Week 4
Algorithm Analysis & Intro
To Sorting



Data Structures and Algorithms

Algorithms Analysis

Adapted from Haluk Bingol and
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Simplified Model > Example ...
Geometric Series Sum ...

public class GeometrikSeriesSumPower ({

public static void main (String]

(
System.out.println ("1, 4:
System.out.println ("1, 4:
System.out.println ("2, 4:
System.out.println ("2, 4

public static int powerA (int
int result = 1;

for (int i = 1;
result *= x;

i <= n;

}

return result;

public static int powerB (int
if (n == 0) {
return 1;

} else if (n % 2

r rn

== 0)

1 alese [ // n 12 0odd

1 args) A
+ powerA (
" + powerB (
+ (
+ (

"w
’

1
1,
2,
2

’

powerA
powerB

X, int n) {

++1) |

X, int n) {

{ // n is even

werB(x * x, n 2

powerB
(1 o=
x" = { (X2NHMJ 0<n, n 1s even
l x (x5)"210<h, n 1is odd
powerB 0<n 0<n
n=0 n_even n_odd
10 3 3 3
11 2 - -
12 - 5 5
13 - 10+T (In/2]) -
15 - - 12+T (In/2))
Total 5 I18+T([n/2j) 20+T (In/2)])
1, 4: 1 powerB
1, 4: 1 [ 5 n=0
2, 4: 16 x" = { 18+4T (In/2)) 0O<n, n 1s even
2, 4: 16 | 20+T (In/2)]) 0<n, n is odd
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Simplified Model > Example ...

Geometric Series Sum ...

Let n = 2% for some k>O0.

Since n is even, |n/2] = n/2 = 2¥1.

For n 2k, T(2¥) = 18 + T(2K1).
Using repeated substitution
T(2¥) = 18 + T (21

= 18 + 18 + T (2%

= 18 + 18 + 18 + T (23

183 + T (2%9)

Substitution stops when k = j
T(2¥) = 18k + T(1)
= 18k + 20 + T(0)
18k + 20 + 5
= 18k + 25.

n = 2 then k = log, n

T(2¥) = 18 log, n + 25

powerB
[ 5 n=0

x* = { 18+T(In/2])
| 20+T(In/2])

0<n,
0<n,

n is even
n is odd




Simplified Model > Example ...
Geometric Series Sum ...

Let n = 2% for some k>0.
Since n is even, [n/2] = n/2

2Kk1,

For n = 2%, T(2%) = 18 + T(2¥1).

Using repeated substitution
T(2%) = 18 + T (2%1)

= 18 + 18 + T (2K?)

= 18 + 18 + 18 + T (2K3)

183 + T (2%9)

Substitution stops when k =
T(2¥) = 18k + T(1)
= 18k + 20 + T(0)
18k + 20 + 5
= 18k + 25.

n = 2 then k = log, n

T(2¥) = 18 log, n + 25

J

Suppose n = 2%-1 for some k>0.
Since n is odd,
In/2] = [ (2*-1) /2]
(2%-2)/2
= 2k1-1

2KkL,

For n = 2%-1,
T(2¥-1) = 20 + T(2¥*'-1), k>1.

Using repeated substitution

T (25-1) = 20 + T(2x1'-1)
=20 + 20 + T(2%2%-1)
=20 + 20 + 20 + T (2%°3-1)
= 203 + T(2¥3-1)

Substitution stops when k = j

T (2%-1) = 20k + T(2%=1
= 20k + T(0) powerB
= 20k + 5. [ 5 n=0
x* = { 18+T(In/2])

0<n,

n is

n = 2Kk_1 +hen k = Toceveén+1)




Simplified Model > Example ...
Geometric Series Sum ...

Let n = 2% for some k>0.
Since n is even, [n/2] = n/2

2Kk1,

For n = 2%, T(2%) = 18 + T (2K1).

Using repeated substitution
T(2%) = 18 + T (2%1)

= 18 + 18 + T (2K?)

