Initialization and Cleanup

Slides adapted from Prof. Steven Roehrig
and Sakir YUCEL (CMU)

—!

Initialization

0 In “C”-style programming, structures were
glued-together primitive types, and functions
were separate.

o If a structure needed 1nitialization, the
programmer had to remember to do it.

o We often forgot...
o Just as bad, we also forgot to “clean up”

—!
What Needs to be Initialized?

0 A stream for file reading needs to be attached to the
file.

o An array of Vectors needs to have the Vectors
created (and themselves 1nitialized).

o A Checkbox needs to have its state set, and perhaps
be associated with an ActionListener.

A Socket needs to have i1ts IP address set.

A Rectangle needs to have its dimensions and
location set.

o Etc.

I —
What If We Forget?

Things don’t act the way we expect them to!

We only learn about problems at runtime.
Maybe we don’t find out until it’s too late.

O o o O

Common culprits:
= references that lead nowhere
= garbage values

—!
How Does Java Help?

o Java mitializes all class member variables to
zero whenever we create an object.

0 Java allows us to write constructors, special
methods, one of which will be called on
object creation.

0 Java refuses to create an object (compile
error) 1f we haven’t provided the right kind of
constructor.

—!

Constructors

0 A constructor method has the same name as the
class. It has no return type.

0 There can be many different constructors, each with
a distinct argument signature.

0 (This implies that overloaded methods are OK 1n
Java.)

0 You specify the particular constructor you want
when you create an object.

Example Constructor

class Book {

String title;

String author;

int numPages;

Book() { } // default constructor

Book(String t, String a, int p) {
title = t;
author = a;
numPages = p;

—!
Making Books

0 Book uselessBook = new Book();
title 1s an empty character sequence

author 1s an empty character sequence
numPages 1s 0

0 Book usefulBook = new Book(“The
TeXBook”, “Donald Knuth”, 483);

—!
Method Overloading

0 Methods with the same name, but different sets of
arguments.

o0 A natural 1dea (carWash the car? shirtWash the
shirt? dogWash the dog? Nah...)

Constructors can be overloaded; so can any function.

This 1s OK, but not recommended:
void print(String s, int 1)
void print(int 1, String s)
0 You can’t overload on the return type alone.

N —
Overloading With Primitives

o The compiler tries to find an exact match, but
will promote (“widen”) a value 1f necessary.

void doSomething(long 1) { // whatever }

int i = 13;
doSomething(i);

0 The compiler won’t narrow without an
explicit cast.

e
The Default Constructor

0 A default constructor has no arguments (but
still has the same name as the class).

A Common Error

class Book {
String title; String author; int numPages;
Book(String t, String a, int n) {
title = t; author = a, numPages = n;
}
}

Book b = new Book();

o The compiler gives an error.

o Normally, you always provide a default constructor
that does as much as possible (but not too much!).

—!
The this Keyword

0 A common “C” 1diom:
MusicFile f = new MusicFile(“Yardbirds™)
play(&f, 4); // play the 4th track

o In object-oriented style, we want to “send a
message” to an object, so 1n Java we say
f.play(4);

0 The compiler knows which object (f in this case) the
method 1s being called for.

o The compiler sends this information to the method,
in the form of a reference to f.

—
The this Keyword (cont.)

o0 If necessary, we can get a reference to the
“current” object; 1t’s called this.

public class Leaf {
int 1 = 9;
Leaf increment() {

it++;
return this;
}
void print() { System.out.println("i = " + i); }

public static void main(String[] args) {
Leaf x = new Leaf();
X.increment().increment().increment().print();

e
Other Uses of this

public class Flower {
int petalCount = ©;
String s = new String("null™);
Flower(int petals) { petalCount = petals; }
~ Flower(String ss) { s = ss; }
Flower(String s, int petals) {
this(petals);
//! this(s); // can't do it twice
this.s = s;

}
Flower() { this("hi", 47); } // default constructor

—!
So, What Is A static Method?

[]

It’s a method that belongs to the class but not
to any 1nstance.

It’s a method “with no this”.

You can’t call non-static methods from within
a static method.

You can call a static method without knowing
any object of the class.

—!
Cleanup

0 Java has a garbage collector that reclaims
memory.

0 If an object “can’t be reached” by a chain of
references from a reference on the stack (or
static storage), 1t 1s garbage.

o There 1s no guarantee that such an object will
be garbage collected.

0 Garbage collection 1s not like destruction (in
the C++ sense).

—!

Member Initialization

o Unitialized variables are a common source of
bugs.

Using an unititialized variable in method gets a
compiler error.

