms to the equation

2.5.1. Obstacle Avoidance

. In 3D end-effector space, the scalars x, v&nd turn into vectors xw and and
scalars K, D turn into positive definite matrices K, D.

. Add only the coupling term p(x,v) to the transformation system :
TVv=K(g—x)—Dv— K (g— Xx,) s+K f (s)+p(x, v)

p(x,v)=Yy Rvep (- ¢)
where

. R is a rotational matrix with axis and angle of rotation of n/2
. o is the position of the obstacle

. yand g are constants

. ¢ is the angle between the direction of the end-effector towards the obstacle
and the end-effector’s velocity vector v relative to the obstacle.

r=(x—o)xv
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2.5. Adding terms to the equation

2.5.2. Sensory Feedback

. In 3D end-effector space, the scalars x, v&nd turn into vectors xw and and
scalars K, D turn into positive definite matrices K, D.

. Add only the coupling term ¢ to the transformation system :
TVv=K(g— x)—Dv— K (g— x,) s+K f (s)+C

¢ =K1J oner Ko (F — F )

where

. J_...r IS the Jacobian of the task controlled by the movement primitives wrt
sensors

. F are the generalized forces read from sensors ( wrench = torque + force —>
6D)

. F_is the desired forces acquired from demonstrations
. K, and K, are positive definite gain matrices
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3. Library of movement primitives

3.1. Motion Library
3.2. ASM Framework

3.3. Combination of Movement Primitives
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3.1. Motion Library

Motor (Motion Library by Visual
Ouput Movement Input
/ Primitive 1
(Action I_l N\ / Primitive 2 Q Perception
: Movement Spatial Obj
Mog;lcomd / e \ Infoglant;tion Recoi,:icttio
Generation :
ﬁ / Movement \ O @
/ Primitive n-1 \ Movement+ of Teacher
Inverse Movement 3D Information of
Kinematics (/ | Primitive n N\ Manipulated Object
\_ ( J 7 v & /] J
\{ / \ | §
s & M = M
Cognition ovement — R eg;ﬁ:iﬁ;
4
Performance
Evaluation

CMPES8Y



3.2. ASM Framework

* Need to relate movements to context (i.e. to objects, the environment etc. ) - object

affordances — Object-Action Complexes

» All sensory events (e.g. joint angle sensors, IMUs, force sensors, touch sensors, etc.)

are collected as large sensory feature vector

 Mean and variances from multiple trials recorded and approximated by a function

approximator as the non-linear function f(s)

« This additional information is called Associative Skill Memory (ASM).
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3.2. ASM Framework
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Fig. 8. A sketch of a concept of an associative skill memory as graphical model.

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., et al. (2013). From dynamic movement primitives to
associative skill memories. Robotics and Autonomous Systems, 61(4), 351-361.
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3.3. Combination of Movement Primitives
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(a) zero velocity and
acceleration boundary

condition

(b) Velocity and
acceleration is equal to
the that of the preceding

DMP




4. Applications of DMP

4.1. Learning DMPs from Demonstration
4.2. Executing DMPs on the Robot

4.3. Robot Experiment
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4.1. Learning DMPs from Demonstration

Sarcos Slave Arm

(1) )

(1) Heiko Hoffmann, URL: , last access: 19/03/2017
(2) Computational Learning&Motor Control Lab, URL: Jast access:
19/03/2017
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http://www.heikohoffmann.de/robots.htm
http://www-clmc.usc.edu/Research/ExperimentalEquipment

4.1. Learning QDMP Demonstration

arcos as er

(1) Max Planck Institute for Intelligent Systems, Autonomous Motion , URL: last
access: 19/03/2017
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https://am.is.tuebingen.mpg.de/pages/robots

4.1. Learning DMPs from Demonstration

Demonstratio

Fig. 8. Sarcos Master arm used to record a human trajectory in end-
effector space. Here, the subject demonstrates a pouring movement which

after learning the DMP enabled a robot to pour water into several cups
(Fig. 12).
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4.1. Learning DMPBsfrem Demonstration
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4.1. Learning DMPBsuiram.ldemonstration

0.51
HEt0Mm x [m] 0605

Fig. 10. The desired trajectories (blue lines) from the movements shown
in Fig. 9 adapted to new goals (red lines) indicated by the grid.
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4.2. Executing DMPs on the Robot

Summary of Robot Movement Execution from
DMPs

Task Specific
Parameters

!

Movement |
Primitive
A

natic: Or-6r. Or

Perceptual
Coupling

&

Fig. 11. DMP control diagram: the desired task space positions and
velocities are &4, @4, the reference task space velocity commands are @,

the reference joint positions, joint velocities, and joint accelerations are 6.,
0., and 6,..
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4.1. Learning DMPs from Demonstration
Changing Goal Variable
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4.1. Learning DMPs from Demonstration
Changing Goal Variable
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4.3. Robot Experiment

Online Adaptation to New
Goals
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4.3. Robot Experiment

Online Adaptation to New
Goals
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5. Conclusions

» Robust generalization to new goals
« Human like adaptation

» Automatic obstacle avoidance
 |ncorporating sensory feedback

» Associative Skill Memories
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The End

QUESTIONS?

URL : , last access: 19/03/2017
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http://www.yeniisfikirleri.net/dunyanin-en-ilginc-10-robotu/

