Linked Lists

> -

Slides adapted from David Matuszek, UPENN

Anatomy of a linked list

= A linked list consists of:

= A sequence of nodes

myList 5

Y

b | @®

| @

v
@

®
v

Q.

Each node contains a value
and a link (pointer or reference) to some other node

The last node contains a null link

The list may (or may not) have a header

= myList isn’t a header, it’s just a reference

More terminology

= A node’s successor 1s the next node 1n the sequence
= The last node has no successor

= A node’s predecessor 1s the previous node in the
sequence
« The first node has no predecessor

= A list’s length 1s the number of elements 1n it
= A list may be empty (contain no elements)

Pointers and references

=« In C and C++ we have “pointers,” while 1n Java
we have “references”

= These are essentially the same thing
- The difference is that C and C++ allow you to modify pointers
in arbitrary ways, and to point to anything
« In Java, a reference 1s more of a “black box,” or ADT
= Available operations are:
« dereference (“follow™)
= COpY
= compare for equality

= There are constraints on what kind of thing 1s referenced: for
example, a reference to an array of int can only refer to an
array of int

Creating references

= The keyword new creates a new object, but also returns
a reference to that object

= For example, Person p = new Person("John")

= new Person("John") creates the object and returns a
reference to it

= We can assign this reference to p, or use it in other ways

Creating links 1n Java

myList: i‘

®
Y

®
Y

23

44 97

class Node {

Node
temp
temp
Node

int value;

Node next;

Node (int v, Node n) { // constructor
value = v;
next = n;

temp = new Node(17, null);

= new Node(23, temp);

= new Node(97, temp);

myList = new Node(44, temp);

Y

17

Singly-linked lists

« Here 1s a singly-linked list (SLL):

myList 5

a. =b. =C. =d.

=« Each node contains a value and a link to 1ts successor
(the last node has no successor)

= We have a reference to the first node in the list
« The reference is null if the list is empty

Creating a simple list

= To create the list ("one", "two", "three"):

Node numerals;
numerals =
new Node("one",

new Node("two",

new Node("three", null)));

numerals

one

Y

two

" three

Traversing a SLL

= The following method traverses a list (and

prints 1ts elements):

public void print() {
Node<V> tmpNode = head;
while (tmpNode != null) {

System.out.print(tmpNode.value + " ");
tmpNode = tmpNode.next;
}

}
= You would write this as an instance method of
the List class

Traversing a SLL (animation)

numerals

here

one

two

three

10

Inserting a node into a SLL

= There are many ways you might want to insert a new
node into a list:
= As the new first element
= As the new last element
= Before a given node (specified by a reference)
= After a given node
= Before a given value
= After a given value

= All are possible, but differ in difficulty

11

Inserting as a new first element

= This 1s probably the easiest method to implement

« Inclass List:
void insertAtFront(V value) {
Node<V> newNode = new Node<V>(value, head);
head = newNode;

}

= Use this as:
myNewList = myOldList.insertAtFront(value);

12

Using a header node

= A header node is just an initial node that exists at the front of
every list, even when the list 1s empty

= The purpose 1s to keep the list from being null, and to point at
the first element

Y
Y

one | ® two | @

head | @

void insertAtFront(V value) {
Node<V> newNode = new Node<V>(value, head);
head = newNode;

13

Inserting a node after a given value

void insertAfter(V target, V value) {
for (Node<V> tmp = head; tmp != null; tmp = tmp.next) {
if (tmp.value.equals(target)) {
Node<V> node = new Node<V>(value, tmp.next);
tmp.next = node;
return;

}
}

// Couldn't insert--do something reasonable here!

14

Inserting after (animation)

node | 2.5 ?

head

3

—t

3

M
o

one | ©® two | @

q)]

Find the node you want to insert after
First, copy the link from the node that’s already in the list

Then, change the link in the node that’s already in the list

Deleting a node from a SLL

= In order to delete a node from a SLL, you have to
change the link 1in its predecessor

= This 1s slightly tricky, because you can’t follow a
pointer backwards

= Deleting the first node 1n a list 1s a special case, because
the node’s predecessor is the list header

16

Deleting an element from a SLL

* To delete the first element, change the link in the header

head ¢

3

—t
5
M

Y

Y

two | @

one | ®

q)]

* To delete some other element, change the link in 1ts predecessor

head

(predecessor)

3

\/
t
3
M

o

one | two | @

q)]

* Deleted nodes will eventually be garbage collected

17

Doubly-linked lists

= Here is a doubly-linked list (DLL) with a header:

head

N

1> 3 | 1= b | €1 ®

. 25

= Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

= The header points to the first node 1n the list and to the last
node 1n the list (or contains null links if the list is empty)

18

DLLs compared to SLLs

= Advantages: = Disadvantages:
= Can be traversed 1n either = Requires more space
direction (may be essential « List manipulations are
for some programs) slower (because more
= Some operations, such as links must be changed)
deletion and inserting « Greater chance of having
before a node, become bugs (because more links

easier must be manipulated)

19

Deleting a node from a DLL

= Node deletion from a DLL involves changing two links
= In this example,we will delete node b

head

N e e
o|la|% 1o 1 el c ~

= We don’t have to do anything about the links in node b
= Garbage collection will take care of deleted nodes
= Deletion of the first node or the last node 1s a special case

20

Other operations on linked lists

= Most “algorithms” on linked lists—such as insertion,
deletion, and searching—are pretty obvious; you just
need to be careful

= Sorting a linked list 1s just messy, since you can’t
directly access the n™ element—you have to count your
way through a lot of other elements

« Here’s a favorite interview question: How would you
reverse a singly-linked list in place (that 1s, without
creating any new nodes)?

21

The End

CZY, T HEARD ON TV THAT \F
YOU MAKE LISTS, THINGS ARE
EASIER... WILL
You WRITE FOR ME?

('L\;" :

"Ozy and Millie"

OKAY, LESSEE... BANANAS...
NEW JERSEY... FORKLIFTS...
ELBOWS... APPLE JUICE... LEX

= WHAT 1S THIS

S~

UM, TIMULTY,

A LIST OF?

©2000 D.C. Simpson

22

