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Simplified Model > Example …
Geometric Series Sum …

public class GeometrikSeriesSumPower {

public static void main(String[] args) {
        System.out.println("1, 4: " + powerA(1, 4));
        System.out.println("1, 4: " + powerB(1, 4));
        System.out.println("2, 4: " + powerA(2, 4));
        System.out.println("2, 4: " + powerB(2, 4));

}

...
public static int powerA(int x, int n) {

int result = 1;
for (int i = 1; i <= n; ++i) {

result *= x;
}
return result;

}

public static int powerB(int x, int n) {
if (n == 0) {

return 1;
} else if (n % 2 == 0) { // n is even

return powerB(x * x, n / 2);
} else { // n is odd

return x * powerB(x * x, n / 2);
}

}
}

1, 4: 1
1, 4: 1
2, 4: 16
2, 4: 16

out

powerB 0<n 0<n
 n=0 n even n odd

10 3          3    3
11 2          -    -
12 -          5    5
13 -     10+T(⎣n/2⎦)    -
15 -          - 12+T(⎣n/2⎦)

Total 5 18+T(⎣n/2⎦)  20+T(⎣n/2⎦)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

powerB
⎧ 1 n=0

xn = ⎨ (x2)⎣n/2⎦ 0<n, n is even
⎩ x(x2)⎣n/2⎦ 0<n, n is odd

powerB
⎧ 5 n=0

xn = ⎨ 18+T(⎣n/2⎦) 0<n, n is even
⎩ 20+T(⎣n/2⎦) 0<n, n is odd
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Simplified Model > Example …
Geometric Series Sum …

Let n = 2k for some k>0.
Since n is even, ⎣n/2⎦ = n/2 = 2k-1.

For n = 2k, T(2k) = 18 + T(2k-1).

Using repeated substitution
T(2k) = 18 + T(2k-1) 

= 18 + 18 + T(2k-2) 
= 18 + 18 + 18 + T(2k-3) 
…
= 18j + T(2k-j) 

Substitution stops when k = j
T(2k) = 18k + T(1) 

= 18k + 20 + T(0)
= 18k + 20 + 5
= 18k + 25.

n = 2k then k = log2 n

T(2k) = 18 log2 n + 25

powerB
⎧ 5 n=0

xn = ⎨ 18+T(⎣n/2⎦) 0<n, n is even
⎩ 20+T(⎣n/2⎦) 0<n, n is odd



 5
meraklisina.com

Simplified Model > Example …
Geometric Series Sum …

Let n = 2k for some k>0.
Since n is even, ⎣n/2⎦ = n/2 = 2k-1.

For n = 2k, T(2k) = 18 + T(2k-1).

Using repeated substitution
T(2k) = 18 + T(2k-1) 

= 18 + 18 + T(2k-2) 
= 18 + 18 + 18 + T(2k-3) 
…
= 18j + T(2k-j) 

Substitution stops when k = j
T(2k) = 18k + T(1) 

= 18k + 20 + T(0)
= 18k + 20 + 5
= 18k + 25.

n = 2k then k = log2 n

T(2k) = 18 log2 n + 25

Suppose n = 2k–1 for some k>0.
Since n is odd, 
⎣n/2⎦ = ⎣(2k–1)/2⎦ 

= (2k–2)/2
= 2k-1-1

 = 2k-1.

For n = 2k-1, 
T(2k-1) = 20 + T(2k-1-1), k>1.

Using repeated substitution
T(2k-1) = 20 + T(2k-1-1) 

= 20 + 20 + T(2k-2-1) 
= 20 + 20 + 20 + T(2k-3-1) 
…
= 20j + T(2k-j-1) 

Substitution stops when k = j
T(2k-1) = 20k + T(20-1) 

= 20k + T(0)
= 20k + 5.

n = 2k-1 then k = log2 (n+1)

T(n) = 20 log2 (n+1) + 5

powerB
⎧ 5 n=0

xn = ⎨ 18+T(⎣n/2⎦) 0<n, n is 
even

⎩ 20+T(⎣n/2⎦) 0<n, n is odd
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Simplified Model > Example …
Geometric Series Sum …

Let n = 2k for some k>0.
Since n is even, ⎣n/2⎦ = n/2 = 2k-1.