= 18 + 18 + 18 + T (2K3)

183 + T (2%9)

Substitution stops when k =
T(2¥) = 18k + T(1)
= 18k + 20 + T(0)
18k + 20 + 5
= 18k + 25.

n = 2 then k = log, n

T(2¥) = 18 log, n + 25

J

Suppose n = 2%-1 for some k>0.
Since n is odd,
In/2] = [ (2*-1) /2]
(2%-2)/2
= 2k1-1

= 2K,

For n = 2

k1]
average
T (25-1) = 20

19(llog, (n+1)] + 1) + 18

Using repeated substitution
T(2%-1) = 20 + T(2K1-1)

=20 + 20 + T(2¥?-1)

=20 + 20 + 20 + T(2%3-1)

= 203 + T(27-1)

Substitution stops when k = j

T (2%-1) = 20k + T(2%=1
= 20k + T(0) powerB
= 20k + 5. [ 5 n=0
x* = { 18+T(In/2])

0<n,

n is

n = 2Kk_1 +hen k = Toceveén+1)




Simplified Model > Example ...

Geometric Series Sum ..

public class GeometrikSeriesSumPower ({

public static void main (String[] args) {

System.out.println (‘s 2, 4: " + geometrikSeriesSumPower (2,

4));
}

public static int geometrikSeriesSumPower (int x
return powerB(x, n + 1) - 1 / (x - 1);

algorithm T (n)

Sum 11/2 n® + 47/2 n + 27

Horner 13n + 22
) Power 19([log2(n+1)J + 1) + 18
public static int powerB(int x, int n) {
if (n == 0) {
return 1;
} else if (n $ 2 == 0) { // n is even
return powerB(x * x, n / 2);
} else { // n is odd s 2, 4: 31

return x * powerB(x * x, n / 2);




Comparison

T(n)
1000
progs /
750
Program 2.7
500 —
250
Program 2.9
0 T T T T 1
0 20 40 &0 30

100

algorithm T (n)

Sum 11/2 n® + 47/2 n + 27

Horner
Power

13n + 22
19(llog, (n+1)] + 1) + 18




Algorithm efficiency

when we want to classify the efficiency of an algorithm, we must first identify the

costs to be measured
= memory used? sometimes relevant, but not usually driving force
= execution time? dependent on various factors, including computer specs
= # of steps somewhat generic definition, but most useful

to classify an algorithm's efficiency, first identify the steps that are to be
measured

e.g., for searching: # of inspections, ...
for sorting: # of inspections, # of swaps, # of inspections + swaps, ...

must focus on key steps (that capture the behavior of the algorithm)

= e.g., for searching: there is overhead, but the work done by the algorithm is
dominated by the number of inspections o)



Best vs. average vs. worst case

when measuring efficiency, you need to decide what case you care about

= best case: usually not of much practical use
the best case scenario may be rare, certainly not guaranteed

= average case: can be useful to know
on average, how would you expect the algorithm to perform

can be difficult to analyze — must consider all possible inputs and
calculate the average performance across all inputs

= worst case: most commonly used measure of performance
provides upper-bound on performance, guaranteed to do no wors

sequential search:  best? average?  worst? 10



Big-Oh (intuitively)

intuitively: an algorithm is O( f(N) ) if the # of steps involved in solving a
problem of size N has f(N) as the dominant term

ON): 5N  3N+2 Ni2-20
O(N?): N2N2+100 10N2-5N + 100
why dren't the smaller terms important?

