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Previously

 Psychology
 Nervous system and brain

 Nervous system
 Cerebral cortex



Today

 Studying brain cont'd
 Computational models of neurons

 Representation and integration of 
sensorimotor information
 Guest lecture



Studying the brain: methods of inquiry



Language

 Much information comes from 
observations of patients with 
brain damage.. Rumor, 
penetrating head wound, 
rupture of blood vessels.

 Aphasia: language deficits 
caused by brain damage.

 1861, Paul Broca, post-mortem 
dissection, found damage in an 
area of the left hemisphere 
above the lateral fissure in 
frontal lobe. Expressive 
aphasia. Broca's area involved 
in speech production.

 1874, Carl Wernicke, left 
hemisphere, temporal lobe, 
receptive aphasia. Wernicke's 
area. Unable to comprehend 
words. 



Language

 Wernicke-Geschwind model: Broca's area 
stores articulatory codes. Wernicke's area 
auditory codes and meanings of words

 Damage limited to Broca's area: speech production
 Damage to Wernicke's area: all aspects of language 

comprehension
 Damage to angular gyrus: cannot read, but can speak or 

comprehend spoken.
 Damage in auditory area: read and speak but cannot 

comprehend



Split-brain research

 Epilepsy patients, 
seizure starting in 
one hemisphere may 
trigger massive 
response. Therefore, 
corpus collasum is 
distrupted.

 Roger Sperry, Nobel 
Prize in 1981.



Split-brain research
 Roger Sperry, Nobel Prize in 1981.
 'nut' was not transferred. When questioned, seems unaware of 

what his left hand is doing.
 10 seconds, otherwise eye moves and info goes to both sides.
 If blindfolded, some object is placed on left hand, can use.



Studying the brain: methods of inquiry

Humanoid Brain Science Erhan Oztop, Emre Ugur, Yu Shimizu, 
Hiroshi Imamizu, Humanoid Robotics and Neuroscience: Science, 
Engineering and Society, 29

https://www.slideshare.net/ricksw78/fmri-presentation
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Brain activity in use of 
anthropomorphically 
similar or dissimilar 
tools/agents

with

Erhan Oztop 

Hiroshi Imamizu



Tool use representation in 
body-schema?

 Neural representations of control of 
external agents and motor learning 
mechanisms of new tools.

 Robots anthropomorphically similar 
to human body became part of our 
body schema

 Whereas non-anthropomorphic 
robots induce internal model 
formation in other parts of the brain. 

 Expect differences in fMRI 
activation.

θ1

θ2

θ1
θ2



Anthropomorphic tools
fMRI experiment



Anthropomorphic tools
fMRI experiment



Anthropomorphic (AN, hand) vs
Non-anthropomorphic (NAN, arm)  

 Question: What are the mechanism behind 
control and learning?

 Hypothesis: AN and NAN are represented in 
different regions
 AN: becomes part of body schema – parietal 

cortex
 NAN: external model – cerebellum 

 Which control conditions should be kept 
fixed?



 The t-test assesses 
whether the means of 
two groups are 
statistically different 
from each other.

 Performance 
distributions of
 Green: Robot control
 Blue: Hand control

Significant difference in performance 
between hand and arm control?

 From 2 executions?
 2000 executions
 Number of sample 

counts!



Significant difference in performance 
between hand and arm control?

 The difference 
between the means 
is the same in all 
three.

 two groups appear 
most different or 
distinct 
 Where?
 Why?

 Judge the difference 
between their means 
relative to the spread or 
variability of their scores.



Significant difference in performance 
between hand and arm control?

 t value boils down 
all of your sample 
data down to one 
value, the t-value
 means, variances, 

number of samples
 Sign matters?
 look it up in a table 

of significance 



Significant difference in performance 
between hand and arm control?
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Significant difference in performance 
between hand and arm control?

 Critical values 
for t-test



Anthropomorphic tools fMRI results

AN > NAN NAN > AN
T-statistics were used for comparison of the
estimated parameters of AN=(AN-EXE – AN-OBS) and NAN=(NAN-EXE – NAN-OBS). Two
contrasts of AN –NAN and NAN – AN then yielded a t-value for each voxel. A threshold of P<
0.005 was used in obtaining the activation maps shown in this chapter.



Anthropomorphic tools
fMRI results

 High prefrontal activation in the NAN-AN contrast indicates task 
difficulty in the NAN condition.