For n = 2k, T(2k) = 18 + T(2k-1).

Using repeated substitution
T(2k) = 18 + T(2k-1) 

= 18 + 18 + T(2k-2) 
= 18 + 18 + 18 + T(2k-3) 
…
= 18j + T(2k-j) 

Substitution stops when k = j
T(2k) = 18k + T(1) 

= 18k + 20 + T(0)
= 18k + 20 + 5
= 18k + 25.

n = 2k then k = log2 n

T(2k) = 18 log2 n + 25

Suppose n = 2k–1 for some k>0.
Since n is odd, 
⎣n/2⎦ = ⎣(2k–1)/2⎦ 

= (2k–2)/2
= 2k-1-1

 = 2k-1.

For n = 2k-1, 
T(2k-1) = 20 + T(2k-1-1), k>1.

Using repeated substitution
T(2k-1) = 20 + T(2k-1-1) 

= 20 + 20 + T(2k-2-1) 
= 20 + 20 + 20 + T(2k-3-1) 
…
= 20j + T(2k-j-1) 

Substitution stops when k = j
T(2k-1) = 20k + T(20-1) 

= 20k + T(0)
= 20k + 5.

n = 2k-1 then k = log2 (n+1)

T(n) = 20 log2 (n+1) + 5

powerB
⎧ 5 n=0

xn = ⎨ 18+T(⎣n/2⎦) 0<n, n is 
even

⎩ 20+T(⎣n/2⎦) 0<n, n is odd

average 19(⎣log2(n+1)⎦ + 1) + 18



 7

Simplified Model > Example …
Geometric Series Sum …

public class GeometrikSeriesSumPower {

public static void main(String[] args) {
System.out.println(“s 2, 4: " + geometrikSeriesSumPower (2, 

4));
}

...
public static int geometrikSeriesSumPower (int x, int n) {

return powerB(x, n + 1) – 1 / (x - 1);
}

public static int powerB(int x, int n) {
if (n == 0) {

return 1;
} else if (n % 2 == 0) { // n is even

return powerB(x * x, n / 2);
} else { // n is odd

return x * powerB(x * x, n / 2);
}

}
}

s 2, 4: 31

out

algorithm T(n) 
Sum 11/2 n2 + 47/2 n + 27
Horner 13n + 22
Power 19(⎣log2(n+1)⎦ + 1) + 18
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Comparison 

algorithm T(n) 
Sum 11/2 n2 + 47/2 n + 27
Horner 13n + 22
Power 19(⎣log2(n+1)⎦ + 1) + 18
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Algorithm efficiency
when we want to classify the efficiency of an algorithm, we must first identify the 
costs to be measured

▪ memory used? sometimes relevant, but not usually driving force
▪ execution time?  dependent on various factors, including computer specs
▪ # of steps somewhat generic definition, but most useful

to classify an algorithm's efficiency, first identify the steps that are to be 
measured

e.g., for searching: # of inspections, …
for sorting: # of inspections, # of swaps, # of inspections + swaps, …

must focus on key steps (that capture the behavior of the algorithm)
▪ e.g., for searching: there is overhead, but the work done by the algorithm is 

dominated by the number of inspections
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Best vs. average vs. worst case
when measuring efficiency, you need to decide what case you care about

▪ best case: usually not of much practical use
the best case scenario may be rare, certainly not guaranteed

▪ average case: can be useful to know
on average, how would you expect the algorithm to perform
can be difficult to analyze – must consider all possible inputs and 

calculate the average performance across all inputs

▪ worst case: most commonly used measure of performance
provides upper-bound on performance, guaranteed to do no wors

sequential search: best? average? worst?

