
Access Control & Reuse

Slides adapted from Prof. Steven Roehrig
and Sakir YUCEL (CMU)

□ Implementation hiding with packages and
access specifiers.

□ Composition
□ Inheritance
□ More on constructors
□ Finals
□ Class loading

Access Specifiers
□ public, protected, private and “friendly”
□ We haven’t used these yet, except for main()

and toString().
□ main() needs to be public, so the runtime

system can call it.
□ toString() needs to be public since it is

public in Object, and we are “overriding” it.

The “Need To Know” Principle
□ Like military secrets, portions of your classes

are best kept private.
□ The public interface of a class should provide

everything users need, but nothing they don’t.
□ Access specifiers allow you to enforce the

“need to know” principle.

Access Specifiers
□ public members (variables and methods) are

freely available for anyone’s use.
□ private members can be accessed (used) only

by the methods of the containing class.
□ protected members are public to subclasses,

private to others.
□ “Friendly” members have package access:

■ no access specifier
■ public within the containing package

Packages
□ Java’s concept of “module”.
□ A group of related classes.
□ A package can have a name, but there is the

unnamed package, which holds all the classes
in your program that you haven’t put into a
named package.

How Does It All Work?
□ So far, we haven’t used packages and access

specifiers. Why has this worked?
■ We kept all our .class files in the same folder;

they are in the unnamed package.
■ All of our members were therefore friendly.
■ Only methods that are called from another

package need access specifiers.
■ Make sure you have the current directory (‘.’) in

your classpath.

The Basic Rules
□ Class members should be private unless there

is a need to know or use.
□ Think carefully about the public interface.
□ Use accessors/mutators (aka get and set

methods) to control access to private member
variables.

□ Often we create methods that are only used
internally; make these private.

□ We’ll worry about protected later.

Example
public class Fraction {

public Fraction()
public Fraction(int n, int d)
public String toString()
public String toDecimal()
public Fraction add(Fraction f)
private int numerator;
private int denominator;
private int gcd(int a, int b)

}

How To Change A Fraction?
□ This is a design decision.
□ Some classes are “immutable” for good (or

bad!) reasons. String is an example.
□ If we want users to change a Fraction

object’s values, provide a “set” function:

public void set(int n, int d) {

 // test carefully for suitability, then:

 numerator = n;

 denominator = d;

}

Interface vs. Implementation
□ For flexibility, we want the right to change an

implementation if we find a better one.
□ But we don’t want to break client code.
□ Access specifiers restrict what clients can rely

on.
□ Everything marked private is subject to

change.

Example: NNCollection
□ Our clients want to store last names and

associated telephone numbers.
□ The list may be large.
□ They want

■ a class NameNumber for name & number pairs
■ NNCollection()
■ insert(NameNumber)
■ findNumber(String)

NameNumber
public class NameNumber {

 private String lastName;

 private String telNumber;

 public NameNumber() {}

 public NameNumber(String name, String num) {

 lastName = name;

 telNumber = num;

 }

 public String getLastName() {

 return lastName;

 }

 public String getTelNumber() {

 return telNumber;

 }

}

NNCollection
public class NNCollection {

 private NameNumber[] nnArray = new NameNumber[100];

 private int free;

 public NNCollection() {free = 0;}

 public void insert(NameNumber n) {

 int index = 0;

 for (int i = free++;

 i!=0 && nnArray[i-1].getLastName().compareTo(n.getLastName())>0;

 i--) {

 nnArray[i] = nnArray[i-1];

 index = i;

 }

 nnArray[index] = n;

 }

NNCollection (cont.)
public String findNumber(String lName) {

 for (int i = 0; i != free; i++)

 if (nnArray[i].getLastName().equals(lName))

 return nnArray[i].getTelNumber();

 return new String("Name not found");

 }

}

NNCollection Insertion

nnArray…

Initial Array

free

nnArray…

Insert “Lewis”

free

Lewis
268-1234

NNCollection Insertion (cont.)

nnArray…

i

Lewis
268-1234

Insert “Clay”

free

nnArray…

i

Lewis
268-1234

free

nnArray…Clay
268-5678

free

Lewis
268-1234

12

34

5

Yes, This Is Rotten
□ It uses a fixed-size array.
□ Array elements are interchanged every time a

new name is entered. Slow.
□ The array is searched sequentially. Slow.
□ But, our clients can get started on their code.
□ We go back and build a better

implementation.

Better NNCollection
□ Use a binary tree.
□ Names “on the left” precede

lexicographically.
□ Roughly logarithmic insert and retrieve times.
□ Very recursive, but not very expensive.

