
Initialization and Cleanup

Slides adapted from Prof. Steven Roehrig
and Sakir YUCEL (CMU)

Initialization
□ In “C”-style programming, structures were

glued-together primitive types, and functions
were separate.

□ If a structure needed initialization, the
programmer had to remember to do it.

□ We often forgot…
□ Just as bad, we also forgot to “clean up”

What Needs to be Initialized?
□ A stream for file reading needs to be attached to the

file.
□ An array of Vectors needs to have the Vectors

created (and themselves initialized).
□ A Checkbox needs to have its state set, and perhaps

be associated with an ActionListener.
□ A Socket needs to have its IP address set.
□ A Rectangle needs to have its dimensions and

location set.
□ Etc.

What If We Forget?
□ Things don’t act the way we expect them to!
□ We only learn about problems at runtime.
□ Maybe we don’t find out until it’s too late.
□ Common culprits:

■ references that lead nowhere
■ garbage values

How Does Java Help?
□ Java initializes all class member variables to

zero whenever we create an object.
□ Java allows us to write constructors, special

methods, one of which will be called on
object creation.

□ Java refuses to create an object (compile
error) if we haven’t provided the right kind of
constructor.

Constructors
□ A constructor method has the same name as the

class. It has no return type.
□ There can be many different constructors, each with

a distinct argument signature.
□ (This implies that overloaded methods are OK in

Java.)
□ You specify the particular constructor you want

when you create an object.

Example Constructor
class Book {

 String title;

 String author;

 int numPages;

 Book() { } // default constructor

 Book(String t, String a, int p) {

 title = t;

 author = a;

 numPages = p;

}

Making Books
□ Book uselessBook = new Book();

■ title is an empty character sequence
■ author is an empty character sequence
■ numPages is 0

□ Book usefulBook = new Book(“The
TeXBook”, “Donald Knuth”, 483);

Method Overloading
□ Methods with the same name, but different sets of

arguments.
□ A natural idea (carWash the car? shirtWash the

shirt? dogWash the dog? Nah…)
□ Constructors can be overloaded; so can any function.
□ This is OK, but not recommended:

■ void print(String s, int i)
■ void print(int i, String s)

□ You can’t overload on the return type alone.

Overloading With Primitives
□ The compiler tries to find an exact match, but

will promote (“widen”) a value if necessary.

□ The compiler won’t narrow without an
explicit cast.

void doSomething(long l) { // whatever }

:

int i = 13;

doSomething(i);

The Default Constructor

□ A default constructor has no arguments (but
still has the same name as the class).

A Common Error

□ The compiler gives an error.
□ Normally, you always provide a default constructor

that does as much as possible (but not too much!).

class Book {

 String title; String author; int numPages;

 Book(String t, String a, int n) {

 title = t; author = a, numPages = n;

 }

}

:

Book b = new Book();

The this Keyword
□ A common “C” idiom:

MusicFile f = new MusicFile(“Yardbirds”)
play(&f, 4); // play the 4th track

□ In object-oriented style, we want to “send a
message” to an object, so in Java we say
f.play(4);

□ The compiler knows which object (f in this case) the
method is being called for.

□ The compiler sends this information to the method,
in the form of a reference to f.

The this Keyword (cont.)
□ If necessary, we can get a reference to the

“current” object; it’s called this.
public class Leaf {

 int i = 0;

 Leaf increment() {

 i++;

 return this;

 }

 void print() { System.out.println("i = " + i); }

 public static void main(String[] args) {

 Leaf x = new Leaf();

 x.increment().increment().increment().print();

 }

}

Other Uses of this
public class Flower {

 int petalCount = 0;

 String s = new String("null");

 Flower(int petals) { petalCount = petals; }

 Flower(String ss) { s = ss; }

 Flower(String s, int petals) {

 this(petals);

 //! this(s); // can't do it twice

 this.s = s;

 }

 Flower() { this("hi", 47); } // default constructor

}

So, What Is A static Method?
□ It’s a method that belongs to the class but not

to any instance.
□ It’s a method “with no this”.
□ You can’t call non-static methods from within

a static method.
□ You can call a static method without knowing

any object of the class.

Cleanup
□ Java has a garbage collector that reclaims

memory.
□ If an object “can’t be reached” by a chain of

references from a reference on the stack (or
static storage), it is garbage.

□ There is no guarantee that such an object will
be garbage collected.

□ Garbage collection is not like destruction (in
the C++ sense).

