| Binary Trees

M-

Parts of a binary tree

A binary tree 1s composed of zero or more nodes
« In Java, a reference to a binary tree may be null

Each node contains:

« A value (some sort of data item)
= A reference or pointer to a left child (may be null), and
= A reference or pointer to a right child (may be null)

A binary tree may be empty (contain no nodes)
If not empty, a binary tree has a root node

« Every node in the binary tree is reachable from the root node by a
unique path

A node with no left child and no right child 1s called a leaf

= In some binary trees, only the leaves contain a value

| Picture of a binary tree

|

The root 1s

L9

d

LN

drawn at the to% /

.

| Left # Right

=« The following two binary trees are different:

B B

= In the first binary tree, node A has a left child but no right child;
in the second, node A has a right child but no left child

= Put another way: Left and right are noft relative terms

| More terminology

= Node A is the parent of node B 1f node B 1s a child of A

= Node A 1s an ancestor of node B if A 1s a parent of B, or
if some child of A 1s an ancestor of B

= In less formal terms, A 1s an ancestor of B 1f B 1s a child of A,
or a child of a child of A, or a child of a child of a child of A,
etc.

=« Node B 1s a descendant of A i1f A 1s an ancestor of B
= Nodes A and B are siblings if they have the same parent

| Size and depth

= The size of a binary tree 1s the
number of nodes 1n it

/ \ = This tree has size 12

/ \ « The depth of a node 1s its
\ distance from the root

/ / \ /\ - a1s at depth zero
. H i3k . ei1satdepth 2
/ =« The depth of a binary tree 1s

1 the depth of 1ts deepest node
« This tree has depth 4

| Balance

a /a

b T ; X
N N N\
d e f g Y p

/\ / d £
h 1] A\
A balanced binary tree /g\ h

1]

An unbalanced binary tree

= In most applications, a reasonably balanced binary tree is
desirable

| Deftinitions of “balanced”

d

o T ; Define the height of a node as
AN N the largest distance from that
d e f g node to a leaf
/\ /
h i i
A balanced binary tree

1. A binary tree 1s balanced if every level above the
lowest 1s “full” (contains 2" nodes)

2. A binary tree 1s balanced if the height of each node
differs by at most 1 from the heights of its sibling

| Sorted binary trees

= A binary tree 1s sorted 1f every node in the tree 1s larger
than (or equal to) 1ts left descendants, and smaller than
(or equal to) 1ts right descendants

= Equal nodes can go either on the left or the right (but 1t
has to be consistent)

BinarvSearchTree class

public class BinarySearchTree {
BinaryTreeNode root;

}

public class BinaryTreeNode {
int val;
BinaryTreeNode leftChild=null;
BinaryTreeNode rightChild=null;
BinaryTreeNode(int val, BinaryTreeNode leftChild,

BinaryTreeNode rightChild){
this.val = val;
this.leftChild = leftChild;
this.rightChild = rightChild;
}

10

BinarvSearchTree class

public class BinarySearchTree {
BinaryTreeNode root;
boolean search(int key){
BinaryTreeNode tmp = root;
while(tmp!=null){
if (tmp.val==key)
return true;
if (key<tmp.val)
tmp = tmp.leftChild;
else // Rey>tmp.val
tmp = tmp.rightChild;
}

return false;

}

11

| Binary search in a sorted array

= Look at array location (1o + hi)/2

Searching for 5:

(6+6)/2 = 3

hi = 2;
(6 + 2)/2 =1

lo = 2;
(2+2)/2=2

11(13

17

Using a binary
search tree

13

2 11 17

12

Tree traversals

A binary tree 1s defined recursively: it consists of a root, a
left subtree, and a right subtree

To traverse (or walk) the binary tree 1s to visit each node 1n
the binary tree exactly once

Tree traversals are naturally recursive

Since a binary tree has three “parts,” there are six possible
ways to traverse the binary tree

= root, left, right = root, right, left
. left, root, right = right, root, left
. left, right, root = right, left, root

(inorder, preorder, postorder)

13

class BinarvTree

= A constructor for a binary tree should have three parameters,
corresponding to the three fields

= An “empty” binary tree is just a value of null
= Therefore, we can’t have an 1sEmpty () method (why not?)