binary search: best? average? worst?
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Big-Oh (intuitively)
intuitively: an algorithm is O( f(N) ) if the # of steps involved in solving a 
problem of size N has f(N) as the dominant term

O(N):    5N 3N + 2 N/2 – 20
O(N2):   N2N2 + 100 10N2 – 5N + 100
…why aren't the smaller terms important?
▪ big-Oh is a "long-term" measure
▪ when N is sufficiently large, the largest term dominates

consider f1(N) = 300*N (a very steep line) & f2(N) = ½*N2 (a very gradual quadratic)

in the short run (i.e., for small values of N), f1(N) > f2(N)
e.g., f1(10) = 300*10 = 3,000 > 50 = ½*102 = f2(10)

in the long run (i.e., for large values of N), f1(N) < f2(N)
e.g., f1(1,000) = 300*1,000 = 300,000 < 500,000 = ½*1,0002 = f2(1,000)
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Big-Oh and rate-of-growth
big-Oh classifications capture rate of growth

▪ for an O(N) algorithm, doubling the problem size doubles the amount of work
e.g., suppose Cost(N) = 5N – 3

– Cost(S) = 5S – 3
– Cost(2S) = 5(2S) – 3 = 10S - 3

▪ for an O(N log N) algorithm, doubling the problem size more than doubles the 
amount of work 

e.g., suppose Cost(N) = 5N log N + N 
– Cost(S) = 5S log S + S
– Cost(2S) = 5(2S) log (2S) + 2S = 10S(log(S)+1) + 2S = 10S log S + 12S

▪ for an O(N2) algorithm, doubling the problem size quadruples the amount of work 
e.g., suppose Cost(N) = 5N2 – 3N + 10

– Cost(S) = 5S2 – 3S + 10
– Cost(2S) = 5(2S)2 – 3(2S) + 10 = 5(4S2) – 6S + 10 = 20S2 – 6S + 10
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Big-Oh of searching/sorting

sequential search: worst case cost of finding an item in a list of size N
▪ may have to inspect every item in the list

Cost(N) = N inspections + overhead 
� O(N)

selection sort: cost of sorting a list of N items
▪ make N-1 passes through the list, comparing all elements and performing one swap

Cost(N) = (1 + 2 + 3 + … + N-1) comparisons + N-1 swaps + overhead
= N*(N-1)/2 comparisons + N-1 swaps + overhead
= ½ N2 – ½ N comparisons + N-1 swaps + overhead
� O(N2)
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General rules for analyzing algorithms
1.  for loops: the running time of a for loop is at most

running time of statements in loop × number of loop iterations

for (int i = 0; i < N; i++) {
    sum += nums[i];
}

2.  nested loops: the running time of a statement in nested loops is
running time of statement in loop × product of sizes of the loops 

for (int i = 0; i < N; i++) {
    for (int j = 0; j < M; j++) {
        nums1[i] += nums2[j] + i;
    }
}
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General rules for analyzing algorithms
3.  consecutive statements: the running time of consecutive statements is 

sum of their individual running times

int sum = 0;
for (int i = 0; i < N; i++) {
    sum += nums[i];
}
double avg = (double)sum/N;

4.  if-else: the running time of an if-else statement is at most
running time of the test + maximum running time of the if and else cases

if (isSorted(nums)) {
    index = binarySearch(nums, desired);
}
else {
    index = sequentialSearch(nums, desired);
}
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Exercises
consider an algorithm whose cost function is

Cost(N) = 12N3 – 5N2 + N – 300

intutitively, we know this is O(N3)

formally, what are values of C and T that meet the definition?
▪ an algorithm is O(N3) if there exists a positive constant C & non-negative integer T such that for all N 

≥ T,  # of steps required ≤ C*N3

consider "merge3-sort"
1. If the range to be sorted is size 0 or 1, then DONE.
2. Otherwise, calculate the indices 1/3 and 2/3 of the way through the list.
3. Recursively sort each third of the list.
4. Merge the three sorted sublists together.

what is the recurrence relation that defines the cost of this algorithm?
what is it's big-Oh classification?
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Big-Oh

