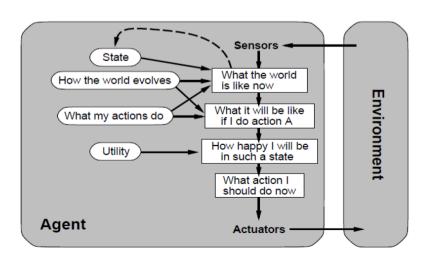
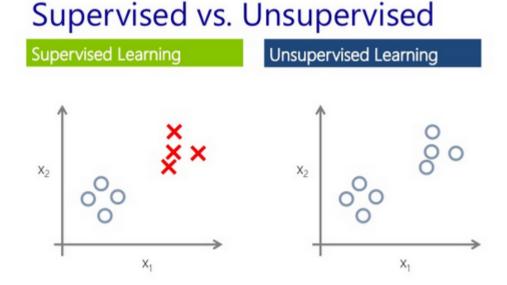
Learning from Examples

- Which component is to be improved?
 - A direct mapping from conditions on the current state to actions.
 - A means to infer relevant properties of the world from the percepts.
 - Information about the way the world evolves.
 - Utility information indicating the desirability of world states.
 - Action-value information indicating the desirability of actions.
 - Goals that describe classes of states whose achievement maximizes the agent's utility.



Learning from feedback

- What feedback is available to learn from
 - In unsupervised learning the agent learns patterns in the input even though no explicit feedback is supplied (e.g. clustering)
 - In supervised learning the agent observes some example input output pairs and learns a function that maps from input to output



In reinforcement learning the agent learns from a series of reinforcements rewards or punishments

Supervised Learning

The task of supervised learning is this:

Given a **training set** of N example input–output pairs

$$(x_1,y_1),(x_2,y_2),\ldots(x_N,y_N),$$

where each y_j was generated by an unknown function y = f(x), discover a function h that approximates the true function f.

Here x and y can be any value; they need not be numbers. The function h is a **hypothesis**. 1

- Output is discrete: Classification
- Output is continuous: Regression

Recall Notation

$$(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)$$
 training set

Where each y_j was generated by an unknown function $y = f(\mathbf{x})$

Discover a function h that best approximates the true function f

hypothesis

Loss Functions

```
Suppose the true prediction for input \mathbf{x} is f(\mathbf{x}) = y but the hypothesis gives h(\mathbf{x}) = \hat{y}
```

$$L(\mathbf{x}, y, \hat{y}) = Utility(\text{result of using } y \text{ given input } \mathbf{x})$$

- $Utility(\text{result of using } \hat{y} \text{ given input } \mathbf{x})$

Simplified version: $L(y, \hat{y})$

Absolute value loss:
$$L_1(y, \hat{y}) = |y - \hat{y}|$$

Squared error loss:
$$L_2(y,\hat{y}) = (y - \hat{y})^2$$

0/1 loss:
$$L_{0/1}(y,\hat{y}) = 0$$
 if $y = \hat{y}$, else 1

Generalization loss: expected loss over all possible examples Empirical loss: average loss over available examples

Univariate Linear Regression contd.

$$\mathbf{w} = \begin{bmatrix} w_0, w_1 \end{bmatrix} \qquad \text{weight vector}$$

$$h_{\mathbf{w}}(x) = w_1 x + w_0$$

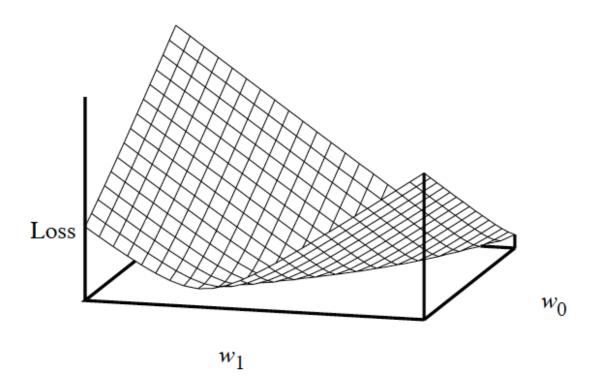
Find weight vector that minimizes empirical loss, e.g., L₂:

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j)) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

i.e., find w*such that

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} Loss(h_{\mathbf{w}})$$

Weight Space

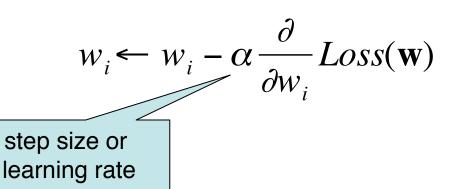


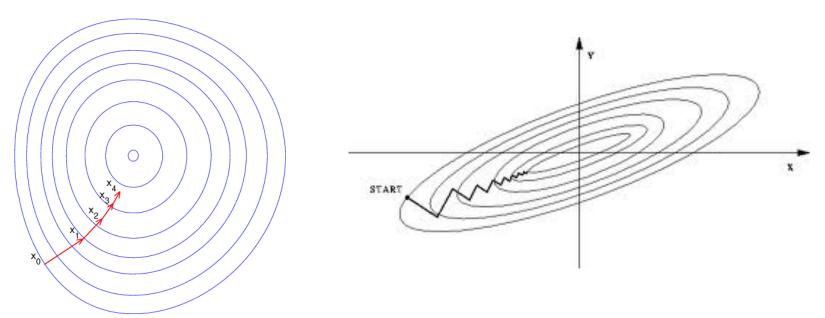
Finding w*

Find weights such that:

$$\frac{\partial}{\partial w_0} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0 \text{ and } \frac{\partial}{\partial w_1} \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2 = 0$$

Gradient Descent





Gradient Descent contd.

