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McCulloch and Pitts neurons

* McCulloch and Pitts (1943) assumptions:

They are binary devices (Vi = [0,1])
Each neuron has a fixed threshold, theta

The neuron receives inputs from excitatory synapses,
all having identical weights.

Inhibitory inputs have an absolute veto power over any
excitatory inputs.

At each time step the neurons are simultaneously
(synchronously) updated by summing the weighted
excitatory inputs and setting the output (Vi) to 1 iff the
sum is greater than or equal to the threshold AND if the
neuron receives no inhibitory input.
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McCulloch and Pitts neurons

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY - e

WarrenN S. McCuLrocH and WaLTer H. Prrrs

Because of the ‘‘all-or-none’” character of mnervous activity,
neural events and the relations among them can be treated by
means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of
more complicated logical means for nets containing circles; and 2%}_
that for any logical expression satisfying certain conditions, one 9
can find a net behaving in the fashion it describes. It is shown
that many particular choices among possible neurophysiological

assumptions are equivalent, in the sense that for every net be- Figure 1a Na(f) . = . Ni(t — 1)

having under one assumption, there exists another net which Figure tb Ni(t) . = . Nu(t — ) v N.(t — 1)

behaves under the other and gives the same results, although Figure 1c Na(f) . = . Ni(t — 1) . Na(t — 1)

perhaps not in the same time. Various applications of the calculus Figure 1d Na(®) . = . Nt — 1) . ~o Na(t = 1)

are discussed. Figurele Ni(t) := : Nt —1).v. N2t —3). ~ Nt —2)
Nty .= .N:xt —2). Nao(t — 1)

i~ Nt — 1) N2t —1)VNs(t —1).v.Ni(t —1) -
Na(t = 1). Ni(t — 1)

to Nt —2) . Not —=2) VNt —2).v. Nt — 2).
Na(t —2) . Na(t - 2)
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McCulloch and Pitts neurons
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http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html



Rosenblatt’'s simple perceptron

* The weights and thresholds were
not all identical.

* Weights can be positive or
negative.

* There is no absolute inhibitory
synapse.
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* Although the neurons were still
two-state, the output function f(u)
goes from [-1,1], not [0,1].

* Most importantly, there was a
learning rule. 3

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html
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Learning with the perceptron

e T={(Xy, V1), ... (X», Vn)} is a training set of n pairs of
Input X;and desired output v

* To learn the correct weights w:
2 |nitialize w randomly

2 For each sample j do:
Calculate the actual output y’; = wx;
Adapt the weights wy’ = w, + a(y;-y,)Xx for each wy

2 Repeat until the error is sufficiently small



The Perceptron
Frank Rosenblatt (1962). Principles of Neurodynamics, Spartan, New York

Subsequent progress was inspired by the invention of /learning rules inspired by ideas from
neuroscience. ..

Rosenblatt’s Perceptron could automatically learn to categorise or classify input vectors
nto types.

It obeyed the following rule:

If the sum of the weighted inputs exceeds a
threshold, output 1, else output -1.

VVVVYVYYYVYY

1 1f X input, . weight, > threshold

sum output

Inputs
*
weights

-1 1f 2 input, . weight, < threshold

https://www.cs.tau.ac.il/~nin/Courses/NCO05/SingLayerPerc.ppt



[inear neurons

* The neuron has a real-valued
output which 1s a weighted sum

of its inputs weight

Veitor

y ZZ W;X; =w’!x

t 1
input
Neuron’s estimate of the vector

desired output

https://www.cs.tau.ac.il/~nin/Courses/NCO05/SingLayerPerc.ppt

* The aim of learning 1s to minimize

the discrepancy between the desired
output and the actual output

— How de we measure the
discrepancies?

— Do we update the weights after
every training case?

— Why don’t we solve it
analytically?



A motivating example

* Each day you get lunch at the cafeteria.
— Your diet consists of fish, chips, and beer.

— You get several portions of each

* The cashier only tells you the total price of the meal

— After several days, you should be able to figure out the price of each portion.

* Each meal price gives a linear constraint on the prices of the portions:

price =X gopnW fish + Xchips Wehips + Xpeer Wheer

https://www.cs.tau.ac.il/~nin/Courses/NCO05/SingLayerPerc.ppt



Two ways to solve the equations

* The obvious approach i1s just to solve a set of simultaneous linear
equations, one per meal.

* But we want a method that could be implemented in a neural
network.

* The prices of the portions are like the weights 1n of a linear neuron.
W :(Wﬁsh ,Wchips ,Wbeer)

* We will start with guesses for the weights and then adjust the
guesses to give a better fit to the prices given by the cashier.

https://www.cs.tau.ac.il/~nin/Courses/NCO05/SingLayerPerc.ppt



The cashier’s brain

Price of meal = 850

Linear
euron

150 50 100

2 5 3
portions of  portions of  portions of

fish chips beer

https://www.cs.tau.ac.il/~nin/Courses/NCO05/SingLayerPerc.ppt



A model of the cashier’s brain
with arbitrary initial weights

Price of meal = 500 * Residual error = 350
* The learning rule 1is:

Aw; =& x; (¥y- )

« With a learning rate 0f€1/35,

the weight changes are +20, +50,
50 50 50 +30
* This gives new weights of 70,
0 5 3 100, 80
portions of  portions of  portions of* Notice that the weight for chips
fish chips beer got worse!

https://www.cs.tau.ac.il/~nin/Courses/NCO05/SingLayerPerc.ppt



Rosenblatt’'s simple perceptron

* The weights and thresholds were
not all identical.