• is used to classify algorithms according to how 
their running time or space requirements grow 
as the input size grows

• characterizes functions according to their 
growth rates
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Mathematical Background
Big-Oh
Definition 

f(n) = O(g(n)) iff 

g(n) >0,   ∀n>0

∃ c∈R+,   ∃ n0∈Z+  ∍ 

f(n) ≤ c g(n) for n0 ≤ n

• upper bound

c g(n)

n

f(n)

n0
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Mathematical Background>Big-Oh 
Some Properties
f(n) = 12 + 22 + ... + n2 

  = 1/3 n (n+1/2) (n+1)

  = 1/3 n3 +1/2 n2 + 1/6 n

  = O(n3)

  = 1/3 n3 + O(n2)

Remark 
f(n) = O(1/3 n3)      don’t write constant
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Mathematical Background>Big-Oh 
Some Properties ...

Note that “=“ is not in the mathematical 
sense

• ½ n2 + n = O(n2)        √

• O(n2) = ½ n2 + n        χ



 21
meraklisina.com

Mathematical Background>Big-Oh 
Some Properties ...

Theorem

If f1(n) = O (g1(n)) and f2(n) = O (g2(n)) then

• f1(n) + f2(n) = max(O (g1(n)), O (g2(n)) )

• f1(n) x f2(n) = O(g1(n) x g2(n))
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Mathematical Background>Big-Oh 
Some Properties ...

Theorem

Consider polynomial                  where am>0.
Then f(n) = O(nm).
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Mathematical Background>Big-Oh 
Some Properties ...

• f(n) = O (f(n))

• c O(f(n)) = O (f(n))

• O(f(n)) + O(f(n)) = O(f(n))

• O(O(f(n))) = O(f(n))

• O(f(n)) O(g(n)) = O(f(n) g(n))

• O(f(n) g(n)) = f(n) O(g(n))
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Mathematical Background
Omega

n0

asymptotic lower bound

f(n)
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Mathematical Background>Omega 
Some Properties ...

Theorem

Consider polynomial                  where am>0.
Then f(n) = Ω(nm).
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Mathematical Background
Theta

nn0

• g(n) is an asymptotically tight bound for f (n).

c1 = 1/14, c2 = 1/2, and n0 = 7
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Mathematical Background
Big-Oh

nn0

• For only an asymptotic upper bound, we use O-notation
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Mathematical Background> Theta … 
Example

Consider 

f(n) = O(nm)

f(n) = Ω(nm)

So f(n) = Θ(nm)
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Comparison of Orders
O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)
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O(log n)

Comparison of Orders
O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)

O(1)

O(2n)
O(n3)

O(n2)
O(n log n)

O(n)
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O() Analysis of Running Time



 32
meraklisina.com

O() Analysis of Running Time 
Sequential Composition
Worst-case running time of statements

is O(max(T1(n), T2(n), …, Tm(n)) 

where 
O(Ti(n)) is the running time of statement  Si

S1;
S2;
…
Sm;
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O() Analysis of Running Time 
Iteration
Worst-case running time of statements

is O(max(T1(n), T2(n)x(I(n)+1), T3(n)xI(n), T4(n)xI(n)) 

where 
O(Ti(n)) is the running time of statement  Si
I(n) is the number of iterations executed in the worst case

for(S1; S2;  S3)
  S4;
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O() Analysis of Running Time 
Conditional Execution
Worst-case running time of statements

is O(max(T1(n), T2(n), T3(n)) 

where 
O(Ti(n)) is the running time of statement  Si

if (S1) 
 S2;
else 
 S3;
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O() Analysis of Running Time 
Example

Worst-case running time 
if statement 5 executes all the 
time

When ?

Best-case running time 
if statement 5 never executes

When ?

On-the-average running time 
if statement 5 executes half of 
the time?

