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What to imitate? How to imitate?

» The spatio-temporal variations and » the demonstrated joint angles and hand
correlations across the variables path can be mutually exclusive in the
Imitator space, it is not possible to fulfill

» Weak correlations at the beginning of both constraints at the same time

the motion

» the trajectory which gives the optimal
tradeoff between satisfying the
constraints of the task (spatio-temporal
correlations across the variables) and
its own body constraints.

» strong spatio-temporal correlation for
grabbing the piece and pushing it
toward the desired location without
hitting the other pieces on the
chessboard
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P Different demonstrations of the same task

» Probabilistical estimation of relevance to extract the important aspects of the
task

F

Fig. 3. Teaching through kinesthetics for the three experiments conducted. Chess task: Grabbing and moving a chess piece two squares forward. Bucket task:
Grabbing and bringing a bucket to a specific position. Sugar task: Grabbing a piece of sugar and bringing it to the mouth. using either the right or left hand.
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Architecture

What-to-imitate Metric How-to-imitate
3 i
Reduction of Probabilistic ~. | Determiningthe | __ | Optimal trajectory ,| Reconstruction
dimensionality _§__ data encoding | task constraints _H__ generation _5__ in data space
tx tp ti  to, ' X'
Human Robot
demonstrator imitator

» The signals are encoded in three stage process
» Determine the latent space of the motion
» Temporarily align the signals

» Determine probabilistic representation of data in latent space
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Latent Space

What-to-imitate Metric How-to-imitate
§| o
Reduction of Probabilistic ~. | Determiningthe | __ | Optimal trajectory ,| Reconstruction
dimensionality _f__ data encoding | task constraints _H__ generation i in data space
4

X tp 17 to y X’

demonstrator

Robot
imitator

» Project the original dataset to find an optimal representation for the given task.

» An optimal latent space for a writing task is typically represented as a

projectionof the 3-D original Cartesian position of the hand onto a 2-D
latent space defined by ?

» Principle Component Analysis (PCA) is used * """"""""""""""""""""""""""""

e e e N I L 5
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Temporally align the signals

What-to-imitate Metric How-to-imitate
3 i
Reduction of Probabilistic ZA; Determining the | __ | Optimal trajectory ,| Reconstruction
dimensionality _f__ data encoding | task constraints _H__ generation _5__ in data space
tx tp ti  to, ' X'
Human Robot
demonstrator imitator

. optimal warping
path
N '.: LT
two series in different time phase ! o f b Alk0
A)
— : | //‘
el two time series Q (") — (e
e : : and C, length n and an (n*m) matrix is
shifting of time axis :> m respectively constructed to store the result
the distance between alignment
items in Q and C.

Dr Eamonn Keogh's slides
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Probabilistic Representation

What-to-imitate Metric How-to-imitate
3 3
Reduction of Probabilistic ~. | Determining the ™ Optimal trajectory | | Reconstruction
dimensionality _f__ data encoding | —°| task constraints _H._ generation _5__ in data space
tx tp ti  to, ' X'
Human Robot
demonstrator imitator
P Gaussian Mixture Model for continuous data
» Bernoulli Mixture Model for discrete data
Model data as mixture of multivariate Gaussians Model data as mixture of multivariate Gaussians
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Probabilistic Representation

What-to-imitate Metric How-to-imitate
3 4
Reduction of Probabilistic 2’ Determining the ™ Optimal trajectory | | Reconstruction
dimensionality _f__ data encoding | —°| task constraints _H._ generation _5__ in data space
tx tp ti  to, ' X'
Human Robot
demonstrator imitator

» Gaussian Mixture Model — 1D example

http://localhost:8888/notebooks/w08.ipynb

25
K p(x)a
p(x) =Y mN(x|py, Z)
b—1 ,T, | ' I
Component
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1 K=3
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http://localhost:8888/notebooks/w08.ipynb

Probabillistic Representation

What-to-imitate Metric How-to-imitate
€| 3
Reduction of Probabilistic ~. | Determining the 0 Optimal trajectory | | Reconstruction
dimensionality _5__ data encoding | —°| task constraints _H___ generation _5__‘ in data space
x 7 7 T Ix
Human Robot
demonstrator imitator

» Gaussian Mixture Model — 2D example
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Probabilistic Representation

