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Rosenblatt’s simple perceptron

The weights and thresholds
were not all identical.

Weights can be positive or
negative.

There is no absolute I 1, SR
iInhibitory synapse.
Although the neurons were

still two-state, the output Vi = f(u;) = { v u‘: <
function f(u) goes from [- : j 2 U
1,1], not [0,1].
Most importantly, there was |
a learning rule. Uy = Z Wi l;+4,

3

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html



Learning with the perceptron

T ={(X4, Y1), ..- (Xn, Y¥n)} IS @ training set of n
pairs of input x;and desired output y;

To learn the correct weights w:
- Initialize w randomly

- For each sample j do:
Calculate the actual output y'; = wx
Adapt the weights w,’ = w, + a(y-y; )xix for each wy

- Repeat until the error is sufficiently small



Other considerations

Bias term: wy 1
. . " Fix)=
Adding nonlinearity: 1

< Logistic function
- Hyperbolic tangent

g FF

J (x) = tanh( Sx)

Very limited!




Multilayer perceptron
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https://www.researchgate.net/profile/Junita_Mohamad-Saleh/publication/25707 1174 /figure/fig3/AS:297526545666050@ 14479472644 31/Figure-5-A-schematic-diagram-of-a-
Multi-Layer-Perceptron-MLP-neural-network.png



Deep Neural Networks
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Deep Neural Networks

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +Rell Connected Connected
1 1
dog (0.01)
i cat (0.04)
boat (0.94)
B bird (0.02)
'rlﬁl 2 *,ﬂ'
-
e

Full GoogLeNet
architecture

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 1 May 2, 2017



Deep Neural Networks

/ “Revolution of Depth”

152 layers

\ 16.4
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[ P2 layers I 19 Iayers
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Very limited!




Recurrent neural networks

input
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Recurrent neural networks
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Hebb’s association principle

Donald Hebb (1949)
< Cell A- B simultenous excitation: growth / metabolic change
Experiments (1966, 1973), confirming Hebb’s insight.
The simple slogan to describe LTP is:

“Neurons that fire together, wire together.

Neurons that fire out of sync, fail to link.”

< The neural network stores and retrieves associations, which are
learned as synaptic connection.
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Hebb’s association principle and
Human Learning

“ Learning is to associate two events with each other.

“ The main brain organ for learning/explicit memory is
the hippocampus (of the limbic system) using
Hebbian type.

“ Human memory thus works in an associative or
content-addressable way.

Amyadala
Hippocampus



Hopfield Networks

A Hopfield Network is a model of Ry e Ulgliblon
associative memory. It is based on ‘ ’
Hebbian learning but uses binary
neurons.

The associative memory problem is e | _ e

summarized as follows: Galh weight mekrix 2 ailis

0 Store a set of p patterns P, in such a way that
when presented with a new pattern Q, , the

network responds by producing whichever
one of the stored patterns most closely : \

resem - . 5
esembles Q input value input value
Oor1

An associative memory can be thought
as a set of attractors, each with its own
basin of attraction.




Hopfield Networks

*The dynamics of the system carries a
starting points into one of the attractors as
shown in the next figure.
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Spiking Neural Networks

Increasing the level of realism

Neuronal and synaptic state + concept of time.

Neurons in the SNN do not fire at each
propagation cycle, but rather fire only when a
membrane potential reaches a specific value.

When a neuron fires, it generates a signal
which travels to other neurons which, in turn,
increase/decrease their potentials.

The current activation level (modeled as some
differential equation) is normally considered to
be the neuron’'s state, with incoming spikes
pushing this value higher, and then either
firing or decaying over time
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Hodgkin-Huxley Model

Mathematical model that describes how action potentials in
neurons are initiated and propagated

Alan Lloyd Hodgkin and Andrew Fielding Huxley described the
model in 1952 to explain the ionic mechanisms underlying the
initiation and propagation of action potentials in the squid giant
axon

Terminology:

< Channel: Flow of ions through membrane proteins

Concentration gradient: High sodium concentration outside the membrane
Reversal potential: Reduction of the gradient to zero

Electrical gradient: By sodium flow

Rest potential: -65mV

< Threshold: At around -50mV, sodium channels open up

a
a
a
a



Hodgkin-Huxley Model
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GENESIS Simulation System

GEneral NEural Simulation System
Models channels, cells and networks
http://www.genesis-sim.org

Creating a realistic model of a neuron:

< Set the passive membrane parameters (membrane resistance
and capacitance, axial resistance, and membrane resting
potential for each of the compartments.

