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“ Nervous system and brain
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Today

Studying brain cont'd
Computational models of neurons

Representation and integration of
sensorimotor information

J Guest lecture



Studying the brain: methods of inquiry

Name of method

Selective lesioning

Procedure

Studying the behavioral consequences of planned
and selective lesioning (surgically removing or
damaging a structure in the brain)

Notes

Only used in animal studies

Single-cel recordings

Studying the activity of single neurons, by probing them
with small microelectrodes to discover what stimulus or
behavior triggers the cel's activity

Only used in animal studies

Post mortemn dissection

Examining patient's brain for lesions (damaged areas)
after death

Behavioral conseguences must have been
studied prior to the death of the patient

Exploratory neurosurgery

Examining patient's brain by electrically stimulating
certain areas of the exposed brain

Event-related potentials (ERPs)

Recording the electrical activity of the brain at the scalp,
using electroencephalograms (EEGs), as it occurs in
response to a stimulus or preceding a motor response
(‘event-related’)

Gives precise information on the timing of the
brain activity, but less precise information on the
location (since the recording occurs at the scalp
only)

Computerized axial tomography
(CAT or CT)

Mapping the brain using X-ray technique

Used to scan the brain for large structural
abnormalities

Positron emission tomography

(PET)

Measuring brain activity using a radioactive tracer mixed
with glucose; active neurons require the most glucose
and will be most radioactive

Gives precise information on the location of the
brain activity, but less precise information on the
timing (since glucose consumption is a relatively
slow process)

Functional magnetic resonance
imaging (MRI)

Measuring brain activity by recording magnetic changes
resulting from oxygen consumption

Gives precise termnporal and spatial information; is
relatively expensive

Transcranial magnetic stimulation
(TMS)

Examining the consequences of (temporary) disruptions
of normal brain functioning caused by magnetic
stimulation of small areas

Used to study cognitive functioning

Magnetoencephalography (MEG)

Localizing brain activity by measuring magnetic
changes

Precise method used in surgical applications,
alongside electrical stimulation of the exposed
brain



Language

® Much information comes from
observations of patients with
brain damage.. Rumor,
penetrating head wound,
rupture of blood vessels.

" Aphasia: language deficits
caused by brain damage.

" 1861, Paul Broca, post-mortem
dissection, found damage in an
area of the left hemisphere
above the lateral fissure in
frontal lobe. Expressive
aphasia. Broca's area involved
in speech production.

Central fissure
Primary motor area Primary somatosensony area

Lateral fissure Primary visual
Primary Wernicke's area

auditory area area

- Front of brain

“ 1874, Carl Wernicke, left
hemisphere, temporal lobe,
receptive aphasia. Wernicke's
area. Unable to comprehend
words.



Language

Wernicke-Geschwind model: Broca's area
stores articulatory codes. Wernicke's area
auditory codes and meanings of words

Damage limited to Broca's area: speech production

Damage to Wernicke's area: all aspects of language
comprehension

Damage to angular gyrus: cannot read, but can speak or
comprehend spoken.

Damage in auditory area: read and speak but cannot
comprehend



Split-brain research

Epilepsy patients,
seizure starting in
one hemisphere may
trigger massive
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Split-brain research

Roger Sperry, Nobel Prize in 1981.

'nut’ was not transferred. When questioned, seems unaware of
what his left hand is doing.

10 seconds, otherwise eye moves and info goes to both sides.
If blindfolded, some object is placed on left hand, can use.
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a) A split-brain patient correctly retrieves
an object by touch with the left hand
when its name is flashed to the right
hemisphere, but he cannot name the
object or describe what he has done.
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b) The word ‘hatband’ is flashed so that
‘hat" goes to the right cerebral hemi-
sphere and ‘band’ goes to the left
hemisphere. The patient reports that
he sees the word ‘band’ but has no
idea what kind of band.
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<) A list of common objects (including
‘book’ and ‘cup”) is initially shown
to both hemispheres. One word
from the list ("book” is then
projected to the right hemisphere.
When given the command to do so,
the left hand begins writing the word
‘book’, but when questioned, the
patient does not know what his left
hand has written and guesses ‘cup”.