= big-Oh is a "long-term" measure
= when N is sufficiently large, the largest term dominates

consider f,(N) = 300"N (a very steep line) & f(N) = '%2*N? (a very gradual quadratic)

in the short run (i.e., for small values of N), f,(N) > f,(N)
e.g., f,(10) = 30010 = 3,000 > 50 = %*10% = f,(10)
in the long run (i.e., for large values of N), f,(N) <f,(N)
e.g., f,(1,000) = 300*1,000 = 300,000 < 500,000 = 72*1 ,000% = f(1 ,000; 1



Big-Oh and rate-of-growth

big-Oh classifications capture rate of growth

= for an O(N) algorithm, doubling the problem size doubles the amount of work
e.g., suppose Cost(N) =5N -3

— Cost(S)=55-3

— Cost(2S) =5(2S)-3=10S-3

= foran O(N log N) algorithm, doubling the problem size more than doubles the
amount of work

e.g., suppose Cost(N) =5Nlog N + N
— Cost(S)=5SlogS+3S
— Cost(2S) = 5(2S) log (2S) + 2S = 10S(log(S)+1) + 25 = 10S log S + 12S

« for an O(N?) algorithm, doubling the problem size quadruples theladhount of work

N



Big-Oh of searching/sorting

sequential search: worst case cost of finding an item in a list of size N
= may have to inspect every item in the list

Cost(N) = N inspections + overhead
0 O(N)

selection sort: cost of sorting a list of N items
= make N-1 passes through the list, comparing all elements and performing one swap

Cost(N)=(1+2+3+ ... + N-1) comparisons + N-1 swaps + overhead
= N*(N-1)/2 comparisons + N-1 swaps + overhead
=% N2 - % N comparisons + N-1 swaps + overhead
0 O(N?)

13



General rules for analyzing algorithms

1. for loops: the running time of a for loop is at most
running time of statements in loop x number of loop iterations

for (int i = 0; 1 < N; 1++) {
sum += nums/[i];

}

2. nested loops: the running time of a statement in nested loops is
running time of statement in loop < product of sizes of the loops

for (int 1 = 0; 1 < N; 1i++) {
for (int 7 = 0; J < M; J++) {
numsl[i] += nums2[j] + 1i;

}



General rules for analyzing algorithms

3. consecutive statements: the running time of consecutive statements is
sum of their individual running times

int sum = 0;
for (int 1 = 0; 1 < N; 1i++) {
sum += nums[i];
)
_ double avg = (double)sum/N; .
4. if-else: the running time of an if-else statement is at most

running time of the test + maximum running time of the if and else cases

if (isSorted (nums)) {

index = binarySearch (nums, desired);
}
else {

index = sequentialSearch (nums, desired); 15
1



Exercises

consider an algorithm whose cost function is
Cost(N) = 12N = 5N2 + N = 300

intutitively, we know this is O(N°)

formally, what are values of C and T that meet the definition?
= an algorithm is O(N?) if there eX|sts a positive constant C & non-negative integer T such that for all N

| Ul SIEPYS UqUII < \J I‘l
conS|derﬂ mergeé o

If the range to be sorted is size 0 or 1, then DONE.

Otherwise, calculate the indices 1/3 and 2/3 of the way through the list.
Recursively sort each third of the list.

Merge the three sorted sublists together.

=

what is the recurrence relation that defines the cost of this algorithm?
what is it's big-Oh classification?

16




Big-Oh

e is used to classify algorithms according to how
their running time or space requirements grow

as the input size grows
e characterizes functions accordina to their

ar |




Mathematical Backgrounad
Big-Oh

Definition

f(n) = iff

g(n) >0, vn>0

3 ceR", dn,&EZ7 3

f(n) < cg(n) forn, < n

cg(n)

_____

® meraklisina.com



Mathematical Background>Big-Oh
Some Properties

f(n) = 12 + 22 + ... + n?
=1/3 n (n+1/2) (n+1)
=1/3n3+1/2n%? + 1/6 n
= O(n)
= 1/3 n? + O(n?)

Remark
f(n) = O(1/3n%)  don’t write constamxisiacon



Mathematical Background>Big-Oh
Some Properties ...

Note that “=" is not in the mathematical
sense

e 2 n% + n = 0(n?) 4

e O(N%) =2 n?+n X

meraklisina.com



Mathematical Background>Big-Oh
Some Properties ...