When ?

int findMaximum(int[] a) {
int result = a[0];
for (int i = 1; i < a.length; ++i) {

if (result < a[i]) {
result = a[i];

}
}
return result;

}

1
2
3
4
5
6
7
8
9
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Analysis of insertion sort

Best case?
Worst case?

/* Function to sort an array using insertion sort*/

void insertionSort(int arr[], int n)

{

   int i, key, j;

   for (i = 1; i < n; i++)

   {

       key = arr[i];

       j = i-1;

  

       /* Move elements of arr[0..i-1], that are

          greater than key, to one position ahead

          of their current position */

       while (j >= 0 && arr[j] > key)

       {

           arr[j+1] = arr[j];

           j = j-1;

       }

       arr[j+1] = key;

   }

}



Analyzing recursive algorithms
recursive algorithms can be analyzed by defining a recurrence relation:

cost of searching N items using binary search = 
cost of comparing middle element + cost of searching correct half (N/2 items) 

more succinctly:  Cost(N) = Cost(N/2) + C
Cost(N) = Cost(N/2) + C can unwind Cost(N/2)

= (Cost(N/4) + C) + C
= Cost(N/4) + 2C can unwind Cost(N/4)
= (Cost(N/8) + C) + 2C
= Cost(N/8) + 3C can continue unwinding
= …
= Cost(1) + (log2N)*C
= C log2 N + C' where C' = Cost(1) 
� O(log N)



Slides adapted from Tolga Can

Sorting Algorithms



Sorting
• Sorting is a process that organizes a collection of data into either ascending or 

descending order.
• An internal sort requires that the collection of data fit entirely in the 

computer’s main memory.
• We can use an external sort  when  the collection of data cannot fit in the 

computer’s main memory all at once but must reside in secondary storage such 
as on a disk.

• We will analyze only internal sorting algorithms.
• Any significant amount of computer output is generally arranged in some 

sorted order so that it can be interpreted.
• Sorting also has indirect uses. An initial sort of the data can significantly 

enhance the performance of an algorithm. 
• Majority of programming projects use a sort somewhere, and in many cases, 

the sorting cost determines the running time.
• A comparison-based sorting algorithm makes ordering decisions only on the 

basis of comparisons.



Sorting Algorithms
• There are many sorting algorithms, such as:

– Selection Sort 
– Insertion Sort
– Bubble Sort
– Merge Sort
– Quick Sort

• The first three are the foundations for faster 
and more efficient algorithms.



Selection Sort
• The list is divided into two sublists, sorted and unsorted, 

which are divided by an imaginary wall. 
• We find the smallest element from the unsorted sublist and 

swap it with the element at the beginning of the unsorted 
data. 

• After each selection and swapping, the imaginary wall 
between the two sublists move one element ahead, 
increasing the number of sorted elements and decreasing 
the number of unsorted ones.

• Each time we move one element from the unsorted sublist 
to the sorted sublist, we say that we have completed a sort 
pass.

• A list of n elements requires n-1 passes to completely 
rearrange the data.



23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Sorted Unsorted



Selection Sort (cont.)
void selectionSort(double[] a, int n) {

  for (int i = 0; i < n-1; i++) {

    int min = i;

    for (int j = i+1; j < n; j++)

       if (a[j] < a[min]) min = j;

    swap(a, i, min);

  }

}

void swap(double[] a, int lhs, int rhs )

{

double tmp = a[lhs];

  a[lhs] = a[rhs];

  a[rhs] = tmp;

}



Selection Sort -- Analysis
• In general, we compare keys and move items (or exchange items) 

in a sorting algorithm (which uses key comparisons). 
�   So, to analyze a sorting algorithm we should count the 

number of key comparisons and the number of moves.
• Ignoring other operations does not affect our final result.

• In selectionSort function, the outer for loop executes n-1 times.
• We invoke swap function once at each iteration. 
�  Total Swaps: n-1  
�  Total Moves: 3*(n-1) (Each swap has three moves)



Selection Sort – Analysis (cont.)
• The inner for loop executes the size of the unsorted part minus 1 

(from 1 to n-1), and in each iteration we make one key 
comparison.
� # of key comparisons = 1+2+...+n-1 = n*(n-1)/2
� So, Selection sort is O(n2)

• The best case, the worst case, and the average case of the 
selection sort algorithm are same.  � all of them are O(n2)

– This means that the behavior of the selection sort algorithm does not depend on the 
initial organization of data.