 NAN condition engaged the angular gyrus, which is involved in 
detection of mismatch between intended and actual movement 
leading to a loss of “action ownership” (agency)

 Superior parietal regions are involved in programming the 
movement according to extrinsic spatial information . The activation in 
this region suggests that the subject controlled the robot fingers as if 
they were the subject’s own fingers, thereby supporting the hypothesis 
that the hand robot was incorporated into the body schema

 The occipital activity in the AN-NAN contrasts may reflect the 
necessary fine control around the target points, which relies on 
detailed visual information



Studying the brain: methods of inquiry

Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach NR Cohen, 
ES Cross, E Tunik, ST Grafton, JC Culham - Neuropsychologia, 2009

wikipedia

http://www.sciencedirect.com/science/article/pii/S0028393208005022
https://scholar.google.at/citations?user=ZZYXR-IAAAAJ&hl=en&oi=sra
https://scholar.google.at/citations?user=wo9cdXgAAAAJ&hl=en&oi=sra
https://scholar.google.at/citations?user=7yJze9oAAAAJ&hl=en&oi=sra
https://scholar.google.at/citations?user=PnssgPwAAAAJ&hl=en&oi=sra


Studying the brain: methods of inquiry

Complex movements evoked by microstimulation of precentral cortex MSA Graziano, CSR 
Taylor, T Moore - Neuron, 2002 - Elsevier

Microstimulation

 Eduard Hitzig and Gustav Fritsch 
(1870)
 the interaction between electric 

current and the brain. 
 electricity via a thin probe to the 

exposed cerebral cortex of a dog 
without anesthesia. 

 Identified the brain's "motor strip", 
a vertical strip of brain tissue on 
the cerebrum in the back of the 
frontal lobe

http://www.sciencedirect.com/science/article/pii/S0896627302006980


Studying the brain: methods of inquiry

wikipedia

Power grasp Precision grasp

E. Ugur, Y. Shimizu, E. Oztop, and H. Imamizu, Reconstruction of Grasp Posture 
from MEG Brain Activity, The 34th Annual Meeting of the Japan Neuroscience 
Society, Yokohama, Japan, 2011. 

http://web.mit.edu/kitmitmeg/whatis.html



Results on grasp 
decoding using MEG

In collaboration with 
Yu Shimizu

Erhan Oztop
Hiroshi Imamizu



Grasp decoding using MEG 

 We aim at both 
 decoding the grasp type (power or precision), and
 reconstructing the aperture size based on MEG 

signals



Experimental Setup

 fMRI compatible data glove gets real joint angles
 Experiment details:

 1st and 2nd sessions: 5x10 blocks with usual hand orientation
 3rd session: 5x10 blocks with rotated hand orientation

 200 Hz: 2000 data points in each block
 Only axial sensors are used



Experimental Setup

 Record joint angles using data glove
 Compute aperture size from joint angles

 Power-grasp: mean(3,6,9,12)
 Precision-grasp: mean (3,6)

Power grasp Precision grasp



Reconstruct aperture size

Sparse Linear Regression
   (Sato et al. (2001) etc.)
# of features = C x 10
         where C is # of channels

MEG signal trajectory for some duration

1. ch.

2. ch.

.

.

.

Grasp aperture or any joint angle

100 ms.400 ms

10 points
per channel

For each channel 



Aperture reconstruction with 
power + precision combined

reconstructed
real

Sample power grasp trajectories Sample precision grasp trajectories



Two step reconstruction

 Step 1: Make classification 
 Decide whether power or precision grasp in the 

beginning
 Step 2: Regress for each grasp type 

separately 
 Reconstruct based on its predicted grasp class



Step 1: Prediction of grasp 
type

MEG signal trajectory for some duration

1. ch.

2. ch.

POWER GRASP 
or

PRECISION GRASP

Predict.
.
.



Step 1: Prediction of grasp 
type

 Train SVM
 Feature number: (3 x 2 x 119) 

(Mean, std. dev., coherence) in freq. band. X-Y

POWER GRASP 
or

PRECISION GRASP

Classify

Features that represent statistics of 
MEG signal trajectory

(Mean, std. dev., coherence) in freq. band. Y-Z

(Mean, std. dev., coherence) in freq. band. X-Y

(Mean, std. dev., coherence) in freq. band. Y-Z

1. ch.

2. ch.