- Populate the compartments with ionic conductances
("channels"), or other related neural elements.

< Link compartments for the soma and dendrites together with
appropriate messages to make a cell.


http://www.genesis-sim.org/

GENESIS Simulation System
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NEURON Simulation Environment

In NEURON, the neuron's geometry is
described in terms of cylindrical sections

Channel properties are set within sections

You can add “cables”, and produce
hierarchical structures

Over a thousand papers published
Hines, M. L. and Carnevale, N. T., 2001.

http://www.neuron.yale.edu


http://www.neuron.yale.edu/
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Overview

Processing of sensory information in the
brain:

- Motor and sensory areas

- Visual pathways

Overview of senses



Primary motor and sensory areas

Precentral
sulcus Postcentral

P

Precentral
gyrus



Organization of sensory and
motor cortices




Nervous system

CNS Cerebrum 4—_ /T8
Cerebellum -

l_hh-‘-"'“—" I o
Brainstem ———— 11
Spinal cord - >

Thoracoabdominal
nerves:

Brachial plexus

- Subcostal
S - llichypogastric
Musculocutaneous - — lliginguinal
Radial - _ Lateral cutaneous
of thigh

-Lumbar plexus

MNenves:

- Obturator

- Femoral
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- Sacral plexus

Merves:

- Common peroneal
- Deep peroneal
- Superficial peroneal

Central Brain
~  nervous |:
SELE _l_ Spinal cord

Peripheral ™  Somatic system

~—  nervous ——
system

Autonomic system

Somatic system: to/from the sense receptors, muscles,
and surface of body — voluntary motor functions

* Sensory nerves: transmit information about

external stimulation from skin/muscles/joints, e.g.

pain, pressure, temperature

* Motor nerves: from CNS to muscles
Autonomic: involuntary control system. internal organs
and glands for automatic and involuntary actions such
as beating of the heart. Respiration, heart rate,
digestion



Cranial nerves
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Eye and retina
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Local binary patterns
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Illumination invariance




Visual pathways

Temporal

Temporal o

Pulvinar nucleus

Lateral geniculate
nucleus

Superior colliculus
Optic radiation

Primary visual cortex



Senses

How many senses do we have?

- Five traditional senses: sight, touch, audition,
taste, and smell

- Proprioceptive senses:
<. heat and cold, gravitation, acceleration, pain..

- Sub-senses: motion, colour, form, brightness,
texture, and contrast of objects.

“Sensation is the body's detection of external or internal stimulation.
Perception utilizes the brain to make sense of the stimulation.”
wikipedia












See the triangle?

N
CINe

Adapted from Michael E. Goldberg, M.D.



See the white bar?

O O
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O O

Adapted from Michael E. Goldberg, M.D.



Which small square is darker?

Adapted from Michael E. Goldberg, M.D.



So

Your visual system does not measure and
report the exact physical nature of the
visual world.

It collects some data, and makes guesses.

Optical illusions take advantage of the
guessing strategies.

Adapted from Michael E. Goldberg, M.D.



Roughly 40% of cerebral cortex is involved
In vision

Adapted from Michael E. Goldberg, M.D.



Two cortical visual streams subserve two
different visual functions.

Dorsal
(parietal)
pathway MT

Where/how?

V2

/

Ventral
(temporal)
pathway

What

Adapted from Michael E. Goldberg, M.D.



Orientation tuning in a V1 simple cell
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Adapted from Michael E. Goldberg, M.D.



Orientation tuning in a V1 simple cell
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V1 complex cells are sensitive to
orientation of stimuli

Adapted from Michael E. Goldberg, M.D.



Complex cells can be constructed from an
array of similarly oriented simple cells
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Adapted from Michael E. Goldberg, M.D.



V1 complex cells are sensitive to
orientation of stimuli
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Disparity selectivity in a V1 neuron
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Motion selectivity in a V1 neuron
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Two cortical visual streams subserve two
different visual functions.

