
Linked Lists

Slides adapted from David Matuszek, UPENN

2

Anatomy of a linked list

■ A linked list consists of:
■ A sequence of nodes

a b c d

▪ Each node contains a value
▪ and a link (pointer or reference) to some other node
▪ The last node contains a null link
▪ The list may (or may not) have a header

myList

▪ myList isn’t a header, it’s just a reference

3

More terminology

■ A node’s successor is the next node in the sequence
■ The last node has no successor

■ A node’s predecessor is the previous node in the
sequence

■ The first node has no predecessor
■ A list’s length is the number of elements in it

■ A list may be empty (contain no elements)

4

Pointers and references

■ In C and C++ we have “pointers,” while in Java
we have “references”

■ These are essentially the same thing
■ The difference is that C and C++ allow you to modify pointers

in arbitrary ways, and to point to anything
■ In Java, a reference is more of a “black box,” or ADT

■ Available operations are:
■ dereference (“follow”)
■ copy
■ compare for equality

■ There are constraints on what kind of thing is referenced: for
example, a reference to an array of int can only refer to an
array of int

5

Creating references

■ The keyword new creates a new object, but also returns
a reference to that object

■ For example, Person p = new Person("John")
■ new Person("John") creates the object and returns a

reference to it
■ We can assign this reference to p, or use it in other ways

6

Creating links in Java

class Node {

 int value;

 Node next;

 Node (int v, Node n) { // constructor

 value = v;

 next = n;

 }

}

Node temp = new Node(17, null);

temp = new Node(23, temp);

temp = new Node(97, temp);

Node myList = new Node(44, temp);

44 97 23 17

myList:

7

Singly-linked lists

■ Here is a singly-linked list (SLL):

■ Each node contains a value and a link to its successor
(the last node has no successor)

■ We have a reference to the first node in the list
■ The reference is null if the list is empty

a b c d

myList

8

Creating a simple list

■ To create the list ("one", "two", "three"):
Node numerals;

numerals =

 new Node("one",

 new Node("two",

 new Node("three", null)));

threetwoone

numerals

9

Traversing a SLL

■ The following method traverses a list (and
prints its elements):

 public void print() {

 Node<V> tmpNode = head;

 while (tmpNode != null) {

 System.out.print(tmpNode.value + " ");

 tmpNode = tmpNode.next;

 }

}

■ You would write this as an instance method of
the List class

10

Traversing a SLL (animation)

threetwoone

numerals

here

11

Inserting a node into a SLL

■ There are many ways you might want to insert a new
node into a list:

■ As the new first element
■ As the new last element
■ Before a given node (specified by a reference)
■ After a given node
■ Before a given value
■ After a given value

■ All are possible, but differ in difficulty

12

Inserting as a new first element
■ This is probably the easiest method to implement
■ In class List:
 void insertAtFront(V value) {

 Node<V> newNode = new Node<V>(value, head);

 head = newNode;

}

■ Use this as:
myNewList = myOldList.insertAtFront(value);

13

Using a header node
■ A header node is just an initial node that exists at the front of

every list, even when the list is empty
■ The purpose is to keep the list from being null, and to point at

the first element

twoonehead

 void insertAtFront(V value) {

 Node<V> newNode = new Node<V>(value, head);

 head = newNode;

}

14

Inserting a node after a given value

void insertAfter(V target, V value) {

 for (Node<V> tmp = head; tmp != null; tmp = tmp.next) {

 if (tmp.value.equals(target)) {

 Node<V> node = new Node<V>(value, tmp.next);

 tmp.next = node;

 return;

 }

 }

 // Couldn't insert--do something reasonable here!

}

15

Inserting after (animation)

thre
e

twoone

head

2.5node

Find the node you want to insert after
First, copy the link from the node that’s already in the list

Then, change the link in the node that’s already in the list

16

Deleting a node from a SLL

■ In order to delete a node from a SLL, you have to
change the link in its predecessor

■ This is slightly tricky, because you can’t follow a
pointer backwards

■ Deleting the first node in a list is a special case, because
the node’s predecessor is the list header

17

Deleting an element from a SLL

thre
e

twoone

head

thre
e

twoone

head

• To delete the first element, change the link in the header

• To delete some other element, change the link in its predecessor

• Deleted nodes will eventually be garbage collected

(predecessor)

18

Doubly-linked lists

■ Here is a doubly-linked list (DLL) with a header:

■ Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

■ The header points to the first node in the list and to the last
node in the list (or contains null links if the list is empty)

head

a b c

19

DLLs compared to SLLs

■ Advantages:
■ Can be traversed in either

direction (may be essential
for some programs)

■ Some operations, such as
deletion and inserting
before a node, become
easier

■ Disadvantages:
■ Requires more space
■ List manipulations are

slower (because more
links must be changed)

■ Greater chance of having
bugs (because more links
must be manipulated)

20

Deleting a node from a DLL
■ Node deletion from a DLL involves changing two links
■ In this example,we will delete node b

■ We don’t have to do anything about the links in node b
■ Garbage collection will take care of deleted nodes
■ Deletion of the first node or the last node is a special case

head

a b c

21

Other operations on linked lists

■ Most “algorithms” on linked lists—such as insertion,
deletion, and searching—are pretty obvious; you just
need to be careful

■ Sorting a linked list is just messy, since you can’t
directly access the nth element—you have to count your
way through a lot of other elements

■ Here’s a favorite interview question: How would you
reverse a singly-linked list in place (that is, without
creating any new nodes)?

22

The End