14

Preorder traversal

In preorder, the root 1s visited first

public class BinaryTreeNode {
int val;
BinaryTreeNode leftChild=null;
BinaryTreeNode rightChild=null;
// root, left, right
void preOrderTraverse(){
System.out.println(val);
if (leftChild!=null)
leftChild.preOrderTraverse();
if (rightChild!=null)
rightChild.preOrderTraverse();
}

}
public class MyBinaryTree {

BinaryTreeNode root;
void preOrderTraverse(){
if (root!=null)
root.preOrderTraverse();

15

Inorder traversal

=« In inorder, the root 1s visited in the middle

public class MyBinaryTree {
BinaryTreeNode root;
void inOrderTraverse(){
if (root!=null)
root.inOrderTraverse();
}
}

public class BinaryTreeNode {
int val;
BinaryTreeNode leftChild=null;
BinaryTreeNode rightChild=null;
// Lleft, root, right
void inOrderTraverse(){
if (leftChild!=null)
leftChild.inOrderTraverse();
System.out.println(val);
if (rightChild!=null)
rightChild.inOrderTraverse();

16

Postorder traversal

= In postorder, the root 1s visited /last

public class MyBinaryTree {
BinaryTreeNode root;
void postOrderTraverse(){
if (root!=null)
root.postOrderTraverse();
}
}

public class BinaryTreeNode {
int val;
BinaryTreeNode leftChild=null;
BinaryTreeNode rightChild=null;
// Lleft, root, right
void postOrderTraverse(){
if (leftChild!=null)
leftChild.inOrderTraverse();
if (rightChild!=null)
rightChild.inOrderTraverse();

System.out.println(val);
}

17

Tree traversals using “flags”
http://[tinyurl.com/y7aabw7j

= The order in which the nodes are visited during a tree
traversal can be easily determined by imagining there 1s a
“flag” attached to each node, as follows:

O O O

preorder inorder postorder

= To traverse the tree, collect the flags:

18

| Tree traversals using “flags”

= The order in which the nodes are visited during a tree
traversal can be easily determined by imagining there 1s a
“flag” attached to each node, as follows:

PN AR PN

preorder inorder postorder
root-left-right left-root-right left-right-root

= To traverse the tree, collect the flags:

ABDECFG DBEAFCG DEBFGCA

19

Copying a binary tree

public class MyBinaryTree {
BinaryTreeNode root=null;
MyBinaryTree copyTree(){
MyBinaryTree newTree = new MyBinaryTree();
if (root!=null)
newTree.root = root.copyNode();
return newTree;

}
}
public class BinaryTreeNode {
int val;
BinaryTreeNode leftChild=null;
BinaryTreeNode rightChild=null;
BinaryTreeNode(int val, BinaryTreeNode leftChild, BinaryTreeNode rightChild){
this.val = val;
this.leftChild = leftChild;
this.rightChild = rightChild;
}
BinaryTreeNode copyNode(){
BinaryTreeNode newLeft=null;
BinaryTreeNode newRight=null;
if (leftChild!=null)
newLeft = leftChild.copyNode();
if (rightChild!=null)
newRight = rightChild.copyNode();
BinaryTreeNode newNode = BinaryTreeNode(val, newLeft, newRight);
return newNode;
}
}

20

| Other traversals

The other traversals are the reverse of these three
standard ones

= That 1s, the right subtree 1s traversed before the left subtree
1s traversed

Reverse preorder: root, right subtree, left subtree
Reverse morder: right subtree, root, left subtree
Reverse postorder: right subtree, left subtree, root

21

The End

SPIDERS * crABS & MAMMALS REPTILES
£ -

LOBSTERS N

SEGMENTED
HORM® A FROGS &
M H NEWTS
%ﬂ BRYOZOA FISH
MOLLUSCS
N~ () wue _PSEASQUIRTS
ROUNDWORMS N

M STARFISH
p & SEA URCHINS
NEMERTINE WORMS

PROTOZOA)y
43 SPONGES

RST TRUE ‘CELLS’

http://www.cienciasatlantico.blogsek.es/2013/05/07/evolution-and-the-tree-of-life/evolutionary-tree-original/

22