Studying the brain: methods of inquiry

Functional magnetic resonance Measuring brain activity by recording magnetic changes Gives precise temporal and spatial information; is
imaging (MMRI) resulting from oxygen consumption relatively expensive

BOLD

* Blood Oxygenation Level Dependent (BOLD) signal
||u.i||u-.-. t measure of neural activity
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Humanoid Brain Science Erhan Oztop, Emre Ugur, Yu Shimizu,
https://www.slideshare.net/ricksw78/fmri-presentation Hiroshi Imamizu, Humanoid Robotics and Neuroscience: Science,

Engineering and Society, 29
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Brain activity in use of
anthropomorphically
similar or dissimilar
tools/agents

with
Erhan Oztop
Hiroshi Imamizu




Tool use representation in
body-schema?

Neural representations of control of
external agents and motor learning
mechanisms of new tools.

Robots anthropomorphically similar
to human body became part of our
body schema

Whereas non-anthropomorphic
robots induce internal model
formation in other parts of the brain.

Expect differences in fMRI
activation.




Anthropomorphic tools
fMRI experiment




Anthropomorphic tools
fMRI experiment

X8
AN-EXE AN-OBS NAN-EXE NAN-OBS
Anthropomorphic Anthropomorphic Non-Anthropomorphic Non-Anthropomorphic
Hand Control = Hand Control = Arm Control T Arm Control
Execution =k Observation a=e Execution e Observation
48 sec 48 sec 48 sec 48 sec

Figure 7. The experimental paradigm. Anthropomorphic and non-anthropomorphic control corresponds to hand and
arm control, respectively. In the visual blocks, the subjects do not move, but watch a recording of the previous execution
block including the robot movements.




Anthropomorphic (AN, hand) vs
Non-anthropomorphic (NAN, arm)

Question: What are the mechanism behind
control and learning?

Hypothesis: AN and NAN are represented in
different regions

- AN: becomes part of body schema — parietal
cortex

<4 NAN: external model — cerebellum

Which control conditions should be kept
fixed?



Significant difference in performance
between hand and arm control?

The t-test assesses

whether the means of |
two groups are
statistically different
from each other.

Performance From 2 executions?

distributions of |
4 Green: Robot control 2000 executions

2 Blue: Hand control Number of sample
counts!



Significant difference in performance
between hand and arm control?
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relative to the spread or
variability of their scores.



Significant difference in performance
between hand and arm control?

“ t value boils down difference between group means
all of your sample variability of groups
data down to one
value, the t-value
- means, variances,

number of samples

“ Sign matters?

“ look it up in a table
of significance




Significant difference in performance
between hand and arm control?
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Significant difference in performance
between hand and arm control?

. Cr|t|Ca| Values Probability less than the critical value (tj-q,u)

for t-test v .99 0.95 ©0.975 0.99 0.995 0.999
1. 3.078 6.314 12.706 31.821 63.657 318.313
2. 1.886 2.920 4.303 6.965 9.925 22.327
3. 1.638 2.353 3.182 4.541 5.841 10.215
4. 1.533 2.132 2.776 3.747 4.604 7.173
5. 1.476 2.015 2.571 3.365 4.032 5.893
6. 1.440 1.943 2.447 3.143 3.707 5.208
7. 1.415 1.895 2.365 2.998 3.499 4.782
8. 1.397 1.860 2.306 2.896 3.355 4.499
9. 1.383 1.833 2.262 2.821 3.250 4.296
10. 1.372 1.812 2.228 2.764 3.169 4.143
11. 1.363 1.796 2.201 2.718 3.106 4.024
12. 1.356 1.782 2.179 2.681 3.055 3.929
13. 1.350 1.771 2.160 2.650 3.012 3.852
14. 1.345 1.761 2.145 2.624 2.977 3.787
15. 1.341 1.753 2.131 2.602 2.947 3.733
16. 1.337 1.746 2.120 2.583 2.921 3.686
17. 1.333  1.740 2.110 2.567 2.898 3.646
18. 1.330  1.734 2.101 2.552 2.878 3.610
19. 1.328 1.729 2.093 2.539 2.861 3.579
20. 1.325 1.725 2.086 2.528 2.845 3.552



Anthropomorphic tools fMRI results

AN > NAN NAN > AN

T-statistics were used for comparison of the

estimated parameters of AN=(AN-EXE - AN-OBS) and NAN=(NAN-EXE - NAN-OBS). Two
contrasts of AN -NAN and NAN - AN then yielded a t-value for each voxel. A threshold of P<
0.005 was used in obtaining the activation maps shown in this chapter.



