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Mathematical models of the brain

● McCulloch & Pitts neuron
● Rosenblatt’s perceptron
● Multi-layer perceptron
● Hebbian learning
● Hodgkin-Huxley model
● Recurrent neural networks
● Hopfield network



McCulloch and Pitts neurons
● McCulloch and Pitts (1943) assumptions:

– They are binary devices (Vi = [0,1])

– Each neuron has a fixed threshold, theta

– The neuron receives inputs from excitatory synapses, 
all having identical weights.

– Inhibitory inputs have an absolute veto power over any 
excitatory inputs.

– At each time step the neurons are simultaneously 
(synchronously) updated by summing the weighted 
excitatory inputs and setting the output (Vi) to 1 iff the 
sum is greater than or equal to the threshold AND if the 
neuron receives no inhibitory input. 



McCulloch and Pitts neurons



McCulloch and Pitts neurons

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html

Quiz - NAND gate



Rosenblatt’s simple perceptron
● The weights and thresholds were 

not all identical.
● Weights can be positive or 

negative.
● There is no absolute inhibitory 

synapse.
● Although the neurons were still 

two-state, the output function f(u) 
goes from [-1,1], not [0,1].

● Most importantly, there was a 
learning rule. 

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html
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Learning with the perceptron

● T = {(x1, y1), ... (xn, yn)} is a training set of n pairs of 
input xi and desired output yi

● To learn the correct weights w:
 Initialize w randomly
 For each sample j do:

 Calculate the actual output y’j = wxj

 Adapt the weights wk’ = wk + α(yj-yj’)xjk   for each wk

 Repeat until the error is sufficiently small



 

The Perceptron

It obeyed the following rule:

If the sum of the weighted inputs exceeds a 
threshold, output 1, else output -1.
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Frank Rosenblatt (1962).  Principles of Neurodynamics, Spartan, New York

Subsequent progress was inspired by the invention of learning rules inspired by ideas from 
neuroscience…

Rosenblatt’s Perceptron could automatically learn to categorise or classify input vectors 
into types.

   1 if Σ inputi * weighti > threshold

  -1 if Σ inputi * weighti < threshold

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

Linear neurons

• The neuron has a real-valued 
output which is a weighted sum 
of its inputs

• The aim of learning is to minimize 
the discrepancy between the desired 
output and the actual output
– How de we measure the 

discrepancies?

– Do we update the weights after 
every training case?

– Why don’t we solve it 
analytically?
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https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

A motivating example

• Each day you get lunch at the cafeteria.
– Your diet consists of fish, chips, and beer.

– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure out the price of each portion.

• Each meal price gives a linear constraint on the prices of the portions:

beerbeerchipschipsfishfish wxwxwxprice 
https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

Two ways to solve the equations
• The obvious approach is just to solve a set of simultaneous linear 

equations, one per meal.

• But we want a method that could be implemented in a neural 
network.

• The prices of the portions are like the weights in of a linear neuron.

• We will start with guesses for the weights and then adjust the 
guesses to give a better fit to the prices given by the cashier.

)( ,, beerchipsfish wwww

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

The cashier’s brain
Price of meal = 850

portions of 
fish

portions of 
chips

portions of 
beer

 150         50              100

    2                  5               3                   

 Linear     
neuron

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



 

• Residual error = 350
• The learning rule is:

• With a learning rate      of 1/35, 
the weight changes are +20, +50, 
+30

• This gives new weights of 70, 
100, 80

• Notice that the weight for chips 
got worse!

A model of the cashier’s brain
with arbitrary initial weights

)ˆ( yyxw ii  

Price of meal = 500

portions of 
fish

portions of 
chips

portions of 
beer

 50         50              50

    2                  5               3                   



https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt



Rosenblatt’s simple perceptron
● The weights and thresholds were 

not all identical.
● Weights can be positive or 

negative.
● There is no absolute inhibitory 

synapse.
● Although the neurons were still 

two-state, the output function f(u) 
goes from [-1,1], not [0,1].

● Most importantly, there was a 
learning rule. 