Theorem
If f.(n) = O (g,(n)) and f,(n) = O (g,(n)) then
o f,(n) + f,(n) = max(O (g,(n)), O (g,(n)) )

e f,(n) xf,(n) = O(g,(n) x g,(n))



Mathematical Background>Big-Oh
Some Properties ...

Theorem

. L fm=Yan
Consider polynomial % where a_>0.

Then f(n) = O(n™).

meraklisina.com



Mathematical Background>Big-Oh
Some Properties ...

e f(n) = O (f(n))

e c O(f(n)) = O (f(n))

 O(f(n)) + O(f(n)) = O(f(n))

* O(O(f(n))) = O(f(n))

e O(f(n)) O(g(n)) = O(f(n) g(n))
e O(f(n) g(n)) = f(n) O(ag(n))



Mathematical Backgrounad
Omega

Q(g(n)) = {f(n) : there exist positive constants ¢ and ng such that
0<cg(n) < f(n)foralln = ny} .

asymptotic lower bound
,f( n)

nlo : v .
f(n) =8(g(n))



Mathematical Background>0Omega
Some Properties ...

Theorem

Consider polynomial 7" ~%“"  where a_>0.
Then f(n) = Q(n™).

meraklisina.com



Mathematical Backgrounad

Theta

®(g(n)) = {f(n) : there exist positive constants c;. ¢z, and ng such that

0<cign) < f(n) <crg(n)forall n = ngp} )

e gd(n) is an asymptotically tight bound for f (n).

1.2 < e 9
Sl 3n = O(n°)
('23(’1)

”/

C1, C2, and I—I()
/ L& 1

2 » 2
cin® < —n° —3n < ¢n
c'l.g(n) 2
/ _// |
> Cf S
! 2
: n
o . -
f(n)=0(g(n))
(a)

ro

C, = 1/14, C, = 1/2, and n, = 7



Mgthematical Backgrounad
Big-Oh

O(g(n)) = {f(n) : there exist positive constants ¢ and ng such that
0< f(n) <cg(n)forall n = ng}.

e For only an asymptotic upper bound, we use O-notation

cg(n)

no N "
f(n) = 0(g(n))



Mathematical Background> Theta ...
Example

For any two functions f(n) and g(n), we have f(n) = ©®(g(n)) if and only if
f(n) = 0(g(n))and f(n) = Q2(g(n)). &

Consider /f(n)= Zola,-n"

f(n) = O(n™)
f(n) = Q(n™)
So f(n) = ©(n™)



Comparison of Orders

O(1) < O(log n) < O(n) < O(n log n) < O(n?%) < O(n?) < O(2")

n logz(n) n  nlogzin) n* n 27
1 ] 1 u} 1 1 2
2 1 2 2 4 8 4
4 2 4 8 16 64 16
8 3 g8 24 64 512 256
16 4 16 64 256 4.096 B65.536
32 5 32 160 1.024 32.768 4.294 967 296
B4 B B4 384 4.096 262.144 18.446.744.073.709.600.000
128 7 128 896 16.384 2.097 152 340.282.366.920.938.000.000.000.000.000.000.000.000
1200 e
1.000 | [~=—10gn
800 - | n
— { |
Z 600 A ; L
— | —— N2
400 A i * n3
200 + | | —=—2n
|
o - T T - T - d
1 2 4 8 16 32 64 128
n

meraklisina.com



Comparison of Orders

O(1) < O(log n) < O(n) < O(n log n) < O(n?) < O(n?) < O(2"

meraklisina.com



O() Analysis of Running Time



O() Analysis_of Running Time_ _
Sequential Composition

Worst-case running time of statements

is O(max(T,(n), T,(n), ..., T_(N))

where

N(T(n)) ic the riinhina Fime Af ckatement Qmeraklisina.com



O() Analysis of Running Time
[teration

Worst-case running time of statements

for(s;; S,; S))
S .