Dorsal
(parietal)
pathway MT

Where/how?

V2

/

Ventral
(temporal)
pathway

What

Adapted from Michael E. Goldberg, M.D.



Patients demonstrate this functional
segregation

Patients with V1 lesions generally have total
visual field deficits in the affected field.

Patients with dorsal stream lesions have
deficits in sensory location (and attention),
motion perception, color perception, and the
performance of visually-guided movements.

Patients with ventral stream lesions have
visual agnosia, the inability to associate a
visual stimulus with a name or function.

Adapted from Michael E. Goldberg, M.D.



After V2, different functions are performed by
anatomically different areas:

The dorsal stream provides vision for action -"where
and how”

Adapted from Michael E. Goldberg, M.D.



After V2, different functions are performed by
anatomically different areas:

The ventral stream provides vision for object
identification

V1
Adapted from Michael E. Goldberg, M.D.



After V2, different functions are performed
by anatomically different areas:
But the areas are interconnected

Vi
Adapted from Michael E. Goldberg, M.D.



Within the dorsal stream there is
further functional segregation -

FL
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MT is specialized for depth
and motion.

LIP is specialized for attention
in far space.

MIP is specialized for
providing visual. information
for reaching.

AIP is specialized for
providing visual. information
for grasping.

VIP is specialized for
providing visual. information
for mouth and head
movements.

Sulcus
CENTORA {
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An example of a dorsal stream function

When you reach for something, your grip
opens to accommodate the size of your
target.

Patients with dorsal stream lesions can’t
do this.

They can, however, describe the size of
the object.

Adapted from Michael E. Goldberg, M.D.



A patient with a dorsal stream
lesion cannot orient her hand with
respect to a slot

Adapted from Michael E. Goldberg, M.D.



Neurons in AIP specialized for grip

Reach for
the object

Look at the
object

Dorsal visual pathway is concerned with the aspect of form, orientation, and/or size perception that is relevant for the
visual control of movements.

Selectivity for the Shape, Size, and Orientation of Objects for Grasping in Neurons of Monkey Parietal Area AIP Akira Murata, Vittorio Gallese, Giuseppe Luppino,
Masakazu Kaseda, Hideo Sakata Journal of Neurophysiology Published 1 May 2000 Vol. 83 no. 5, 2580-2601



The inferior temporal lobe describes the
visual world for object recognition

Dorsal
(parietal)
pathway MT

Where/how?

V2

/

Ventral
(temporal)
pathway

What?

Adapted from Michael E. Goldberg, M.D.



A patient with a ventral stream lesion can move
her hand to a slot, but can’t match the position
or can’t report the orientation

Matching

'l .

@& (D

)4 vV

Control
@ <D Goodale, et al., (1991)
dapted from Michael E. Goldberg, M.D.
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Neurons in inferior temporal cortex are
selective for complex patterns like faces
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Adapted from Michael E. Goldberg, M.D.



The Fusiform Face Area (FFA)

Earaisher, McDermott, & Chun (1997)]

+ Responds during passive viewing of faces = objecls.

+ Cannot be explained in terms of
- differences in low-level features
- ditentional confounds
- bordinate - level categornzation of any stimulus class
- generalized response to anything animatehuman

Is selectively involved in perception of faces.

Adapted from Michael E. Goldberg, M.D.



Patients with inferior temporal lesions
have visual agnosia

Copy the drawing
Visuomotor function
Intact — but patient

can’t name the object

Draw an anchor. T
Patient cannot
conceptualize the
anchor

Adapted from Michael E. Goldberg, M.D.



Ventral stream patients

Cannot identify objects

But they can make appropriate visually-
guided movements.

The patient who could not set her grip can
still tell you which cylinder is thicker.

The patient who cannot tell you which
cylinder is thicker can set still her grip.

Adapted from Michael E. Goldberg, M.D.



Prosopagnosia “face blindness” is

the most dramatic ventral stream
deficit

Term first used by Bodamer, 1947

Inability to recognize familiar faces

Visual acuity is normal

Caused by lesion to right inferior temporal lobe

May be congenital (“developmental
prosopagnosia’)

Patients compensate by using other recognition
cues: clothing, gait, voice, efc.

Adapted from Michael E. Goldberg, M.D.
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