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html
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Learning with the perceptron

● T = {(x1, y1), ... (xn, yn)} is a training set of n pairs of 
input xi and desired output yi

● To learn the correct weights w:
 Initialize w randomly
 For each sample j do:

 Calculate the actual output y’j = wxj

 Adapt the weights wk’ = wk + α(yj-yj’)xjk   for each wk

 Repeat until the error is sufficiently small



Other considerations

● Bias term: w0

● Adding nonlinearity:
 Logistic function
 Hyperbolic tangent 

Very limited!



Multilayer perceptron

https://www.researchgate.net/profile/Junita_Mohamad-Saleh/publication/257071174/figure/fig3/AS:297526545666050@1447947264431/Figure-5-A-schematic-diagram-of-a-Multi-Layer-
Perceptron-MLP-neural-network.png



Deep Neural Networks



Deep Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 1 May 2, 2017



Deep Neural Networks

0

Very limited!



Recurrent neural networks



Recurrent neural networks

Yamashita, Yuichi, and Jun Tani. "Emergence of functional hierarchy in a multiple timescale neural 
network model: a humanoid robot experiment." PLoS Comput Biol 4.11 (2008): e1000220.



Hebb’s association principle
● Donald Hebb (1949) Cell A – B simultenous excitation: growth / 

metabolic change. Experiments (1966, 1973), confirming Hebb’s insight.

● The simple slogan to describe LTP is: 

“Neurons that fire together, wire together. 

 Neurons that fire out of sync, fail to link.”

– The neural network stores and retrieves associations, which are 
learned as synaptic connection.



Hebb’s association principle and 
Human Learning

● Learning is to associate two events with each other.

● The main brain organ for learning/explicit memory is the 
hippocampus (of the limbic system) using Hebbian type.

● Human memory thus works in an associative or content-
addressable way.



Hopfield Networks
● A Hopfield Network is a model of associative 

memory. It is based on Hebbian learning but 
uses binary neurons. 

● The associative memory problem is summarized 
as follows:
– Store a set of p patterns Pi in such a way that when 

presented with a new pattern Qi , the network 
responds by producing whichever one of the stored 
patterns most closely resembles Qi .

● 0 or 1
● An associative memory can be thought as a set 

of attractors, each with its own basin of 
attraction. 



•The dynamics of the system carries a starting 
points into one of the attractors as shown in the 
next figure. 

Hopfield Networks



Hopfield Networks
● I

www.doc.ic.ac.uk/~ae/papers/Hopfield-networks-15.pdf



Spiking Neural Networks
● Increasing the level of realism 
● Neuronal and synaptic state + concept of time.
● Neurons in the SNN do not fire at each propagation cycle, 

but rather fire only when a membrane potential reaches a 
specific value. 

● When a neuron fires, it generates a signal which travels to 
other neurons which, in turn, increase/decrease their 
potentials.

● The current activation level (modeled as some differential 
equation) is normally considered to be the neuron's 
state, with incoming spikes pushing this value higher, 
and then either firing or decaying over time



Hodgkin-Huxley Model

● Mathematical model that describes how action potentials in neurons are initiated 
and propagated

● Alan Lloyd Hodgkin and Andrew Fielding Huxley described the model in 1952 to 
explain the ionic mechanisms underlying the initiation and propagation of action 
potentials in the squid giant axon

● Terminology:
 Channel: Flow of ions through membrane proteins
 Concentration gradient: High sodium concentration outside the membrane
 Reversal potential: Reduction of the gradient to zero
 Electrical gradient: By sodium flow
 Rest potential: -65mV
 Threshold: At around -50mV, sodium channels open up



Hodgkin-Huxley Model



GENESIS Simulation System
● GEneral NEural SImulation System
● Models channels, cells and networks
● http://www.genesis-sim.org
● Creating a realistic model of a neuron:

 Set the passive membrane parameters (membrane resistance and capacitance, 
axial resistance, and membrane resting potential for each of the compartments.

 Populate the compartments with ionic conductances ("channels"), or other 
related neural elements.

 Link compartments for the soma and dendrites together with appropriate 
messages to make a cell. 

http://www.genesis-sim.org/


GENESIS Simulation System



NEURON Simulation Environment

● In NEURON, the neuron's geometry is described in 
terms of cylindrical sections

● Channel properties are set within sections
● You can add “cables”, and produce hierarchical 

structures
● Over a thousand papers published
● Hines, M. L. and Carnevale, N. T., 2001.
● http://www.neuron.yale.edu

http://www.neuron.yale.edu/
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