4/

is O(max(T,(n), T,(n)x(I(n)+1), T,(n)xI(n), T,(n)xI(n))

where
O(T.(n)) is the running time of statement S
I(n) is the number of iterations executed in the worst case



O() Ana!y§is of Running Tim_e
Conditional Execution

Worst-case running time of statements

is O(max(T,(n), T,(n), T,(n))

where

N(T(n)) ic the riinhina Fime Af ckatement Qmeraklisina.com



O() Analysis of Running Time
Example

int findMaximum(int[] a) {
int result = a[0];

for (int i = 1; 1 < a.length; ++i)
if (result < af[i]) {

result = al
}
}

return result;

il;

{

Worst-case running time
if statement 5 executes all the
time

When ?

Best-case running time
if statement 5 never executes

When ?

On-the-average running ti&isina.com

LY ol I I I . I P I ol o



Analysis of insertion sort

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
int i, key, j;

Best case? !
Worst case? [ ¢ nten i

key = arr[i];
j =1i-1;

/* Move elements of arr[@..1-1], that are
greater than key, to one position ahead
of their current position */

while (j >= 0 && arr[j] > key)

{

arr[j+1] = arr[j];
J=73-1



Analyzing recursive algorithms

recursive algorithms can be analyzed by defining a recurrence relation:

cost of searching N items using binary search =
cost of comparing middle element + cost of searching correct half (N/2 items)

more succinctly: Cost(N) = Cost(N/2) + C

Cost(N) =Cost(N/2)+C can unwind Cost(N/2)
= (Cost(N/4) +C) + C

Cost(N/4) + 2C  can unwind Cost(N/4)

(Cost(N/8) + C) + 2C

Cost(N/8) + 3C  can continue unwinding

Cost(1) + (log,N)*C
=Clog, N + C"where C' = Cost(1)
0 O(log N)



Sorting Algorithms

Slides adapted from Tolga Can



Sorting

Sorting 1s a process that organizes a collection of data into either ascending or
descending order.

An internal sort requires that the collection of data fit entirely in the
computer’s main memory.

We can use an external sort when the collection of data cannot fit in the
computer’s main memory all at once but must reside in secondary storage such
as on a disk.

We will analyze only internal sorting algorithms.

Any significant amount of computer output is generally arranged in some
sorted order so that it can be interpreted.

Sorting also has indirect uses. An initial sort of the data can significantly
enhance the performance of an algorithm.

Majority of programming projects use a sort somewhere, and in many cases,



Sorting Algorithms

* There are many sorting algorithms, such as:
— Selection Sort
— Insertion Sort
— Bubble Sort
— Merge Sort
— Quick Sort

 The first three are the foundations for faster



Selection Sort

The list 1s divided into two sublists, sorted and unsorted,
which are divided by an imaginary wall.

We find the smallest element from the unsorted sublist and
swap it with the element at the beginning of the unsorted
data.

After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

Each time we move one element from the unsorted sublist
to the sorted sublist, we say that we have completed a sort
pass.



Sorted Unsorted
23 78 45 8 32 56
8 | 78 45 23 32 56
8 23 | 45 78 32 56
8 23 32 78 45 56
8 23 32 45 I 78 56
8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5



Selection Sort (cont.)

void selectionSort(double[] a, int n) {
for (int 1 = 9; 1 < n-1; i++) {
int min = 1i;
for (int j = i+1; j < n; j++)
if (a[j] < a[min]) min = j;
swap(a, i, min);
}
}

void swap(double[] a, int lhs, int rhs )
{



Selection Sort -- Analysis

In general, we compare keys and move 1items (or exchange items)
in a sorting algorithm (which uses key comparisons).

[0 So, to analyze a sorting algorithm we should count the
number of key comparisons and the number of moves.

 Ignoring other operations does not affect our final result.

In selectionSort function, the outer for loop executes n-1 times.
We invoke swap function once at each iteration.

[0 Total Swaps: n-1

[0 Total Moves: 3*(n-1) (Each swap has three moves)



Selection Sort — Analysis (cont.)