– Since O(n2) grows so rapidly, the selection sort algorithm is appropriate only for 
small n.

– Although the selection sort algorithm requires O(n2) key comparisons, it only 
requires  O(n) moves.

– A selection sort could be a good choice if data moves are costly but key 
comparisons are not costly (short keys, long records).



Comparison of N, logN and N2 
N O(LogN) O(N2)
16 4 256
64 6 4K
256 8 64K
1,024 10 1M
16,384 14 256M
131,072 17 16G
262,144 18 6.87E+10
524,288 19 2.74E+11
1,048,576 20 1.09E+12
1,073,741,824 30  1.15E+18



Insertion Sort
• Insertion sort is a simple sorting algorithm that is 

appropriate for small inputs. 
– Most common sorting technique used by card players.

• The list is divided into two parts: sorted and 
unsorted. 

• In each pass, the first element of the unsorted part 
is picked up, transferred to the sorted sublist, and 
inserted at the appropriate place. 

• A list of n elements will take at most n-1 passes to 
sort the data. 



Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

23 78 45 8 32 56

23 78 45 8 32 56

23 45 78 8 32 56

8 23 45 78 32 56

8 23 32 45 78 56

8 23 32 45 56 78

Sorted Unsorted



Insertion Sort Algorithm 
void insertionSort(double[] a, int n)

{

   for (int i = 1; i < n; i++)

   { 

      double tmp = a[i];

      

      for (int j=i; j>0 && tmp < a[j-1]; j--)

         a[j] = a[j-1];

      a[j] = tmp;

   }

}



Insertion Sort – Analysis 
• Running time depends on not only the size of the array but also 

the contents of the array.
• Best-case: � O(n)

– Array is already sorted in ascending order.
– Inner loop will not be executed.
– The number of moves: 2*(n-1) � O(n)
– The number of key comparisons: (n-1) � O(n)

• Worst-case: � O(n2)
– Array is in reverse order:
– Inner loop is executed i-1 times, for i = 2,3, …, n
– The number of moves: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2 � O(n2)
– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2 � O(n2)

• Average-case: � O(n2)
– We have to look at all possible initial data organizations.

• So, Insertion Sort is O(n2)



Analysis of insertion sort
• Which running time will be used to characterize this 

algorithm?
– Best, worst or average?

• Worst: 
– Longest running time (this is the upper limit for the algorithm)
– It is guaranteed that the algorithm will not be worse than this.

• Sometimes we are interested in average case. But there are 
some problems with the average case.
– It is difficult to figure out the average case. i.e. what is average 

input?
– Are we going to assume all possible inputs are equally likely? 
– In fact for  most algorithms average case is same as the worst case. 



Bubble Sort
• The list is divided into two sublists: sorted and 

unsorted.
• The smallest element is bubbled from the unsorted 

list and moved to the sorted sublist.
• After that, the wall moves one element ahead, 

increasing the number of sorted elements and 
decreasing the number of unsorted ones. 

• Each time an element moves from the unsorted 
part to the sorted part one sort pass is completed. 

• Given a list of n elements, bubble sort requires up 
to n-1 passes to sort the data.



Bubble Sort
23 78 45 8 32 56

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4



Bubble Sort Algorithm 
void bubleSort(double[] a, int n)

{

   bool sorted = false; 

   int last = n-1;

      

   for (int i = 0; (i < last) && !sorted; i++){

      sorted = true;

      for (int j=last; j > i; j--)

         if (a[j-1] > a[j]{

            swap(a, j, j-]);

            sorted = false; // signal exchange

         }

    }

}



Bubble Sort – Analysis 
• Best-case: � O(n)

– Array is already sorted in ascending order.
– The number of moves: 0 � O(1)
– The number of key comparisons: (n-1) � O(n)

• Worst-case: � O(n2)
– Array is in reverse order:
– Outer loop is executed n-1 times, 
– The number of moves: 3*(1+2+...+n-1) = 3 * n*(n-1)/2 � O(n2)
– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2 � O(n2)

• Average-case: � O(n2)
– We have to look at all possible initial data organizations.