Binary Tree Layout

NNCollection root NNTreeLewis

Clay

Beggs Day Martin null

Moore

nullnull null null null null

lChild rChild

Note: Only the name of the NameNumber object is shown

NNTree Class
□ Each NNTree object

■ is a node, holding a NameNumber object.
■ keeps a reference to its left child and right child.
■ knows how to insert a NameNumber object.
■ knows how to find a NameNumber object.

Inserting “McCoy”

NNCollection Lewis

Clay

Beggs Day Martin null

Moore

nullnull null null null null

McCoy > Lewis

McCoy < Moore

McCoy > Martin

Inserting “McCoy”

NNCollection Lewis

Clay

Beggs Day Martin null

Moore

nullnull null null null

McCoy > Lewis

McCoy < Moore

McCoy > Martin

McCoy

null null

Finding “Day”

NNCollection Lewis

Clay

Beggs Day Martin null

Moore

nullnull null null null McCoy

null null

Day < Lewis

Day > Clay

NNTree Class Definition
public class NNTree {
 private NNTree lChild;
 private NNTree rChild;
 private NameNumber contents;
 public NNTree(NameNumber n) {
 contents = n;
 }

NNTree Class Definition (cont.)
public void insert(NameNumber n) {
 if (n.getLastName().compareTo(contents.getLastName()) < 0)
 if (lChild != null)
 lChild.insert(n);
 else
 lChild = new NNTree(n);
 else
 if (rChild != null)
 rChild.insert(n);
 else
 rChild = new NNTree(n);
}

NNTree Class Definition (cont.)
 public String findNumber(String lName) {
 if (lName.compareTo(contents.getLastName()) < 0)
 if (lChild != null)
 return lChild.findNumber(lName);
 else
 return new String("Name not found");
 else if (lName.equals(contents.getLastName()))
 return contents.getTelNumber();
 else if (lName.compareTo(contents.getLastName()) > 0)
 if (rChild != null)
 return rChild.findNumber(lName);
 else
 return new String("Name not found");
 else
 return new String("Name not found");
 }

NNCollection Again
public class NNCollection {
 private NNTree root;
 public NNCollection() {}
 public void insert(NameNumber n) {
 if (root != null) root.insert(n);
 else root = new NNTree(n);
 }
 String findNumber(String lName) {
 if (root != null)
 return root.findNumber(lName);
 else
 return new String("Name not found");
 }
}

More on Packages
□ Bringing in a package of classes:

import java.util.*;
□ Bringing in a single class:

import java.util.ArrayList;
□ The compiler can find these things, through

the classpath.
□ If we’re working from the command line, the

classpath must be an environmental variable.

Creating a Package
□ The very first line in all the files intended for

the package named myPackage:
package myPackage;

□ Put all of the .class files in a directory named
myPackage.

□ Put the myPackage directory, as a
subdirectory, in a directory given in the
classpath.

Class Access
□ Classes can be public or not.
□ Non-public classes are available only within

the package they are defined in.
□ There can be only one public class in a

“compilation unit” (a .java file).
□ Non-public classes are “helper” classes, not

for public use.

Class Reuse
□ A noble goal, and in Java it’s finally happening!
□ Basically two ways: composition and

inheritance.
□ Composition is called “has-a”.
□ Inheritance is called “is-a”.

Composition
□ Point, Rectangle, Shape, Triangle
□ is-a vs. has-a
□ Rectangle has-a point
□ Rectangle is-a shape
□ Point is-a shape

Inheritance
□ An object of a new class that inherits from an

existing class has all the “powers and
abilities” of the parent class:
■ all data members
■ all methods
■ you can add additional data and methods if you

wish
■ a derived class object “is-an” object of the parent

class type, so can be used in function calls where
a parent-class object is specified

Inheritance Syntax
class Cleanser {

private String activeIngredient;

public void dilute(int percent) {// water-down}

public void apply(DirtyThing d) {// pour it on}

public void scrub(Brush b) {// watch it work}

}

public class Detergent extends Cleanser {

private String specialIngredient;

public void scrub(Brush b) {

 // scrub gently, then

 super.scrub(b); // the usual way

}

public void foam() { // make bubbles}

}

Access Control, Again
□ Detergent does indeed have an

activeIngredient, but it’s not accessible.
□ If Detergent needs to access it, it must be

either
■ made protected (or friendly) in Cleanser, or
■ be accessible through get and set methods in

Cleanser.
□ You can’t inherit just to get access!

What Is A Detergent Object?
□ An object of type Cleanser, having all the

members of Cleanser.
□ An object of type Detergent, having all the

additional members of Detergent.

Subclasses and Constructors
□ Think of a Detergent object as containing a

Cleanser sub-object.
□ So, that sub-object has to be constructed when

you create a Detergent object.
□ The Cleanser object has to be created first,

since constructing the remaining Detergent
part might rely on it.