What-to-imitate Metric How-to-imitate
3 4
Reduction of Probabilistic ~. | Determining the ™ Optimal trajectory | | Reconstruction
dimensionality _f__ data encoding | —°| task constraints _H._ generation _5__ in data space
tx tp ti  to, ' X'
Human Robot
demonstrator imitator

» Gaussian Mixture Model — 2D example

5 Wr—




Reconstruct signals — Gaussian Mixture
Regression

What-to-imitate Metric How-to-imitate
3 4
Reduction of Probabilistic ~. | Determining the ™ Optimal trajectory | | Reconstruction
dimensionality _f__ data encoding | —°| task constraints _H._ generation _5__ in data space
tx tp t7i to ' X'
Human Robot
demonstrator imitator
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How to imitate

Optimization problem:

» Metric of imitation: measure evaluates the reproduction performance of
a task.

» A time-dependent similarity measure:
» the relative importance of each variable and
» the dependences across the variables

» How to imitate: We then compute the trajectory which optimizes the
metric for a certain context, given

» the robot’s body constraints (encapsulated in a Jacobian matrix),
» and the position of the object(s) in the scene.
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What to imitate? How to imitate?

» The spatio-temporal variations and » the demonstrated joint angles and hand
correlations across the variables path can be mutually exclusive in the
Imitator space, it is not possible to fulfill

» Weak correlations at the beginning of both constraints at the same time

the motion

» the trajectory which gives the optimal
tradeoff between satisfying the
constraints of the task (spatio-temporal
correlations across the variables) and
its own body constraints.

» strong spatio-temporal correlation for
grabbing the piece and pushing it
toward the desired location without
hitting the other pieces on the
chessboard
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Experiments

» Control affected only the eight DOFs of the arms, the one DOF of the
torso, and the two binary commands to open and close the robot’s
hands

» the task four to seven times by an expert user.
» exploring as much as possible the variations allowed by the task,

» Once trained, the robot was required to reproduce each task under
different constraints by placing the object at different locations in the
robot’s workspace

CMPES8Y 27129



Hands paths
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» hands—object relationships are highly constrained when the user is grabbing
the object at time steps 30-50, i.e.,

» hands’ paths are highly constrained at the end of the motion (the bucket is
always placed at a specific location after being grabbed).
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—— Hand path reproduced by the robot, reconstructed from ¢
- = =Generalized hand path &

- Hand path reconstructed from the generalized joint angle trajectory
(O Initial position of the object o,
X Initial position(s) of the hand(s)

Fig. 7. Legend for Figs. 8—13.

Fig. 8. Decomposition of the chess task when reproducing the task with an
initial position of the object which is close to the generalized trajectories. The
hands’ paths have been tracked by a stereoscopic vision system.




Problems of the original DMPs

The original DMP formulation 3 drawbacks

« if start and goal pos are same

- non linear term in cannot drive the system
away from its initial state

 If g—xO Is close to zero;

- the scaling g—x0 is problematic; a small
change in g may lead to hug e
accelerations, which can break the limits of
the robot.

 Whenever a movement adapts to a new
goal g new such that (g,.,—X0) changes

its sign compared t0 (Jorigina—X0)

- the resulting generalization is mirrored.

T

T4

S
T;’:“-. ;_.
B

..I'-

, start

.}_l.

online
adaptation
after 300 s

start B zoal Tag

¥

K(g—xz)—Dv+(g—x) f

v



Problems of the original DMPs

The original DMP formulation 3 drawbacks
« if start and goal pos are same
- non linear term in cannot drive the system away from its initial state
* If g—x0 is close to zero;
- the scaling g—x0 is problematic; a small change in g may lead to hug e accelerations, which can break the limits of the robot.
« Whenever a movement adapts to a new goal g new such that (g,.,—X0) changes its sign compared to (J,igina—X0)
- the resulting generalization is mirrored.
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Extending original formulation:
obstacle avoidance

A major feature of using dynamic systems for
movement representation is robustness against
perturbations.

v =K(g—x)-Dv-K(g—xg) s+ Kf(s)+p(x,Vv)

px,v) =vRvypexp(—Fp) ,

R is a rotational matrix with axisr = (x—o0) x v



https://www.youtube.com/watch?v=LuFIWNIcdfM

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

Learning and Generalization of Motor Skills
by Learning from Demonstration

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal


https://www.youtube.com/watch?v=LuFlWNIcdfM

2012 12th IEEE-RAS International Conference on Humanoid Robots
MNov.29-Dec.1, 2012. Business Innovation Center Osaka, Japan