• So, Bubble Sort is O(n2)



Mergesort
• Mergesort algorithm is one of two important divide-and-conquer 

sorting algorithms (the other one is quicksort).
• It is a recursive algorithm.

– Divides the list into halves, 
– Sort each halve separately, and 
– Then merge the sorted halves into one sorted array.



class MergeSort

{   void sort(int arr[], int l, int r)    {

        if (l < r)        {

            // Find the middle point

            int m = (l+r)/2;

            // Sort first and second halves

            sort(arr, l, m);

            sort(arr , m+1, r);

            // Merge the sorted halves

            merge(arr, l, m, r);

        }

    }  

   // Driver method

    public static void main(String args[])     

{

        int arr[] = {12, 11, 13, 5, 6, 7};

        System.out.println("Given Array");

        printArray(arr);

        MergeSort ob = new MergeSort();

        ob.sort(arr, 0, arr.length-1);  

        System.out.println("\nSorted 

array");

        printArray(arr);

    }

}

static void printArray(int arr[])    {

     int n = arr.length;

     for (int i=0; i<n; ++i)

       System.out.print(arr[i] + " ");

      System.out.println();

}

  



    // Merges two subarrays of arr[].

    // First subarray is arr[l..m]

    // Second subarray is arr[m+1..r]

    void merge(int arr[], int l, int m, int r)    

{

        // Find sizes of two subarrays to be 

merged

        int n1 = m - l + 1;

        int n2 = r - m;

        /* Create temp arrays */

        int L[] = new int [n1];

        int R[] = new int [n2];

        /*Copy data to temp arrays*/

        for (int i=0; i<n1; ++i)

            L[i] = arr[l + i];

        for (int j=0; j<n2; ++j)

            R[j] = arr[m + 1+ j];

        int i = 0, j = 0;

          

// Initial index of merged subarry array

        int k = l;

        while (i < n1 && j < n2)        {

            if (L[i] <= R[j])            {

                arr[k] = L[i];

                i++;

            }

            else            {

                arr[k] = R[j];

                j++;

            }

            k++;

        }

        /* Copy remaining elements of L[] if any */

        while (i < n1)        {

            arr[k] = L[i];

            i++;

            k++;

        }

  

        /* Copy remaining elements of R[] if any */

        while (j < n2)

        {

            arr[k] = R[j];

            j++;

            k++;

        }

    }



Mergesort - Example



Merge
int MAX_SIZE = maximum-number-of-items-in-array;

void merge(double[] theArray, int first, int mid, int last) {

   double[] tempArray = new double[MAX_SIZE];// temporary array

   int first1 = first; // beginning of first subarray

   int last1 = mid; // end of first subarray

   int first2 = mid + 1; // beginning of second subarray

   int last2 = last; // end of second subarray

   int index = first1; // next available location in tempArray

   for ( ; (first1 <= last1) && (first2 <= last2); ++index) {

      if (theArray[first1] < theArray[first2]) {  

         tempArray[index] = theArray[first1];

         ++first1;

      }

      else {  

          tempArray[index] = theArray[first2];

          ++first2;

      } 

}



Merge (cont.)
   // finish off the first subarray, if necessary

   for (; first1 <= last1; ++first1, ++index)
      tempArray[index] = theArray[first1];

   // finish off the second subarray, if necessary
   for (; first2 <= last2; ++first2, ++index)
      tempArray[index] = theArray[first2];

   // copy the result back into the original array
   for (index = first; index <= last; ++index)
      theArray[index] = tempArray[index];
}  // end merge