Primitive data members 1n classes automatically
get nitialized to “zero™.
0 Is the imitialized value (zero) any better than a
“ogarbage value”?

Member Initialization (cont.)

o0 You can initialize in a class definition:

class Notebook {
long ram = 1048576;
String name = new String("IBM");
float price = 1995.00;
Battery bat = new Battery();
Disk d; // a null reference
int 1 = f();

0 This 1s very surprising to C++ programmers!

Constructors Again

o You can have both class initialization and constructor
mnitialization:

class Counter {
int 1 = 1;
Counter() { 1 =7; }
Counter(int j) { };

0 The order of initialization follows the order of the
initialization statements in the class definition.

o It’s done before any constructor initialization, so it may be
done twice (as Counter illustrates).

—!

Static Member Initialization

0 Same story; primitives get zero unless
initialized, references get null unless
initialized.

o Static mitialized either

when the first object of the type 1s created, or
at the time of the first use of the variable.

0 If you never use it, it’s never 1nitialized.

e
Add toString() to Class A

class A {

int i;

public String toString() {
return new String("" + i);
// or this:
// return "" + 1i;
// but not this:
// return 1i;

Example of a Simple Time Class

public class Time {
int hour;
int minute;
int second;

Time() { setTime(9, 9, 0); }

Time(int h) { setTime(h, 6, 0); }

Time(int h, int m) { setTime(h, m, 0); }
Time(int h, int m, int s) { setTime(h, m, s); }

Time Class (cont.)

Time setTime(int h, int m, int s) {
setHour(h);
setMinute(m);
setSecond(s);
return this;

Time setHour(int h) {
hour = ((h >= 0 & h < 24) ? h : 0);
return this;

Time Class (cont.)

Time setMinute(int m) {
minute = (((m >= 0 & m < 60) ? m : 0);
return this;

}

Time setSecond(int s) {
second = ((s >= 0 && s < 24) ? s : 0);
return this;

¥

int getHour() { return hour; }
int getMinute() { return minute; }
int getSecond() { return second; }

Time Class (cont.)

public String toString() {
"" %+ (hour == 12 || hour == ©) ? 12 : hour % 12) +

return (==
“:" 4+ (minute < 10 ? "@" : "") + minute +
“:" 4+ (second < 10 ? "@" : "") + second +
(hour < 12 ? " AM" : " PM") ;

Time Class Driver

public class TestTime {
public static void main(String[] args) {
Time t1 = new Time();
Time t2 = new Time(20, 3, 45);

tl.setHour(7).setMinute(32).setSecond(23);
System.out.println("tl is " + t1);
System.out.println("t2 is " + t2);

—!

Maiscellaneous Topics: Recursion

o Joan Rivers says “I hate cleaning my house. Before
[’m even finished I have to do i1t again!”

// Joan Rivers’ algorithm (pseudo-code)
cleanTheHouse() {
static String message = “I’m ”;
message = message + “so ”’;
shout(message + “tired of this!”);
cleanTheHouse();

—!

Recursion

0 A method that calls 1tself.
0 At each call, new local variables are created.

0 There must be a stopping condition! Joan doesn’t
have one...

0 Often a natural way to express a problem.

o Iteration might be better, because of the overhead of
function calls and extra storage.

o It’s not always easy to convert recursion 1nto
iteration.

Recursion (cont.)

o Factorials are easy: n! =n(n-1)(n-2) - - - 1

long factorial(long number) {
if (number <= 1) // base case
return 1;
else
return number * factorial(number - 1);

e
Deitel & Deitel’s Illustration

5! Recursive 51
| calls T 5! = 5%24 = 120 returned
sear] | 5% 4
| T 4] = 4*6 = 24 returned
4 * 3! 4 % 3
| T 3! = 3*2 = 6 returned
3 %2 3% 7]
| 1 21 = 2%1=2 returned
2 * 1 T 7 % 1|
Recursive | 1 returned

1 returns 1

—!
Variable-Length Argument Lists

class A {inti; }
public class VarArgs {
static void f(Object[] x) {
for (inti=0; i < x.length; i++)
System.out.println(x[i]);

h

public static void main(String[] args) {
f(new Object]] {
new Integer(47), new VarArgs(),
new Float(3.14), new Double(11.11) });
f(new Object[] {""one", "two", ""three' }) ;
f(new Object[] {new A(), new A(), new A() });

)
}

N —
Variable-Length Argument Lists

o This prints
47
VarArgs@fee6172e
3.14
11.11
one
two
three
A@fee61874
A@tee61873
A@fee6186a