Member Initialization
□ Unitialized variables are a common source of

bugs.
■ Using an unititialized variable in method gets a

compiler error.
■ Primitive data members in classes automatically

get initialized to “zero”.
□ Is the initialized value (zero) any better than a

“garbage value”?

Member Initialization (cont.)
□ You can initialize in a class definition:

□ This is very surprising to C++ programmers!

class Notebook {

 long ram = 1048576;

 String name = new String("IBM");

 float price = 1995.00;

 Battery bat = new Battery();

 Disk d; // a null reference

 int i = f();

 :

}

Constructors Again
□ You can have both class initialization and constructor

initialization:

□ The order of initialization follows the order of the
initialization statements in the class definition.

□ It’s done before any constructor initialization, so it may be
done twice (as Counter illustrates).

class Counter {

 int i = 1;

 Counter() { i = 7; }

 Counter(int j) { };

Static Member Initialization
□ Same story; primitives get zero unless

initialized, references get null unless
initialized.

□ Static initialized either
■ when the first object of the type is created, or
■ at the time of the first use of the variable.

□ If you never use it, it’s never initialized.

Add toString() to Class A
class A {

 int i;

 public String toString() {

 return new String("" + i);

 // or this:

 // return "" + i;

 // but not this:

 // return i;

 }

}

Example of a Simple Time Class
public class Time {

 int hour;

 int minute;

 int second;

 Time() { setTime(0, 0, 0); }

 Time(int h) { setTime(h, 0, 0); }

 Time(int h, int m) { setTime(h, m, 0); }

 Time(int h, int m, int s) { setTime(h, m, s); }

Time Class (cont.)
 Time setTime(int h, int m, int s) {

 setHour(h);

 setMinute(m);

 setSecond(s);

 return this;

 }

 Time setHour(int h) {

 hour = ((h >= 0 && h < 24) ? h : 0);

 return this;

 }

Time Class (cont.)
 Time setMinute(int m) {
 minute = ((m >= 0 && m < 60) ? m : 0);
 return this;
 }

 Time setSecond(int s) {
 second = ((s >= 0 && s < 24) ? s : 0);
 return this;
 }

 int getHour() { return hour; }
 int getMinute() { return minute; }
 int getSecond() { return second; }

Time Class (cont.)
 public String toString() {

 return ("" + (hour == 12 || hour == 0) ? 12 : hour % 12) +

 ":" + (minute < 10 ? "0" : "") + minute +

 ":" + (second < 10 ? "0" : "") + second +

 (hour < 12 ? " AM" : " PM") ;

 }

}

Time Class Driver
public class TestTime {

 public static void main(String[] args) {

 Time t1 = new Time();

 Time t2 = new Time(20, 3, 45);

 t1.setHour(7).setMinute(32).setSecond(23);

 System.out.println("t1 is " + t1);

 System.out.println("t2 is " + t2);

 }

}

Miscellaneous Topics: Recursion
□ Joan Rivers says “I hate cleaning my house. Before

I’m even finished I have to do it again!”

// Joan Rivers’ algorithm (pseudo-code)
cleanTheHouse() {
 static String message = “I’m ”;
 message = message + “so ”;
 shout(message + “tired of this!”);
 cleanTheHouse();
}

Recursion
□ A method that calls itself.
□ At each call, new local variables are created.
□ There must be a stopping condition! Joan doesn’t

have one…
□ Often a natural way to express a problem.
□ Iteration might be better, because of the overhead of

function calls and extra storage.
□ It’s not always easy to convert recursion into

iteration.

Recursion (cont.)
□ Factorials are easy: n! = n(n-1)(n-2) ⋅ ⋅ ⋅ 1

long factorial(long number) {

 if (number <= 1) // base case

 return 1;

 else

 return number * factorial(number - 1);

}

Deitel & Deitel’s Illustration
5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1
1 returned

2! = 2*1=2 returned

3! = 3*2 = 6 returned

4! = 4*6 = 24 returned

5! = 5*24 = 120 returned
Recursive
calls

Recursive
returns

Variable-Length Argument Lists
class A { int i; }
public class VarArgs {
 static void f(Object[] x) {
 for (int i = 0; i < x.length; i++)
 System.out.println(x[i]);
 }
 public static void main(String[] args) {
 f(new Object[] {
 new Integer(47), new VarArgs(),
 new Float(3.14), new Double(11.11) });
 f(new Object[] {"one", "two", "three" }) ;
 f(new Object[] {new A(), new A(), new A() });
 }
}

Variable-Length Argument Lists
□ This prints

47
VarArgs@fee6172e
3.14
11.11
one
two
three
A@fee61874
A@fee61873
A@fee6186a