Towards Associative Skill Memories

Peter Pastor®, Mrinal Kalakrishnan*, Ludovic Righetti*f, Stefan Schaal*f
*Computational Learning and Motor Control Lab, University of Southern California, Los Angeles, CA 90089, USA.
T Autonomous Motion Department, Max-Planck-Institute for Intelligent Systems, 72076 Tibingen, Germany.
pastorsa@usc.edu, kalakris@usc.edu, ludovic.righetti@a3.epfl.ch, sschaal @usc.edu



Assoclative Skill Memories

« Stereotypical motions generate stereotypical sensory
feedbacks

- e.g., in terms of kinesthetic variables, haptic variables, or, if
processed appropriately, visual variables

 a movement primitive executed towards a particular
object in the environment will associate a large number of
sensory variables that are typical for this manipulation skill.

* These association can be used to increase robustness
towards perturbations,and they also allow failure detection
and switching towards other behaviors.


https://www.youtube.com/watch?v=lL4-onuLDy0

Assoclative Skill Memories

« Learn the stereotypical sensory feedback: F.(t)

70 =K(g—2)—Dv—K(g—x0)s + K f(s) Online trajectory generation using sensory feedback:
TE =1V
fls) = ZLi e . : h
Sobi(s) T = K(g—x)—Dv—K(g—x9)s+ Kf(s)+(
T§=—as , ™ = 1 . |
=K, JL  Ko(F —Fgu.)
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Exploit predictions

 The planned action trajectories might fail due to noise/perturbations
« Failure can be detected if predictions do not hold.

 The trajectories can be corrected through minimizing the prediction
error.

- Make corrective movements so that the difference between
predicted and actual sensory feedback is minimized.

- i.e. (predicted-actual=0)

Emre Ugur, Bogazici University



Exploit force-feedback predictions

Assume a movement is learned by demonstration and encoded as DMP.
Kinesthetic DMP
Teaching Reproduction

Xdes X: t
{ Robot }

|
Tv=K(g—x)— Dv—K(g—x,) s+K f (s)

TX—=V

X, t

Emre Ugur, Bogazici University
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Exploit force-feedback predictions

Hakan Girgin
Kinesthetic DMP |
Teaching Reproduction
Force feedback  °°° X ges Xt
model F, t

{ Robot }

TV:K(g—x)—Dv—K(g—xo) s+Kf(s) +C
. _ T
TX=V C_I<1 Jsensor KZ (F @
H. Girgin, E. Ugur, Associative Skill Memory Models, IEEE/RSJ Intern2®aaa#onference on

Emre Ugur, Bogazici University Intelligent Robots and Systems (IROS). pp. 6043-6048, 2018.




Trajectory encoding with probabilistic models

« Multiple trajectories encoded as Task Parameterized Hidden
Markov Models (TP-HMM)
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Exploit force-feedback predictions

0.85

Gaussians and Eigenvalues
- -

« Learn expected force feedback e [T e
| B U
- Use expected feedback to enable compliance R R llL -~ demo3
« Learn motion trajectory distribution R & B &
E 4 v
- Enable compliance if large variance in parts " ono [l
of the demonstrations : | r
- Disable compliance if no variance in the T
demonstrations - . | ‘
0 5 10 15 20 25 30
time (s)

Emre Ugur, Bogazici University E. Ugur, H. Girgin, Compliant Parametric Dynamic Movement Primitives, Robotica, 2019
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Scale up in prediction

« Multiple trajectories encoded as Task Parameterized Hidden
Markov Models (TP-HMM)
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 TP-GMM, TP-HMM, ProMP can only Iearn linear relationship
between parameters and motion trajectories

Emre Ugur, Bogazici University



Challenges to scale up

Learn distribution from multiple demonstrations

- with possibly multiple modes of operations.

Discover task-related features

- embedded in the multi-modal sensorimotor trajectories

External parameters/goals < complex movements

- from few demonstrations.

High-dimensional SM spaces < complex motions

- using large number of demonstrations.

Respond to external perturbations on-the-fly

Emre Ugur, Bogazici University


../../../Videos/work/my-videos/boun/imagine/hakan-compliant/Compliant%20Parametric%20Dynamic%20Movement%20Primitives.mp4