* Weights can be positive or
negative.

* There is no absolute inhibitory
synapse.
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* Although the neurons were still
two-state, the output function f(u)
goes from [-1,1], not [0,1].

* Most importantly, there was a
learning rule. 3

http://ecee.colorado.edu/~ecen4831/lectures/NNet2.html
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Learning with the perceptron

e T={(Xy, V1), ... (X», Vn)} is a training set of n pairs of
Input X;and desired output v

* To learn the correct weights w:
2 |nitialize w randomly

2 For each sample j do:
Calculate the actual output y’; = wx;
Adapt the weights wy’ = w, + a(y;-y,)Xx for each wy

2 Repeat until the error is sufficiently small



Other considerations

e Bias term: wy 1
S =
. . . —+ =
* Adding nonlinearity:
1 Logistic function J(x) = tanh( 8x)

2 Hyperbolic tangent

Very limited!




Multilayer perceptron
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https://www.researchgate.net/profile/Junita_Mohamad-Saleh/publication/257071174/figure/fig3/AS:297526545666050@ 14479472644 31/Figure-5-A-schematic-diagram-of-a-Multi-Layer-
Perceptron-MLP-neural-network.png



Deep Neural Networks

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
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Deep Neural Networks

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

+ ReLU + Rell Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Full GooglLeNet
architecture
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 1 May 2, 2017



Deep Neural Networks

“Revolution of Depth”
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Recurrent neural networks
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Recurrent neural
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A Move up and down (x 3)

Reach for object

Move left and right (x 3)

Home position

Move backward and forward (x 3

Touch with one hand

Clap hands (x 3)

Yamashita, Yuichi, and Jun Tani. "Emergence of functional hierarchy in a multiple timescale neural
network model: a humanoid robot experiment." PLoS Comput Biol 4.11 (2008): €1000220.
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Hebb’s association principle
* Donald Hebb (1949) Cell A - B simultenous excitation: growth /
metabolic change. Experiments (1966, 1973), confirming Hebb’s insight.

The simple slogan to describe LTP is:

“Neurons that fire together, wire together.

Neurons that fire out of sync, fail to link.”
The neural network stores and retrieves associations, which are

learned as synaptic connection.
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Hebb’s association principle and
Human Learning

e Learning is to associate two events with each other.

 The main brain organ for learning/explicit memory is the
hippocampus (of the limbic system) using Hebbian type.

« Human memory thus works in an associative or content-
addressable way.

Amygdala
Hippocampus



Hopfield Networks

A Hopfield Network is a model of associative lapiyainn
memory. It is based on Hebbian learning but :
uses binary neurons.

The associative memory problem is summarized
as follows: input

value

— Store a set of p patterns P, in such a way that when
presented with a new pattern Q, , the network

responds by producing whichever one of the stored
patterns most closely resembles Q; .

»

O or 1 input value

welght matrix

An associative memory can be thought as a set

of attractors, each with its own basin of
attraction.

inputvalue

.

input value

input
value



Hopfield Networks

*The dynamics of the system carries a starting
points into one of the attractors as shown in the
next figure.
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www.doc.ic.ac.uk/~ae/papers/Hopfield-networks-15.pdf
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|klng Neural Networks

* Increasing the'level of redlism o

« Neuronal and synaptic state + concept of time. o

» Neurons in the SNN do not fire at each propagation cycle, =~ ~
but rather fire only when a membrane potential reaches a P ” |
specific value. o

* When a neuron fires, it generates a signal which travels to ;
other neurons which, in turn, increase/decrease their i
potentials. o < |

* The current activation level (modeled as some differential N —
equation) is normally considered to be the neuron's ’ oo °

state, with incoming spikes pushing this value higher,
and then either firing or decaying over time

||||||||||||||||||||||||||||||||||||||||
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Hodgkin-Huxley Model

* Mathematical model that describes how action potentials in neurons are initiated
and propagated

* Alan Lloyd Hodgkin and Andrew Fielding Huxley described the model in 1952 to
explain the ionic mechanisms underlying the initiation and propagation of action
potentials in the squid giant axon

* Terminology:
4 Channel: Flow of ions through membrane proteins
2 Concentration gradient: High sodium concentration outside the membrane
2 Reversal potential: Reduction of the gradient to zero
4 Electrical gradient: By sodium flow
1 Rest potential: -65mV
9 Threshold: At around -50mV, sodium channels open up



Hodgkin-Huxley Model
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GENESIS Simulation System

GEneral NEural Simulation System
Models channels, cells and networks
http://www.genesis-sim.org

Creating a realistic model of a neuron:

a

Set the passive membrane parameters (membrane resistance and capacitance,
axial resistance, and membrane resting potential for each of the compartments.

Populate the compartments with ionic conductances ("channels"), or other
related neural elements.

Link compartments for the soma and dendrites together with appropriate
messages to make a cell.


http://www.genesis-sim.org/

GENESIS Simulation System
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NEURON Simulation Environment

In NEURON, the neuron's geometry is described in
terms of cylindrical sections

Channel properties are set within sections

You can add “cables”, and produce hierarchical
structures

Over a thousand papers published
Hines, M. L. and Carnevale, N. T., 2001.
http://www.neuron.yale.edu


http://www.neuron.yale.edu/
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