* The inner for loop executes the size of the unsorted part minus 1
(from 1 to n-1), and 1n each iteration we make one key
comparison.

[ # of key comparisons = 1+2+...4n-1 = n*(n-1)/2
[0 So, Selection sort is O(n?)

* The best case, the worst case, and the average case of the
selection sort algorithm are same. [ all of them are O(n?)

This means that the behavior of the selection sort algorithm does not depend on the
initial organization of data.

Since O(n?) grows so rapidly, the selection sort algorithm is appropriate only for
small n.

Although the selection sort algorithm requires O(n?) key comparisons, it only



Comparison of N, logN and N°
N O(LogN) O(N%H

16 4 256
64 6 4K
256 8 64K
1,024 10 1M

16,384 14 256M
131,072 17 16G
262,144 18 6.87E+10
524,288 19 2.74E+11
1,048,576 20 1.09E+12



Insertion Sort

Insertion sort 1s a simple sorting algorithm that 1s
appropriate for small inputs.

— Most common sorting technique used by card players.

The list 1s divided 1nto two parts: sorted and
unsorted.

In each pass, the first element of the unsorted part
1s picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

A list of n elements will take at most n-1 passes to
antt tha Aafa



Sorted Unsorted

25 78 45 8 32 56 Original List
23 78 45 8 32 56 After pass 1
23 45 78 8 32 56 After pass 2

8 23 45 78 32 56 After pass 3

8 23 32 45 78 56 After pass 4
8 23 32 45 56 78 After pass 5




Insertion Sort Algorithm

void insertionSort(double[] a, int n)

{

for (int 1 = 1; 1 < n; i++)

{
double tmp = a[i];

for (int j=i; j>0 && tmp < a[j-1]; j--)
alj] = a[3j-1];
a[j] = tmp;
}



Insertion Sort — Analysis

Running time depends on not only the size of the array but also
the contents of the array.

Best-case: 0 O(n)

— Array is already sorted in ascending order.
— Inner loop will not be executed.
— The number of moves: 2*(n-1) 0 O(n)

— The number of key comparisons: (n-1) 0 O(n)
Worst-case: 0 O(n?)

— Array is in reverse order:

— Inner loop is executed i-1 times, for1=2,3, ..., n
— The number of moves: 2*(n-1)+(1+2+...4+n-1)= 2*(n-1)+ n*(n-1)/2 0 O(n?)
— The number of key comparisons: (1+2+...+n-1)=n*(n-1)/2 0 O(n?)

Averace-case: [1 O(n?)



Analysis of insertion sort

Which running time will be used to characterize this
algorithm?
— Best, worst or average?

Worst:

— Longest running time (this 1s the upper limit for the algorithm)

— It is guaranteed that the algorithm will not be worse than this.

Sometimes we are interested in average case. But there are
some problems with the average case.

— It is difficult to figure out the average case. i.e. what is average
input?

— Are we going to assume all possible inputs are equally likely?

h d al e )



Bubble Sort

The list 1s divided into two sublists: sorted and
unsorted.

The smallest element 1s bubbled from the unsorted
list and moved to the sorted sublist.

After that, the wall moves one element ahead,
increasing the number of sorted elements and
decreasing the number of unsorted ones.

Each time an element moves from the unsorted
part to the sorted part one sort pass 1s completed.

Given a list of n elements, bubble sort requires up



Bubble

Sort

23 78 45 3 6
|
3 | 23 78 45 32 56
|
3 23 32 78 45 56
|
3 23 32 |45 78 56
|
3 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4



Bubble Sort Algorithm

void bubleSort(double[] a, int n)
{

bool sorted = false;

int last = n-1;

for (int 1 = 0; (i < last) && !sorted; i++){
sorted = true;
for (int j=last; j > 1i; j--)
if (a[j-1] > a[iH{
swap(a, J, j-1);
sorted = false; // signal exchange



Bubble Sort — Analysis

Best-case: 0 O(n)
— Array is already sorted in ascending order.
— The number of moves: 0 0 0O(1)
— The number of key comparisons: (n-1) [ O(n)

Worst-case: 0 O(n?)