Anthropomorphic tools
fMRI results

High prefrontal activation in the NAN-AN contrast indicates task
difficulty in the NAN condition.

NAN condition engaged the angular gyrus, which is involved in
detection of mismatch between intended and actual movement
leading to a loss of “action ownership” (agency)

Superior parietal regions are involved in programming the
movement according to extrinsic spatial information . The activation in
this region suggests that the subject controlled the robot fingers as if
they were the subject’s own fingers, thereby supporting the hypothesis
that the hand robot was incorporated into the body schema

The occipital activity in the AN-NAN contrasts may reflect the
necessary fine control around the target points, which relies on
detailed visual information




Studying the brain: methods of inquiry

Transcranial magnetic stimulation Examining the consequences of (temporary) disruptions Used to study cognitive functioning
(TMS) of normal brain functioning caused by magnetic
stimulation of small areas

Fig. 2. Localization of brain sites for TMS. A three dimensional rendering of one
subject’s structural MRI in Brainsight, illustrating the cortical sites chosen for stim-
ulation, as indicated by the white dots: (1) the anterior intraparietal sulcus, alP5,
site was located at the junction of the anterior intraparietal sulcus, (IPS, solid line),
and the postcentral sulcus (PostCS, dashed line); (2) the lateral occipital, LO, site was
near the junction of the inferior temporal sulcus (ITS, fine-dashed line) and lateral
occipital sulcus (LOS, coarse-dashed line). Area MT+ lies at the junction of the two
sulci (Dumoulin et al., 2000) and intersubject comparisons of MT+ and LO foci from
an fMRI study (data provided by Tutis Vilis; see also Large, Aldcroft, & Vilis, 2005,

wikipedia

Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach NR Cohen,
ES Cross, E Tunik, ST Grafton, JC Culham - Neuropsychologia, 2009


http://www.sciencedirect.com/science/article/pii/S0028393208005022
https://scholar.google.at/citations?user=ZZYXR-IAAAAJ&hl=en&oi=sra
https://scholar.google.at/citations?user=wo9cdXgAAAAJ&hl=en&oi=sra
https://scholar.google.at/citations?user=7yJze9oAAAAJ&hl=en&oi=sra
https://scholar.google.at/citations?user=PnssgPwAAAAJ&hl=en&oi=sra

Studying the brain: methods of inquiry

Microstimulation
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< the interaction between electric
current and the brain.

< electricity via a thin probe to the
exposed cerebral cortex of a dog
without anesthesia.

< Identified the brain's "motor strip",
a vertical strip of brain tissue on
the cerebrum in the back of the
frontal lobe

LOWER
SPACE

Complex movements evoked by microstimulation of precentral cortex MSA Graziano, CSR
Taylor, T Moore - Neuron, 2002 - Elsevier


http://www.sciencedirect.com/science/article/pii/S0896627302006980

Studying the brain: methods of inquiry

Magnetoencephalography (MEG) Localizing brain activity by measuring magnetic Precise method used in surgical applications,
changes alongside electrical stimulation of the exposed
brain
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http://web.mit.edu/kitmitmeg/whatis.html

E. Ugur, Y. Shimizu, E. Oztop, and H. Imamizu, Reconstruction of Grasp Posture
from MEG Brain Activity, The 34th Annual Meeting of the Japan Neuroscience
Society, Yokohama, Japan, 2011.




