
Mathematical models of the brain

Mathematical models of the brain

● McCulloch & Pitts neuron
● Rosenblatt’s perceptron
● Multi-layer perceptron
● Hebbian learning
● Hodgkin-Huxley model
● Recurrent neural networks
● Hopfield network

McCulloch and Pitts neurons
● McCulloch and Pitts (1943) assumptions:

– They are binary devices (Vi = [0,1])

– Each neuron has a fixed threshold, theta

– The neuron receives inputs from excitatory synapses,
all having identical weights.

– Inhibitory inputs have an absolute veto power over any
excitatory inputs.

– At each time step the neurons are simultaneously
(synchronously) updated by summing the weighted
excitatory inputs and setting the output (Vi) to 1 iff the
sum is greater than or equal to the threshold AND if the
neuron receives no inhibitory input.

McCulloch and Pitts neurons

McCulloch and Pitts neurons

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html

Quiz - NAND gate

Rosenblatt’s simple perceptron
● The weights and thresholds were

not all identical.
● Weights can be positive or

negative.
● There is no absolute inhibitory

synapse.
● Although the neurons were still

two-state, the output function f(u)
goes from [-1,1], not [0,1].

● Most importantly, there was a
learning rule.

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html

I

Learning with the perceptron

● T = {(x1, y1), ... (xn, yn)} is a training set of n pairs of
input xi and desired output yi

● To learn the correct weights w:
 Initialize w randomly
 For each sample j do:

 Calculate the actual output y’j = wxj

 Adapt the weights wk’ = wk + α(yj-yj’)xjk for each wk

 Repeat until the error is sufficiently small

The Perceptron

It obeyed the following rule:

If the sum of the weighted inputs exceeds a
threshold, output 1, else output -1.

output

in
pu

ts

w
ei

gh
ts

sum

Σxi wi

*
Frank Rosenblatt (1962). Principles of Neurodynamics, Spartan, New York

Subsequent progress was inspired by the invention of learning rules inspired by ideas from
neuroscience…

Rosenblatt’s Perceptron could automatically learn to categorise or classify input vectors
into types.

 1 if Σ inputi * weighti > threshold

 -1 if Σ inputi * weighti < threshold

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

Linear neurons

• The neuron has a real-valued
output which is a weighted sum
of its inputs

• The aim of learning is to minimize
the discrepancy between the desired
output and the actual output
– How de we measure the

discrepancies?

– Do we update the weights after
every training case?

– Why don’t we solve it
analytically?

xwT
i

i
i xwy ˆ

Neuron’s estimate of the
desired output

input
vector

weight
vector

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

A motivating example

• Each day you get lunch at the cafeteria.
– Your diet consists of fish, chips, and beer.

– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure out the price of each portion.

• Each meal price gives a linear constraint on the prices of the portions:

beerbeerchipschipsfishfish wxwxwxprice 
https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

Two ways to solve the equations
• The obvious approach is just to solve a set of simultaneous linear

equations, one per meal.

• But we want a method that could be implemented in a neural
network.

• The prices of the portions are like the weights in of a linear neuron.

• We will start with guesses for the weights and then adjust the
guesses to give a better fit to the prices given by the cashier.

)(,, beerchipsfish wwww

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

The cashier’s brain
Price of meal = 850

portions of
fish

portions of
chips

portions of
beer

 150 50 100

 2 5 3

 Linear
neuron

https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

• Residual error = 350
• The learning rule is:

• With a learning rate of 1/35,
the weight changes are +20, +50,
+30

• This gives new weights of 70,
100, 80

• Notice that the weight for chips
got worse!

A model of the cashier’s brain
with arbitrary initial weights

)ˆ(yyxw ii  

Price of meal = 500

portions of
fish

portions of
chips

portions of
beer

 50 50 50

 2 5 3



https://www.cs.tau.ac.il/~nin/Courses/NC05/SingLayerPerc.ppt

Rosenblatt’s simple perceptron
● The weights and thresholds were

not all identical.
● Weights can be positive or

negative.
● There is no absolute inhibitory

synapse.
● Although the neurons were still

two-state, the output function f(u)
goes from [-1,1], not [0,1].

● Most importantly, there was a
learning rule.

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html

I

Learning with the perceptron

● T = {(x1, y1), ... (xn, yn)} is a training set of n pairs of
input xi and desired output yi

● To learn the correct weights w:
 Initialize w randomly
 For each sample j do:

 Calculate the actual output y’j = wxj

 Adapt the weights wk’ = wk + α(yj-yj’)xjk for each wk

 Repeat until the error is sufficiently small

Other considerations

● Bias term: w0

● Adding nonlinearity:
 Logistic function
 Hyperbolic tangent

Very limited!