— Array is in reverse order:

— Outer loop 1s executed n-1 times,

— The number of moves: 3*(1+2+...4+n-1) =3 * n*(n-1)/2

— The number of key comparisons: (1+2+...+n-1)=n*(n-1)/2
Average-case: 0 O(n?)

— We have to look at all possible initial data organizations.

So. Bubble Sort is O(n?)

0 O(n?)
0 O(n?)



Mergesort

* Mergesort algorithm 1s one of two important divide-and-conquer
sorting algorithms (the other one is quicksort).

e It 1is a recursive algorithm.
— Divides the list into halves,
— Sort each halve separately, and

— Then merge the sorted halves into one sorted array.



class MergeSort
{ void sort(int arr[], int 1, int r) {
if (1 < r) {
// Find the middle point
int m = (1+r)/2;
// Sort first and second halves
sort(arr, 1, m);
sort(arr , m+l, r);
// Merge the sorted halves
merge(arr, 1, m, r);

}
// Driver method

public static void main(String args[])

int arr[] = {12, 11, 13, 5, 6, 7};
System.out.println("Given Array");
printArray(arr);

static void printArray(int arr[])
int n = arr.length;
for (int i=0; i<n; ++1i)

System.out.print(arr[i] + "

System.out.println();

")



// Merges two subarrays of arr[].

// First subarray is arr[Ll..m]

// Second subarray 1is arr[m+1..r]

void merge(int arr[], int 1, int m, int r)

// Find sizes of two subarrays to be

merged

intnl=m-14+ 1;

int n2 = r - m;

/* Create temp arrays */

int L[] = new int [n1];

int R[] = new int [n2];

/*Copy data to temp arrays*/

for (int i=0; i<nl; ++i)
L[i] = arr[l + 1i];

for (int j=0; j<n2; ++j)
R[] = arr[m + 1+ j];

int i =0, j=20;

// Initial index of merged subarry array

int k = 1;
while (i < n1 & j < n2) {
if (L[i] <= R[J]) {
arr[k] = L[1];
i++;
}
else {
arr[k] = R[J];
J++;
}
K++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[1];
i++;
K++;
}

/* Copy remaining elements of R[] if any */
while (j < n2)



Mergesort - Example

theArray: 8 1 4 3 2 Divide the array in half

1 4 8 2 3 Sort the halves

Merge the halves:
a. 1 <2,somove 1 from left half to tempArray
b. 4 > 2, so move 2 from right half to tempArray
c. 4 > 3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
half to tempArray

Temporary array
tempArray:

Copy temporary array back into
original array

theArray: 1 2 3 4 8




Merge

int MAX_SIZE = maximum-number-of-items-in-array;

void merge(double[] theArray, int first, int mid, int last) {
double[] tempArray = new double[MAX SIZE];// temporary array
int firstl = first; // beginning of first subarray

int lastl = mid; // end of first subarray
int first2 = mid + 1; // beginning of second subarray
int last2 = last; // end of second subarray

int index = firstl; // next available Llocation in tempArray
for ( ; (firstl <= lastl) && (first2 <= last2); ++index) {
if (theArray[firstl] < theArray[first2]) {
tempArray[index] = theArray[firstl];
++firstl;

}
else {



Merge (cont.)

// finish off the first subarray, if necessary
for (; firstl <= lastl; ++firstl, ++index)
tempArray[index] = theArray[firstl];

// finish off the second subarray, if necessary
for (; first2 <= last2; ++first2, ++index)
tempArray[index] = theArray[first2];

// copy the result back into the original array

for (index = first; index <= last; ++index)
theArray[index] = tempArray[index];

} // end merge



Mergesort

void mergesort(double[] theArray, int first, int last) {

if (first < last) {
int mid = (first + last)/2; // index of midpoint
mergesort(theArray, first, mid);
mergesort(theArray, mid+1, last);

// merge the two halves
merge(theArray, first, mid, last);

}
} // end mergesort
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Mergesort — Example2
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> Recursive calls to mergesort

> Merge steps




Mergesort — Analysis of Merge

A worst-case instance of the merge step in mergesort

first mid last

theArray: 1 2 8 4 5 6 Merge the halves:

a
b
o
d
e

tempArray: 1 2 4 5 6 8

f.