For one training example (x,y):

$$w_0 \leftarrow w_0 + \alpha(y - h_{\mathbf{w}}(x))$$
 and $w_1 \leftarrow w_1 + \alpha(y - h_{\mathbf{w}}(x))x$

For *N* training examples:

$$w_0 \leftarrow w_0 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j))$$
 and $w_1 \leftarrow w_1 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j))x_j$

batch gradient descent

stochastic gradient descent: take a step for one training example at a time

Perceptron Learning Rule

For a single sample (\mathbf{x}, y) :

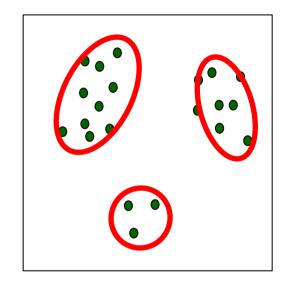
$$w_i \leftarrow w_i + \alpha (y - h_{\mathbf{w}}(\mathbf{x})) x_i$$

- If the output is correct, i.e., $y = h_w(x)$, then the weights don't change
- If y = 1 but $h_{\mathbf{w}}(\mathbf{x}) = 0$, then w_i is *increased* when x_i is positive and *decreased* when x_i is negative.
- If y = 0 but $h_{\mathbf{w}}(\mathbf{x}) = 1$, then w_i is decreased when x_i is positive and increased when x_i is negative.

Perceptron Convergence Theorem: For any data set that's linearly separable and any training procedure that continues to present each training example, the learning rule is guaranteed to find a solution in a finite number of steps.

Unsupervised learning

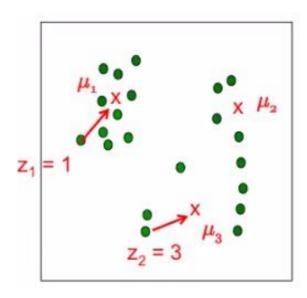
- Supervised learning
- Predict target value ("y") given features ("x")
- Unsupervised learning
- Understand patterns of data (just "x")
- Useful for many reasons
- Data mining ("explain")
- Representation (feature generation or selection)



- One example: clustering
- Describe data by discrete "groups" with some characteristics

K-Means Clustering

- A simple clustering algorithm
- Iterate between
 - Updating the assignment of data to clusters
 - Updating the cluster's summarization
- Suppose we have K clusters, c=1..K
- Represent clusters by locations ¹/_e
- Example i has features x_i
- Represent assignment of ith example z_i 2 1..K



K-Means Clustering

Iterate until convergence:

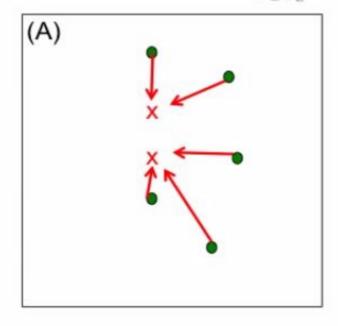
(A) For each datum, find the closest cluster

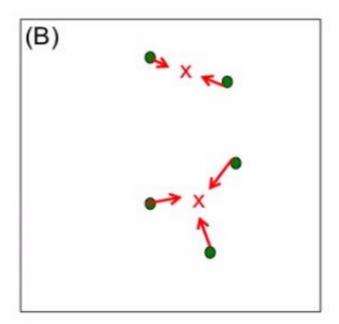
$$z_i = \arg\min_c \|x_i - \mu_c\|^2 \qquad \forall i$$

(B) Set each cluster to the mean of all assigned data:

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S_c} x_i$$

$$S_c = \{i : z_i = c\}, \ m_c = |S_c|$$





K-Means Clustering

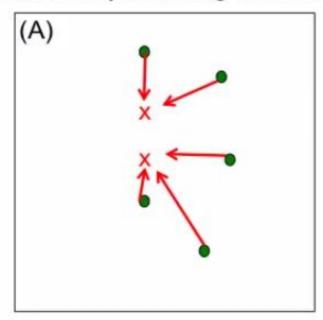
Optimizing the cost function:

$$C(\underline{z},\underline{\mu}) = \sum_{i} ||x_i - \mu_{z_i}||^2$$

Coordinate descent:

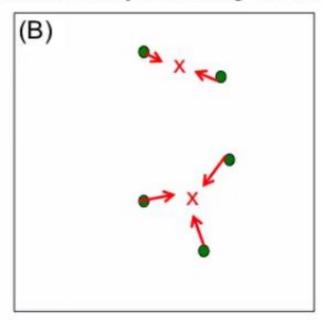
Over the cluster assignments:

Only one term in sum depends on z_i Minimized by selecting closest μ_c



Over the cluster centers:

Cluster c only depends on x_i with z_i=c Minimized by selecting the mean



K-Means clustering

- As with any descent method, beware of local minima
- · Algorithm behavior depends significantly on initalization

$$C(\underline{z},\underline{\mu}) = \sum_{i} ||x_i - \mu_{z_i}||^2$$