Multilayer perceptron

https://www.researchgate.net/profile/Junita_Mohamad-Saleh/publication/257071174/figure/fig3/AS:297526545666050@1447947264431/Figure-5-A-schematic-diagram-of-a-Multi-Layer-
Perceptron-MLP-neural-network.png

Deep Neural Networks

Deep Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 1 May 2, 2017

Deep Neural Networks

0

Very limited!

Recurrent neural networks

Recurrent neural networks

Yamashita, Yuichi, and Jun Tani. "Emergence of functional hierarchy in a multiple timescale neural
network model: a humanoid robot experiment." PLoS Comput Biol 4.11 (2008): e1000220.

Hebb’s association principle
● Donald Hebb (1949) Cell A – B simultenous excitation: growth /

metabolic change. Experiments (1966, 1973), confirming Hebb’s insight.

● The simple slogan to describe LTP is:

“Neurons that fire together, wire together.

 Neurons that fire out of sync, fail to link.”

– The neural network stores and retrieves associations, which are
learned as synaptic connection.

Hebb’s association principle and
Human Learning

● Learning is to associate two events with each other.

● The main brain organ for learning/explicit memory is the
hippocampus (of the limbic system) using Hebbian type.

● Human memory thus works in an associative or content-
addressable way.

Hopfield Networks
● A Hopfield Network is a model of associative

memory. It is based on Hebbian learning but
uses binary neurons.

● The associative memory problem is summarized
as follows:
– Store a set of p patterns Pi in such a way that when

presented with a new pattern Qi , the network
responds by producing whichever one of the stored
patterns most closely resembles Qi .

● 0 or 1
● An associative memory can be thought as a set

of attractors, each with its own basin of
attraction.

•The dynamics of the system carries a starting
points into one of the attractors as shown in the
next figure.

Hopfield Networks

Hopfield Networks
● I

www.doc.ic.ac.uk/~ae/papers/Hopfield-networks-15.pdf

Spiking Neural Networks
● Increasing the level of realism
● Neuronal and synaptic state + concept of time.
● Neurons in the SNN do not fire at each propagation cycle,

but rather fire only when a membrane potential reaches a
specific value.

● When a neuron fires, it generates a signal which travels to
other neurons which, in turn, increase/decrease their
potentials.

● The current activation level (modeled as some differential
equation) is normally considered to be the neuron's
state, with incoming spikes pushing this value higher,
and then either firing or decaying over time

Hodgkin-Huxley Model

● Mathematical model that describes how action potentials in neurons are initiated
and propagated

● Alan Lloyd Hodgkin and Andrew Fielding Huxley described the model in 1952 to
explain the ionic mechanisms underlying the initiation and propagation of action
potentials in the squid giant axon

● Terminology:
 Channel: Flow of ions through membrane proteins
 Concentration gradient: High sodium concentration outside the membrane
 Reversal potential: Reduction of the gradient to zero
 Electrical gradient: By sodium flow
 Rest potential: -65mV
 Threshold: At around -50mV, sodium channels open up

Hodgkin-Huxley Model

GENESIS Simulation System
● GEneral NEural SImulation System
● Models channels, cells and networks
● http://www.genesis-sim.org
● Creating a realistic model of a neuron:

 Set the passive membrane parameters (membrane resistance and capacitance,
axial resistance, and membrane resting potential for each of the compartments.

 Populate the compartments with ionic conductances ("channels"), or other
related neural elements.

 Link compartments for the soma and dendrites together with appropriate
messages to make a cell.

http://www.genesis-sim.org/

GENESIS Simulation System

NEURON Simulation Environment

● In NEURON, the neuron's geometry is described in
terms of cylindrical sections

● Channel properties are set within sections
● You can add “cables”, and produce hierarchical

structures
● Over a thousand papers published
● Hines, M. L. and Carnevale, N. T., 2001.
● http://www.neuron.yale.edu

http://www.neuron.yale.edu/

	Slide 1
	Mathematical models of the brain
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Learning with the perceptron
	The Perceptron
	Linear neurons
	A motivating example
	Two ways to solve the equations
	The cashier’s brain
	A model of the cashier’s brain with arbitrary initial weights
	Slide 14
	Slide 15
	Other considerations
	Multilayer perceptron
	Slide 18
	Slide 19
	Slide 20
	Recurrent neural networks
	Slide 22
	Hebb’s association principle
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Hodgkin-Huxley Model
	Slide 30
	GENESIS Simulation System
	Slide 32
	NEURON Simulation Environment

