Access Control & Reuse

Slides adapted from Prof. Steven Roehrig
and Sakir YUCEL (CMU)

0 Implementation hiding with packages and
access specifiers.

Composition
Inheritance

More on constructors
Finals

O o o o O

Class loading

—!

Access Specifiers

0 public, protected, private and “friendly”

0 We haven’t used these yet, except for main()
and toString().

o main() needs to be public, so the runtime
system can call it.

0 toString() needs to be public since 1t 1s
public in Object, and we are “overriding” it.

—!
The “Need To Know” Principle

o Like military secrets, portions of your classes
are best kept private.

0 The public interface of a class should provide
everything users need, but nothing they don’t.

0 Access specifiers allow you to enforce the
“need to know” principle.

—!

Access Specifiers

o public members (variables and methods) are
freely available for anyone’s use.

O private members can be accessed (used) only
by the methods of the containing class.

o protected members are public to subclasses,
private to others.
0 “Friendly” members have package access:

no access specifier
public within the containing package

—!
Packages

o Java’s concept of “module”.
o0 A group of related classes.

0 A package can have a name, but there 1s the
unnamed package, which holds all the classes
in your program that you haven’t put into a
named package.

—!
How Does It All Work?

o So far, we haven’t used packages and access
specifiers. Why has this worked?

We kept all our .class files in the same folder;
they are 1n the unnamed package.

All of our members were therefore friendly.

Only methods that are called from another
package need access specifiers.

Make sure you have the current directory (°.”) in
your classpath.

—!
The Basic Rules

0 Class members should be private unless there
1S a need to know or use.

Think carefully about the public interface.

0 Use accessors/mutators (aka get and set
methods) to control access to private member
variables.

o0 Often we create methods that are only used
internally; make these private.

0 We’ll worry about protected later.

Example

public class Fraction {
public Fraction()
public Fraction(int n, int d)
public String toString()
public String toDecimal()
public Fraction add(Fraction f)
private int numerator;
private int denominator;
private int gcd(int a, int b)

I —
How To Change A Fraction?

o This 1s a design decision.

0 Some classes are “immutable” for good (or
bad!) reasons. String 1s an example.

o If we want users to change a Fraction
object’s values, provide a “set” function:

public void set(int n, int d) {
// test carefully for suitability, then:
numerator = n;
denominator = d;

—!

Interface vs. Implementation

o For flexibility, we want the right to change an
implementation 1f we find a better one.

0 But we don’t want to break client code.

0 Access specifiers restrict what clients can rely
on.

o Everything marked private is subject to
change.

—!
Example: NNCollection

0 Our clients want to store last names and
associated telephone numbers.

0 The list may be large.
o They want

a class NameNumber for name & number pairs
NNCollection()

insert(NameNumber)
findNumber(String)

NameNumber

public class NameNumber {

private String lastName;

private String telNumber;

public NameNumber() {}

public NameNumber(String name, String num) {
lastName = name;
telNumber = num;

}

public String getLastName() {
return lastName;

}

public String getTelNumber() {
return telNumber;

e
NNCollection

public class NNCollection {
private NameNumber[] nnArray = new NameNumber[100];
private int free;
public NNCollection() {free = 0;}
public void insert(NameNumber n) {
int index = 0;
for (int i = free++;
i!=0 && nnArray[i-1].getLastName().compareTo(n.getLastName())>0;

i--) {
nnArray[i] = nnArray[i-1];
index = 1i;

}

nnArray[index] = n;

e
NNCollection (cont.)

public String findNumber(String 1lName) {
for (int i = 0; i != free; i++)
if (nnArray[i].getLastName().equals(1Name))
return nnArray[i].getTelNumber();
return new String("Name not found");

NNCollection Insertion

Initial Array
nnArray...
'\
free
Insert “Lewis”
5238234 nnArray...

A

free

NNCollection Insertion (cont.)

Insert “Clay”

Lewis nnArray...
268-1234
A A
i free
Lewis nnArray...
268-1234
t® ®
i free
268-5678 268-1234 o
® f

free

—!
Yes, This Is Rotten

0 It uses a fixed-size array.

0 Array elements are interchanged every time a
new name 1s entered. Slow.

o The array 1s searched sequentially. Slow.
0 But, our clients can get started on their code.

0 We go back and build a better
implementation.

e
Better NNCollection

o0 Use a binary tree.

o Names “on the left” precede
lexicographically.

o Roughly logarithmic insert and retrieve times.

0 Very recursive, but not very expensive.

Binary Tree Layout

NNCollection @ root NNTree

null null null null null null

Note: Only the name of the NameNumber object 1s shown

NNTree Class
o Each NNTree object

= 1s anode, holding a NameNumber object.