.1 <4,somove 1 from theArray[first.
.2 < 4,so move 2 from theArray [first.
.8 >4, so move 4 from theArray [mid+1.
.8 >5,somove 5 from theArray [mid+1.
.8 > 6, so move 6 from theArray [mid+1.

.mid] tO tempArray
.mid] to tempArray
.last] to tempArray
.last] to tempArray
.last] to tempArray

theArray [mid+1..last] is finished, so move 8 t0 tempArray



Mergesort — Analysis of Merge (cont )

Merging two sorted arrays of size k

e Best-case:

— All the elements in the first array are smaller (or larger) than all the
elements in the second array.

— The number of moves: 2k + 2k

— The number of key comparisons: k

o Worst-case:
— The number of moves: 2k + 2k

— The number of key comparisons: 2k-1



Mergesort - Analysis

Levels of recursive calls to mergesort, given an array of eight
items

Level O: mergesort 8 items
Level 1: 2 calls to mergesort with 4
items each

Level 2: 4 calls to mergesort with 2
items each

Level 3: 8 calls to mergesort with 1
item each



Mergesort - Analysis

Hm level 0 : 1 merge (size 2™1)

2m-1 2m—1

level 1 : 2 merges (size 2™2)

m2 omn w2 mo level 2 : 4 merges (size 2™)

level m-1 : 2™ ! merges (size 2°)

level m



Mergesort - Analysis

» Worst-case —
The number of key comparisons:
= 20#(#xpm-1_1) 4 plx(Q#Dm2_1) + 4 2m-l(D*20.7)
=(2"- 1)+ (2™-2) + ... + (2m—2mh ( m terms )
2?2

— m*om _

=m*2™" - 2M—]
Using m = log n
=n*log,n—-n-1



Mergesort — Analysis

* Mergesort 1s extremely efficient algorithm with respect
to time.

— Both worst case and average cases are O (n * log,n )

* But, mergesort requires an extra array whose size
equals to the size of the original array.

 If we use a linked list, we do not need an extra array

— But, we need space for the links
— And 1t will be difficult to divide the list into half ¢ O(n) )



Analyzing recursive algorithms

recursive algorithms can be analyzed by defining a recurrence relation:

cost of searching N items using binary search =
cost of comparing middle element + cost of searching correct half (N/2 items)

more succinctly: Cost(N) = Cost(N/2) + C

Cost(N) =Cost(N/2)+C can unwind Cost(N/2)
= (Cost(N/4) +C) + C

Cost(N/4) + 2C  can unwind Cost(N/4)

(Cost(N/8) + C) + 2C

Cost(N/8) + 3C  can continue unwinding

Cost(1) + (log,N)*C
=Clog, N + C"where C' = Cost(1)
0 O(log N)



Analyzing merge sort

cost of sorting N items using merge sort =
cost of sorting left half (N/2 items) + cost of sorting right half (N/2 items) +
cost of merging (N items)

more succinctly: Cost(N) = 2Cost(N/2) + C,N + C,

Cost(N) =2Cost(N/2) + C,*N + C, can unwind Cost(N/2)
=2(2Cost(N/4) + CN/2+C,) +C.N +C,

4Cost(N/4) +2C.N +3C,  can unwind Cost(N/4)

4(2Cost(N/8) + C,N/4 + C,) + 2C.N + 3C,

8Cost(N/8) + 3C.N +7C,  can continue unwinding

= NCost(1) + (log, N)C,N + (N-1) C,
=C,Nlog, N+ (C+CN-C, where C'=Cost(1)
0 O(N log N) 12