Mergesort
void mergesort(double[] theArray, int first, int last) {

   if (first < last) {

      int mid = (first + last)/2; // index of midpoint

      mergesort(theArray, first, mid);

      mergesort(theArray, mid+1, last);

      // merge the two halves

      merge(theArray, first, mid, last);

   }

}  // end mergesort



Mergesort - Example
6 3 9 1 5 4 7 2

5 4 7 26 3 9 1

6 3 9 1 7 25 4

6 3 19 5 4 27

3 6 1 9 2 74 5

2 4 5 71 3 6 9

1 2 3 4 5 7 8 9
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dividedividedivide
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merge merge
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merge merge

merge



Mergesort – Example2



Mergesort – Analysis of Merge
A worst-case instance of the merge step in mergesort



Mergesort – Analysis of Merge (cont.)
Merging two sorted arrays of size k

• Best-case:
– All the elements in the first array are smaller (or larger) than all the 

elements in the second array.
– The number of moves: 2k + 2k
– The number of key comparisons: k

• Worst-case: 
– The number of moves: 2k + 2k
– The number of key comparisons:  2k-1

...... ......

......

0                k-1 0                k-1

0                 2k-1



Mergesort - Analysis
Levels of recursive calls to mergesort, given an array of eight 
items



Mergesort - Analysis

.

.

.

.

.

.
. . . . . . . . . . . . . . . . .

2m

2m-1 2m-1

2m-2 2m-2 2m-2 2m-2

20 20

level 0 : 1 merge (size 2m-1) 

level 1 : 2 merges (size 2m-2) 
level 2 : 4 merges (size 2m-3) 

level m
level m-1 : 2m-1 merges (size 20) 



Mergesort - Analysis
• Worst-case – 
The number of key comparisons:

= 20*(2*2m-1-1) + 21*(2*2m-2-1) + ... + 2m-1*(2*20-1) 
= (2m - 1) + (2m - 2) + ... + (2m – 2m-1) ( m terms )

= m*2m – 

= m*2m – 2m – 1
Using m = log n

= n * log2n – n – 1 

� O (n * log2n )



Mergesort – Analysis
• Mergesort is extremely efficient algorithm with respect 

to time.
– Both worst case and average cases are O (n * log2n )

• But, mergesort requires an extra array whose size 
equals to the size of the original array.

• If we use a linked list, we do not need an extra array 
– But, we need space for the links
– And, it will be difficult to divide the list into half ( O(n) )



Analyzing recursive algorithms
recursive algorithms can be analyzed by defining a recurrence relation:

cost of searching N items using binary search = 
cost of comparing middle element + cost of searching correct half (N/2 items) 

more succinctly:  Cost(N) = Cost(N/2) + C
Cost(N) = Cost(N/2) + C can unwind Cost(N/2)

= (Cost(N/4) + C) + C
= Cost(N/4) + 2C can unwind Cost(N/4)
= (Cost(N/8) + C) + 2C
= Cost(N/8) + 3C can continue unwinding
= …
= Cost(1) + (log2N)*C
= C log2 N + C' where C' = Cost(1) 
� O(log N)
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Analyzing merge sort
cost of sorting N items using merge sort = 

cost of sorting left half (N/2 items) + cost of sorting right half (N/2 items) +
cost of merging (N items)

more succinctly:  Cost(N) = 2Cost(N/2) + C1N + C2
Cost(N) = 2Cost(N/2) + C1*N + C2 can unwind Cost(N/2)

= 2( 2Cost(N/4) + C1N/2 + C2) + C1N + C2
= 4Cost(N/4) + 2C1N + 3C2 can unwind Cost(N/4)
= 4( 2Cost(N/8) + C1N/4 + C2) + 2C1N + 3C2 
= 8Cost(N/8) + 3C1N + 7C2 can continue unwinding
= …
= NCost(1) + (log2N)C1N + (N-1) C2

= C1N log2 N + (C'+C2)N - C2 where C' = Cost(1) 
� O(N log N)