Results on grasp
decoding using MEG

In collaboration with
Yu Shimizu
Erhan Oztop

Hiroshi Imamizu



Grasp decoding using MEG

We aim at both

- decoding the grasp type (power or precision), and

< reconstructing the aperture size based on MEG
signals



Experimental Setup

20 sec. 10 sec. 3 sec. 10 sec. 3 sec.
Long rest —» Calibrate . Ge’; rgady for 1, Precision/Power —» Shprt_rest
; precision/power blinking

A

x5

fMRI compatible data glove gets real joint angles

Experiment details:
4 1st and 2nd sessions: 5x10 blocks with usual hand orientation
4 3rd session: 5x10 blocks with rotated hand orientation

200 Hz: 2000 data points in each block
Only axial sensors are used



Experimental Setup

Powér gra_sp Precisi_on gfasp

“ Record joint angles using data glove

“ Compute aperture size from joint ang|
- Power-grasp: mean(3,6,9,12)
- Precision-grasp: mean (3,6)




Reconstruct aperture size

MEG signal trajectory for some duration

1. ch.
2. ch.

AR

[ P

For each channel
400 ms 100 ms.

.L,..'-.b-.}-r-l

1 }
T v

10 points
per channel @

Y

Grasp aperture or any joint angle

Sparse Linear Regression
(Sato et al. (2001) etc.)
# of features = C x 10

where C is # of channels




Aperture reconstruction with
power + precision combined

Aperture size

Aperture size
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Two step reconstruction

Step 1: Make classification

- Decide whether power or precision grasp in the
beginning

Step 2: Regress for each grasp type

separately

- Reconstruct based on its predicted grasp class



Step 1: Prediction of grasp
type

1. ch.
2. ch.

MEG signal trajectory for some duration

w Predict

{
ﬁ

POWER GRASP
or
PRECISION GRASP



Step 1: Prediction of grasp
type

Features that represent statistics of
MEG signal trajectory

1 ch (Mean, std. dev., coherence) in freq. band. X-Y
ean, std. dev., coherence) in freq. band. Y-
(M td. d h )in f band. Y-Z
2 ch (Mean, std. dev., coherence) in freq. band. X-Y ClaSSify
(Mean, std. dev., coherence) in freq. band. Y-Z POWER GRASP
or
PRECISION GRASP
119. ch (Mean, std. dev., coherence) in freq. band. X-Y
. CNh. r
(Mean, std. dev., coherence) in freq. band. Y-Z 54l ¢
06 o © z C; o
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Train SVM o e mT ool
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- Feature number: (3 x 2 x 119) ap e Te0 T e e
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081 oogooooooo




Classification Results

Duration SVM kernel Same Different
session sessions
Same hand
orientation
0-10 sec RBF 78 % 62 %
Linear 68 %

Q RBF 76 % @

Different
sessions

Different hand
orientation

automatic, so it may be difficult to classify if

stages.
- FOCUS on 0-1 sec.
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Mathematical models of the
brain

McCulloch & Pitts neuron
Rosenblatt’'s perceptron
Multi-layer perceptron
-Hebbian learning
Hodgkin-Huxley model
Recurrent neural networks
-Hopfield network




McCulloch and Pitts neurons

McCulloch and Pitts (1943) assumptions:
< They are binary devices (Vi =[0,1])

4 Each neuron has a fixed threshold, theta

< The neuron receives inputs from excitatory -
synapses, all having identical weights. |

< Inhibitory inputs have an absolute veto power
over any excitatory inputs.

< At each time step the neurons are
simultaneously (synchronously) updated by
summing the weighted excitatory inputs and
setting the output (Vi) to 1 iff the sum is greater
than or equal to the threshold AND if the neuron
receives no inhibitory input.



McCulloch and Pitts neurons

A Logical Calculus of Ideas Immanent in Nervous Activity

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY  ° —y 3%

WAaRREN S. McCuLrocH and WaLTer H. Prrrs

Because of the “all-or-none” character of nervous activity,
neural events and the relations among them can be treated by
means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of
more complicated logical means for nets containing circles; and %_
that for any logical expression satisfying certain conditions, one 9

can find a net behaving in the fashion it describes. It is shown
that many particular choices among possible neurophysiological

assumptions are equivalent, in the sense that for every net be- Figure 1a N,(t) .= . Ni(t - 1)

having under one assumption, there exists another net which Figure 1b Ni(t) . = . Nu(t = 1) v Na(t = 1)