□ “Always call the base class constructor first.”

Subclasses and Constructors
class Cleanser {

private String activeIngredient;

Cleanser() {

 System.out.println("Cleanser constructor");

}

}

public class Detergent extends Cleanser {

private String specialIngredient;

Detergent() {

 System.out.println("Detergent constructor");

}

public static void main(String[] args) {

 Detergent d = new Detergent();

}

}

Subclasses and Constructors
class Cleanser {

 private String activeIngredient;

 Cleanser(String active) {

 activeIngredient = active;

 }

}

public class Detergent extends Cleanser {

 private String specialIngredient;

 Detergent(String active, String special) {

 super(active); // what if this isn't here?

 specialIngredient = special;

 }

}

Composition vs. Inheritance
□ Think “has-a” vs. “is-a”.
□ Consider the NNCollection class. Suppose

now we need to store a String/int pair (names
and ages, perhaps).

□ Should we inherit, or compose?
□ In either approach, we just need to be able to

turn Strings into ints, and vice versa (not
hard).

Composition vs. Inheritance
class NACollection {
 private NNCollection nnc;
 NACollection() { // …}
 public void insert (NameAge n) { uses nnc’s insert()}
 public int findAge(String name) { uses nnc’s findNumber()}
}
or
class NACollection extends NNCollection {
 NACollection() { //…}
 public void insert(NameAge n) { uses super.insert()}
 public int findAge(String name) { uses super.findNumber()}
}

protected Class Members
□ public to subclasses.
□ private to “the outside world”,
□ except within the package (i.e., they are

“friendly”.
□ private is usually the best policy, unless you

are looking for speed (but then why use
Java!?).

Upcasting
class CellPhone {

 cellPhone() { //...}

 public void ring(Tune t) { t.play(); }

}

class Tune {

 Tune() { // ...}

 public void play() { // ...}

}

class ObnoxiousTune extends Tune{

 ObnoxiousTune() { // ...}

 // ...

}

An ObnoxiousTune “is-a” Tune
class DisruptLecture {

 public static void main() {

 CellPhone noiseMaker = new CellPhone();

 ObnoxiousTune ot = new ObnoxiousTune();

 noiseMaker.ring(ot); // ot works though Tune called for

 }

}

Tune

ObnoxiousTune

A “UML” diagram

The final Keyword
□ Vaguely like const in C++.
□ It says “this is invariant”.
□ Can be used for

■ data
■ methods
■ classes

□ A kind of protection mechanism.

final Data (Compile-Time)
□ For primitive types (int, float, etc.), the

meaning is “this can’t change value”.
class Sedan {
 final int numDoors = 4;

□ For references, the meaning is “this reference
must always refer to the same object”.
 final Engine e = new Engine(300);

final Data (Run-Time)
□ Called a “blank final;” the value is filled in

during execution.
class Sedan {

 final int topSpeed;

 Sedan(int ts) {

 topSpeed = ts;

 // ...

 }

}

class DragRace {

 Sedan chevy = new Sedan(120), ford = new Sedan(140);

 //! chevy.topSpeed = 150;

final Method Arguments
class Sedan {
 public void replaceTire(final Tire t) {
 //! t = new Tire();

□ Same idea:
■ a final primitive has a constant value
■ a final reference always refers to the same object.

□ Note well: a final reference does not say that the
object referred to can’t change (cf. C++)

final Methods
□ final methods cannot be overridden in

subclasses. Maybe a bad idea?
□ final methods can be inlined, allowing the

compiler to insert the method code where it is
called.

□ This may improve execution speed.
□ Only useful for small methods.
□ private methods are implicitly final.

final Classes
□ These can’t be inherited from (ummm,

“subclassed”?.
□ All methods are implicitly final, so inlining

can be done.

Class Loading
□ A .class file is loaded when

■ the first object of that type is created, or
■ when a static member is first used.

□ When a derived class object is created, the
base class file is immediately loaded (before
the derived class constructor actually goes to
work).

Variable-Length Argument Lists
class A { int i; }

public class VarArgs {

 static void f(Object[] x) {

 for (int i = 0; i < x.length; i++)

 System.out.println(x[i]);

 }

 public static void main(String[] args) {

 f(new Object[] {

 new Integer(47), new VarArgs(),

 new Float(3.14), new Double(11.11) });

 f(new Object[] {"one", "two", "three" }) ;

 f(new Object[] {new A(), new A(), new A() });

 }

}

Variable-Length Argument Lists
□ This prints

47
VarArgs@fee6172e
3.14
11.11
one
two
three
A@fee61874
A@fee61873
A@fee6186a

