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1.2. Challenges Adressed 

• Robustness

• Movements represented by a set of differential equations

• Generalization

• Changing a goal parameter ensures adaptation to a new goal

• Correspondence

• Trajectory recorded in end-effector space, then mapped to joint 
space

Learning a trajectory from demonstration : 
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2. DMP Framework 

2.1. DMP Formulations
 
2.2. How to learn?

2.3. Reproduce the movement

2.4. Advantages and Drawbacks

2.5. Adding terms to the equation

2.5.1. Obstacle Avoidance
2.5.2. Sensory Feedback
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2.1. DMP Formulations
● A trajectory is represented by the following set of differential equations:

where

    x and v are the position and velocity of the system

    x0 and g are the start and goal position

    K proportional (spring) constant

    D derivative (damping) constant

    τ  is a temporal scaling factor

    f  is a non-linear function 
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2.1. DMP Formulations
• For now, think of x as the angular position of a joint. 

• v is the angular velocity,      is the angular acceleration of this joint

● A PD controller would suffice for this joint to reach the goal angular position.

Shamsuzzoha, M. and S. Skogestad (2010). The setpoint overshoot method: A simple and fast method for closed-loop PID tuning. J. Process Control 
20, 1220–1234.
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2.1. DMP Formulations
● PD controller + non-linear perturbation:

Transformation system

● The non-linear function is defined as:

with
Non-linear function

● Phase variable s is defined as:

Canonical system
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2.2. How to learn?
1. Record a movement x(t) where time t = 1,…,T ( T=duration)

∙ Take derivative of x(t) =   (t), scale by τ to get v(t)
∙ Take derivative of v(t) =    (t)

2. Integrate the canonical system

∙ Choose α and integrate the canonical system for all time 
steps t=1,…,T

3. Calculate ftarget(s) by:

where x0 is set to x(0) and g is set to x(T)
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2.2. How to learn?
4.  Minimize the squared error to find weights wi

∙ Create s(t) for all time steps t=1,…,T

∙ Select a number of Gaussian functions, as well as each Gaussian’s center and 
variance to derive φi(s) from

∙ Find f(s) in terms of unknown weights wi

∙ Finding wi is a linear regression problem
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2.3. Reproduce the movement
• A movement plan is generated by :

• Reusing weights wi

• Specifying a desired start and goal states, x0 and g
• Setting s=1 and evaluating s(t)
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2.4. Advantages and Drawbacks
Advantages

Convergence to goal is guaranteed

Robust to perturbations

Spatial and temporal invariant

Weights can be learned to generate 
any trajectory

Drawbacks

If x0 and g are close, the system will 
remain at x0

If g-x0 is small, change in g may 
result in huge accelerations

When g-x0 changes sign, the resulting 
generalization is mirrored
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2.4. Advantages and Drawbacks
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2.4. Advantages and Drawbacks
● New transformation system:

Transformation system

● The non-linear function is defined as:

with
Non-linear function

● Phase variable s is defined as:

Canonical system
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2.5. Adding terms to the equation

2.5.1. Obstacle Avoidance

● In 3D end-effector space, the scalars x, v and     turn into vectors x, v and     and 
scalars K, D turn into positive definite matrices K, D.

● Add only the coupling term p(x,v) to the transformation system :

where

● R is a rotational matrix with axis                           and angle of rotation of π/2
● o is the position of the obstacle
● γ and β are constants
● φ is the angle between the direction of the end-effector towards the obstacle 

and the end-effector’s velocity vector v relative to the obstacle. 
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2.5. Adding terms to the equation
2.5.2. Sensory Feedback

● In 3D end-effector space, the scalars x, v and     turn into vectors x, v and     and 
scalars K, D turn into positive definite matrices K, D.

● Add only the coupling term ζ to the transformation system :

where

● Jsensor is the Jacobian of the task controlled by the movement primitives wrt 
sensors

● F are the generalized forces read from sensors ( wrench = torque + force –> 
6D)

● Fdes is the desired forces acquired from demonstrations
● K1 and K2 are positive definite gain matrices 
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3. Library of movement primitives

3.1. Motion Library

3.2. ASM Framework

3.3. Combination of Movement Primitives 
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3.1. Motion Library
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3.2. ASM Framework

• Need to relate movements to context (i.e. to objects, the environment etc. ) - object 
affordances → Object-Action Complexes

• All sensory events (e.g. joint angle sensors, IMUs, force sensors, touch sensors, etc.) 
are collected as large sensory feature vector

• Mean and variances from multiple trials recorded and approximated by a function 
approximator as the non-linear function f(s)

• This additional information is called Associative Skill Memory (ASM).
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3.2. ASM Framework

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., et al. (2013). From dynamic movement primitives to 
associative skill memories. Robotics and Autonomous Systems, 61(4), 351–361.
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3.3. Combination of Movement Primitives

(a) zero velocity and 
acceleration boundary 
condition

(b) Velocity and 
acceleration is equal to 
the that of the preceding 
DMP
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4. Applications of DMP

4.1. Learning DMPs from Demonstration 

4.2. Executing DMPs on the Robot 

4.3. Robot Experiment 
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4.1. Learning DMPs from Demonstration

(1) Heiko Hoffmann, URL: http://www.heikohoffmann.de/robots.htm, last access: 19/03/2017
(2) Computational Learning&Motor Control Lab, URL: http://www-clmc.usc.edu/Research/ExperimentalEquipment ,last access: 
19/03/2017

Sarcos Slave Arm

(1) (2)

http://www.heikohoffmann.de/robots.htm
http://www-clmc.usc.edu/Research/ExperimentalEquipment
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4.1. Learning DMPs from Demonstration

(1) Max Planck Institute for Intelligent Systems, Autonomous Motion , URL: https://am.is.tuebingen.mpg.de/pages/robots last 
access: 19/03/2017

Sarcos Master Arm

https://am.is.tuebingen.mpg.de/pages/robots
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4.1. Learning DMPs from Demonstration
Demonstratio
n 
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4.1. Learning DMPs from DemonstrationLearning
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4.1. Learning DMPs from DemonstrationSimulation Results
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4.2. Executing DMPs on the Robot
Summary of Robot Movement Execution from 
DMPs
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4.1. Learning DMPs from Demonstration
Changing Goal Variable
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4.1. Learning DMPs from Demonstration
Changing Goal Variable
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4.3. Robot Experiment
Online Adaptation to New 
Goals
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4.3. Robot Experiment
Online Adaptation to New 
Goals
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5. Conclusions
• Robust generalization to new goals

• Human like adaptation

• Automatic obstacle avoidance

• Incorporating sensory feedback

• Associative Skill Memories
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The End

URL : http://www.yeniisfikirleri.net/dunyanin-en-ilginc-10-robotu/ , last access: 19/03/2017

QUESTIONS? 

http://www.yeniisfikirleri.net/dunyanin-en-ilginc-10-robotu/