behaves under the other and gives the same results, although Figure 1c  Ni(f) . = . Ni(t = 1) . Na(t = 1)

perhaps not in the same time. Various applications of the calculus Figure 1d Nu(t) . = . Nt — 1) . ~ Naft = 1)

are discussed. Figure le Ni(t) := Nt = 1) . v. Nalt = 3) . ~ Noft = 2)
Ni(8) e = Nolt —2) . Nolt = 1)

i~ Nt = 1) Na(t = 1) Y Ns(t = 1) v Not = 1) -
Na(t = 1) Nu(t = 1)

i~ N =2)  Not =2) VNIt =2) . v. Nyt -2).
Na(t =2} . Nut - 2)

Figure 1f  N.(1) :

WAOK



McCulloch and Pitts neurons
W

excitatory input d

output

inhibitory input

Quiz - NAND gate

TRUTH TABLE

INPUTS OuUTPUT
W x PYE =
0 0 0] 0
0 0 1 1
0 1 0] 1
0] 1 1 1
1 0 o] 1
1 O 1 1
1 1 0] 1
1 1 1 1

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html



Rosenblatt’s simple perceptron

The weights and thresholds
were not all identical.

Weights can be positive or
negative.

There is no absolute I 1, SR
iInhibitory synapse.
Although the neurons were

still two-state, the output Vi = f(u;) = { v u‘: <
function f(u) goes from [- : j 2 U
1,1], not [0,1].
Most importantly, there was |
a learning rule. Uy = Z Wi l;+4,

3

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html



Learning with the perceptron

T ={(X4, Y1), ..- (Xn, Y¥n)} IS @ training set of n
pairs of input x;and desired output y;

To learn the correct weights w:
< Initialize w randomly

- For each sample j do:
Calculate the actual output y'; = wx
Adapt the weights w,’ = w, + a(y-y; )xix for each wy

- Repeat until the error is sufficiently small



The Perceptron

Frank Rosenblatt (1962). Principles of Neurodynamics, Spartan,
New York, NY.

Subsequent progress was inspired by the invention of learning rules inspired by
ideas from neuroscience...

Rosenblatt’s Perceptron could automatically learn to categorise or classify input
vectors into types.

— It obeyed the following rule:
IXxw, If the sum of the weighted inputs exceeds a
— threshold, output 1, else output -1.
s *§0 sum  output 1 1if X input, .weight, > threshold
S = -1 1f 2 input, . weight, < threshold

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



[Linear neurons

* The neuron has a real-
valued output which 1s a

weighted sum of its inputs
weight
vector

l
Y = Z wx; =w' x
t '
mput

Neuron’s estimate of vector
the desired output

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

* The aim of learning 1s to

minimize the discrepancy
between the desired output and
the actual output

— How de we measure the
discrepancies?

— Do we update the weights
after every training case?

— Why don’t we solve it
analytically?



A motivating example

* Each day you get lunch at the cafeteria.
— Your diet consists of fish, chips, and beer.

— You get several portions of each

* The cashier only tells you the total price of the meal

— After several days, you should be able to figure out the
price of each portion.

* Each meal price gives a linear constraint on the
prices of the portions:

price=x fish W fish T Xchips Wehips T Xbeer Wheer

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



Two ways to solve the equations

* The obvious approach is just to solve a set of
simultaneous linear equations, one per meal.

* But we want a method that could be implemented in a
neural network.

* The prices of the portions are like the weights in of a
linear neuron.

W= (w fish ,Wechips ,Wbeer)

* We will start with guesses for the weights and then
adjust the guesses to give a better fit to the prices
given by the cashier.

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



The cashier’s brain

Price of meal = 850

Linear
neuron

150 50 180
2 5 3
portions portions portions
of fish of chips of beer

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



A model of the cashier’s brain
with arbitrary initial weights

Price of meal = 500

50 50

2 5 3

portions of portions of portions of

fish chips beer

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

Residual error = 350

The learning rule 1s:
Aw; =€ x; (y—¥)

With a learning rate £ of
1/35, the weight changes are
+20, +50, +30

This gives new weights of
70, 100, 80

Notice that the weight for
chips got worse!
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