119. ch.
(Mean, std. dev., coherence) in freq. band. X-Y

(Mean, std. dev., coherence) in freq. band. Y-Z



 Classification Results

Duration SVM kernel Same 
session

Different 
sessions

Same hand 
orientation

Different 
sessions

Different hand 
orientation

0-10 sec RBF 78 % 62 %

Linear 68 %

0-1 sec RBF 76 % 70 %

Linear 72 %

(0-1)+(1-2) 
sec

RBF 62 % 51 %

Linear 47 %

0 - 0.5 sec RBF 70 % 58 %

0.5 - 1 sec '' 66 % 46 %

0 - 2 sec '' 60 % 50 %

After grasp action started, it becomes rhythmic and 
automatic, so it may be difficult to classify in those 
stages.
 FOCUS on 0-1 sec.

76 %
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Mathematical models of the 
brain
 McCulloch & Pitts neuron
 Rosenblatt’s perceptron
 Multi-layer perceptron
 Hebbian learning
 Hodgkin-Huxley model
 Recurrent neural networks
 Hopfield network



McCulloch and Pitts neurons

 McCulloch and Pitts (1943) assumptions:
 They are binary devices (Vi = [0,1])
 Each neuron has a fixed threshold, theta
 The neuron receives inputs from excitatory 

synapses, all having identical weights.
 Inhibitory inputs have an absolute veto power 

over any excitatory inputs.
 At each time step the neurons are 

simultaneously (synchronously) updated by 
summing the weighted excitatory inputs and 
setting the output (Vi) to 1 iff the sum is greater 
than or equal to the threshold AND if the neuron 
receives no inhibitory input. 



McCulloch and Pitts neurons



McCulloch and Pitts neurons

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html

Quiz - NAND gate



Rosenblatt’s simple perceptron

 The weights and thresholds 
were not all identical.

 Weights can be positive or 
negative.

 There is no absolute 
inhibitory synapse.

 Although the neurons were 
still two-state, the output 
function f(u) goes from [-
1,1], not [0,1].

 Most importantly, there was 
a learning rule. 

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html

I



Learning with the perceptron

 T = {(x1, y1), ... (xn, yn)} is a training set of n 
pairs of input xi and desired output yi

 To learn the correct weights w:
 Initialize w randomly
 For each sample j do:

 Calculate the actual output y’j = wxj

 Adapt the weights wk’ = wk + α(yj-yj’)xjk   for each wk

 Repeat until the error is sufficiently small



 

The Perceptron

It obeyed the following rule:

If the sum of the weighted inputs exceeds a 
threshold, output 1, else output -1.

output

in
pu

ts

w
ei

gh
ts

sum

Σxi wi

*
Frank Rosenblatt (1962).  Principles of Neurodynamics, Spartan, 
New York, NY.

Subsequent progress was inspired by the invention of learning rules inspired by 
ideas from neuroscience…

Rosenblatt’s Perceptron could automatically learn to categorise or classify input 
vectors into types.

   1 if Σ inputi * weighti > threshold

  -1 if Σ inputi * weighti < threshold

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

Linear neurons

• The neuron has a real-
valued output which is a 
weighted sum of its inputs

• The aim of learning is to 
minimize the discrepancy 
between the desired output and 
the actual output
– How de we measure the 

discrepancies?
– Do we update the weights 

after every training case?
– Why don’t we solve it 

analytically?

xwT
i

i
i xwy  ˆ

Neuron’s estimate of 
the desired output

input
vector

weight
vector

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

A motivating example

• Each day you get lunch at the cafeteria.
– Your diet consists of fish, chips, and beer.

– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure out the 

price of each portion.

• Each meal price gives a linear constraint on the 
prices of the portions:

beerbeerchipschipsfishfish wxwxwxprice 
https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

Two ways to solve the equations

• The obvious approach is just to solve a set of 
simultaneous linear equations, one per meal.

• But we want a method that could be implemented in a 
neural network.

• The prices of the portions are like the weights in of a 
linear neuron.

• We will start with guesses for the weights and then 
adjust the guesses to give a better fit to the prices 
given by the cashier.

)( ,, beerchipsfish wwww

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

The cashier’s brain
Price of meal = 850

portions 
of fish

portions 
of chips

portions 
of beer

 150         50              100

    2                  5               3                
   

 Linear    
 neuron

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

• Residual error = 350
• The learning rule is:

• With a learning rate      of 
1/35, the weight changes are 
+20, +50, +30

• This gives new weights of 
70, 100, 80

• Notice that the weight for 
chips got worse!

A model of the cashier’s brain
with arbitrary initial weights

)ˆ( yyxw ii  

Price of meal = 500

portions of 
fish

portions of 
chips

portions of 
beer

 50         50              50

    2                  5               3                
   



https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt
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