= keeps a reference to its left child and right child.
= knows how to insert a NameNumber object.

= knows how to find a NameNumber object.

Inserting “McCoy”

NNCollection @ McCoy > Lewis
~

/ \ McCoy < Moore / \

/ \ / / \ McCoy > Martin

null null null null null null

Inserting “McCoy”

NNCollection @ McCoy > Lewis
~

McCoy < Moor

/ \ / / \ McCoy > Martin
null null null null null @

nJll null

Finding “Day”

NNCollection

Day < Lewis w
/ \ Day > Clay ! \

null m\ﬂl null null null @
l

null null

e
NNTree Class Definition

public class NNTree {
private NNTree 1Child;
private NNTree rChild;
private NameNumber contents;
public NNTree(NameNumber n) {
contents = n;

b

————————
NNTree Class Definition (cont.)

public void insert(NameNumber n) {
if (n.getLastName().compareTo(contents.getLastName()) < 0)
if (1Child != null)
1Child.insert(n);
else
1Child = new NNTree(n);
else
if (rChild !'= null)
rChild.insert(n);
else
rChild = new NNTree(n);

—!
NNTree Class Definition (cont.)

public String findNumber(String IName) {
if (IName.compareTo(contents.getLastName()) < 0)
if (IChild != null)
return IChild.findNumber(IName);
else
return new String(''Name not found");
else if (IName.equals(contents.getLLastName()))
return contents.getTelNumber();
else if (IName.compareTo(contents.getLastName()) > 0)
if (rChild != null)
return rChild.findNumber(IName);
else
return new String(''Name not found");
else
return new String(''Name not found");

——————————
NNCollection Again

public class NNCollection §{
private NNTree root;
public NNCollection() {}
public void insert(NameNumber n) {
if (root != null) root.insert(n);
else root = new NNTree(n);
b
String findNumber(String IName) §{
if (root != null)
return root.findNumber(IName);
else
return new String(''Name not found");

—!

More on Packages

0 Bringing in a package of classes:
import java.util.*;

0 Bringing 1n a single class:
import java.util. ArrayList;

0 The compiler can find these things, through
the classpath.

o If we’re working from the command line, the
classpath must be an environmental variable.

—!
Creating a Package

0 The very first line 1n all the files intended for
the package named myPackage:
package myPackage;

0 Put all of the .class files 1n a directory named
myPackage.

o Put the myPackage directory, as a
subdirectory, in a directory given in the
classpath.

—!

Class Access

0 Classes can be public or not.

o Non-public classes are available only within
the package they are defined 1n.

o There can be only one public class in a
“compilation unit” (a .java file).

o Non-public classes are “helper” classes, not
for public use.

Class Reuse

0 A noble goal, and 1n Java 1t’s finally happening!

o Basically two ways: composition and
inheritance.

0 Composition 1s called “has-a”.
0 Inheritance 1s called “1s-a”.

Composition

- Point, Rectangle, Shape, Triangle
-~ 1s-a vs. has-a

- Rectangle has-a point

- Rectangle 1s-a shape

- Point 1s-a shape

—!

Inheritance

0 An object of a new class that inkerits from an
existing class has all the “powers and
abilities” of the parent class:

all data members

all methods

you can add additional data and methods 1f you
wish

a derived class object “is-an” object of the parent

class type, so can be used 1n function calls where
a parent-class object 1s specified

Inheritance Syntax

class Cleanser {
private String activelngredient;
public void dilute(int percent) {// water-down}
public void apply(DirtyThing d) {// pour it on}
public void scrub(Brush b) {// watch i1t work}
}
public class Detergent extends Cleanser {
private String speciallngredient;
public void scrub(Brush b) {
// scrub gently, then
super.scrub(b); // the usual way

}
public void foam() { // make bubbles}

—!

Access Control, Again

0 Detergent does indeed have an
activelngredient, but it’s not accessible.

0 If Detergent needs to access 1t, 1t must be
either

made protected (or friendly) in Cleanser, or

be accessible through get and set methods 1n
Cleanser.

0 You can’t inherit just to get access!

—!

What Is A Detergent Object?

0 An object of type Cleanser, having all the
members of Cleanser.

0 An object of type Detergent, having all the
additional members of Detergent.

—!

Subclasses and Constructors

o Think of a Detergent object as containing a
Cleanser sub-object.

o0 So, that sub-object has to be constructed when
you create a Detergent object.

o The Cleanser object has to be created first,
since constructing the remaining Detergent
part might rely on 1it.

0 “Always call the base class constructor first.”

Subclasses and Constructors

class Cleanser {
private String activelngredient;
Cleanser() {
System.out.println("Cleanser constructor");

}
}

public class Detergent extends Cleanser {
private String speciallngredient;
Detergent() {
System.out.println("Detergent constructor");
}
public static void main(String[] args) {
Detergent d = new Detergent();

}

Subclasses and Constructors

class Cleanser {
private String activelngredient;
Cleanser(String active) {
activelngredient = active;

}

public class Detergent extends Cleanser {
private String speciallngredient;
Detergent(String active, String special) {
super(active); // what if this isn't here?
speciallngredient = special;

—!

Composition vs. Inheritance

o Think “has-a” vs. “i1s-a”.
0 Consider the NNCollection class. Suppose

now we need to store a String/int pair (names
and ages, perhaps).

o Should we 1nherit, or compose?

o In either approach, we just need to be able to

turn Strings 1nto ints, and vice versa (not
hard).

—!

Composition vs. Inheritance

class NACollection {
private NNCollection nnc;
NACollection() {// ...}
public void insert (NameAge n) { uses nnc’s insert()}
public int findAge(String name) { uses nnc¢’s findNumber()}
5
or
class NACollection extends NNCollection §
NACollection() {//...}
public void insert(NameAge n) { uses super.insert()}
public int findAge(String name) { uses super.findNumber()}

h

—!
protected Class Members

o public to subclasses.
O private to “the outside world”,

0 except within the package (i.e., they are
“friendly”.

o private 1s usually the best policy, unless you

are looking for speed (but then why use
Javal?).

—————————————
Upcasting

class CellPhone {
cellPhone() { //...}
public void ring(Tune t) { t.play(); }

}

class Tune {

Tune() { // ...}
public void play() { // ...}

}

class ObnoxiousTune extends Tune{
ObnoxiousTune() { // ...}
// ...

An ObnoxiousTune “i1s-a”’ Tune

class DisruptLecture {
public static void main() {
CellPhone noiseMaker = new CellPhone();
ObnoxiousTune ot = new ObnoxiousTune();
noiseMaker.ring(ot); // ot works though Tune called for

Tune
AN

A “UML” diagram

ObnoxiousTune

————
The final Keyword

o Vaguely like const in C++.

0 It says “this 1s invariant™.

o Can be used for
= data
= methods
= classes

o A kind of protection mechanism.

—!
final Data (Compile-Time)

o0 For primitive types (int, float, etc.), the
meaning 1s “this can’t change value”.
class Sedan {

final int numDoors = 4;

0 For references, the meaning 1s “this reference
must always refer to the same object”.
final Engine e = new Engine(300);

final Data (Run-Time)

0 Called a “blank final;” the value 1s filled in
during execution.

class Sedan {
final int topSpeed;
Sedan(int ts) {
topSpeed = ts;
// ...
}
}

class DragRace {
Sedan chevy = new Sedan(120), ford = new Sedan(140);

//! chevy.topSpeed = 150;

final Method Arguments

class Sedan {
public void replaceTire(final Tire t) {

//1 t=new Tire();

0 Same 1dea:
= a final primitive has a constant value

= afinal reference always refers to the same object.
o Note well: a final reference does not say that the
object referred to can’t change (cf. C++)

—!
final Methods

o final methods cannot be overridden in
subclasses. Maybe a bad 1dea?

o final methods can be inlined, allowing the

compiler to insert the method code where 1t 1s
called.

o This may improve execution speed.
0 Only useful for small methods.
o private methods are implicitly final.

final Classes

0 These can’t be inherited from (ummm,
“subclassed”?.

0 All methods are implicitly final, so inlining
can be done.

—!
Class Loading

0 A .class file 1s loaded when
the first object of that type is created, or
when a static member 1s first used.

o When a derived class object 1s created, the
base class file 1s immediately loaded (before
the derived class constructor actually goes to
work).

N —
Variable-Length Argument Lists

class A { int i; }
public class VarArgs {
static void f(Object[] x) {
for (int i = 0; i < x.length; i++)
System.out.println(x[i]);
}
public static void main(String[] args) {
f(new Object[] {
new Integer(47), new VarArgs(),
new Float(3.14), new Double(11.11) });
f(new Object[] {"one", "two", "three" }) ;
f(new Object[] {new A(), new A(), new A() });

N —
Variable-Length Argument Lists

o This prints
47
VarArgs@fee6172e
3.14
11.11
one
two
three
A@fee61874
A@tee61873
A@fee6186a

