
Binary Trees

2

Parts of a binary tree
■ A binary tree is composed of zero or more nodes

■ In Java, a reference to a binary tree may be null
■ Each node contains:

■ A value (some sort of data item)
■ A reference or pointer to a left child (may be null), and
■ A reference or pointer to a right child (may be null)

■ A binary tree may be empty (contain no nodes)
■ If not empty, a binary tree has a root node

■ Every node in the binary tree is reachable from the root node by a
unique path

■ A node with no left child and no right child is called a leaf
■ In some binary trees, only the leaves contain a value

3

Picture of a binary tree

a

b c

d e

g h i

l

f

j k

The root is
drawn at the top

4

Left ≠ Right
■ The following two binary trees are different:

■ In the first binary tree, node A has a left child but no right child;
in the second, node A has a right child but no left child

■ Put another way: Left and right are not relative terms

A

B

A

B

5

More terminology

■ Node A is the parent of node B if node B is a child of A
■ Node A is an ancestor of node B if A is a parent of B, or

if some child of A is an ancestor of B
■ In less formal terms, A is an ancestor of B if B is a child of A,

or a child of a child of A, or a child of a child of a child of A,
etc.

■ Node B is a descendant of A if A is an ancestor of B
■ Nodes A and B are siblings if they have the same parent

6

Size and depth

■ The size of a binary tree is the
number of nodes in it
■ This tree has size 12

■ The depth of a node is its
distance from the root
■ a is at depth zero
■ e is at depth 2

■ The depth of a binary tree is
the depth of its deepest node
■ This tree has depth 4

a

b c

d e f

g h i j k

l

7

Balance

■ In most applications, a reasonably balanced binary tree is
desirable

a

b c

d e f g

h i j

A balanced binary tree

a

b

c

d

e

f

g h

i j
An unbalanced binary tree

Definitions of “balanced”

Define the height of a node as
the largest distance from that
node to a leaf

1. A binary tree is balanced if every level above the
lowest is “full” (contains 2n nodes)

2. A binary tree is balanced if the height of each node
differs by at most 1 from the heights of its sibling

8

a

b c

d e f g

h i j

A balanced binary tree

9

Sorted binary trees

■ A binary tree is sorted if every node in the tree is larger
than (or equal to) its left descendants, and smaller than
(or equal to) its right descendants

■ Equal nodes can go either on the left or the right (but it
has to be consistent)

10

8 15

4 12 20

17

BinarySearchTree class
public class BinarySearchTree {

 BinaryTreeNode root;

}

public class BinaryTreeNode {

 int val;

 BinaryTreeNode leftChild=null;

 BinaryTreeNode rightChild=null;

 BinaryTreeNode(int val, BinaryTreeNode leftChild,

BinaryTreeNode rightChild){

 this.val = val;

 this.leftChild = leftChild;

 this.rightChild = rightChild;

 }

}

10

BinarySearchTree class
public class BinarySearchTree {

 BinaryTreeNode root;

 boolean search(int key){

 BinaryTreeNode tmp = root;

 while(tmp!=null){

 if (tmp.val==key)

 return true;

 if (key<tmp.val)

 tmp = tmp.leftChild;

 else // key>tmp.val

 tmp = tmp.rightChild;

 }

 return false;

 }

}

11

12

Binary search in a sorted array

■ Look at array location (lo + hi)/2

2 3 5 7 11 13 17
 0 1 2 3 4 5 6

Searching for 5:
(0+6)/2 = 3

hi = 2;
(0 + 2)/2 = 1 lo = 2;

(2+2)/2=2
7

3 13

2 5 11 17

Using a binary
search tree

13

Tree traversals

■ A binary tree is defined recursively: it consists of a root, a
left subtree, and a right subtree

■ To traverse (or walk) the binary tree is to visit each node in
the binary tree exactly once

■ Tree traversals are naturally recursive
■ Since a binary tree has three “parts,” there are six possible

ways to traverse the binary tree
■ root, left, right
■ left, root, right
■ left, right, root

■ (inorder, preorder, postorder)

■ root, right, left
■ right, root, left
■ right, left, root

class BinaryTree

■

■ A constructor for a binary tree should have three parameters,
corresponding to the three fields

■ An “empty” binary tree is just a value of null
■ Therefore, we can’t have an isEmpty() method (why not?)

14

15

Preorder traversal

■ In preorder, the root is visited first

public class BinaryTreeNode {
 int val;
 BinaryTreeNode leftChild=null;
 BinaryTreeNode rightChild=null;
 // root, left, right
 void preOrderTraverse(){
 System.out.println(val);
 if (leftChild!=null)
 leftChild.preOrderTraverse();
 if (rightChild!=null)
 rightChild.preOrderTraverse();
 }
}
public class MyBinaryTree {
 BinaryTreeNode root;
 void preOrderTraverse(){
 if (root!=null)
 root.preOrderTraverse();
 }
}

16

Inorder traversal

■ In inorder, the root is visited in the middle

public class MyBinaryTree {
 BinaryTreeNode root;
 void inOrderTraverse(){
 if (root!=null)
 root.inOrderTraverse();
 }
}
public class BinaryTreeNode {
 int val;
 BinaryTreeNode leftChild=null;
 BinaryTreeNode rightChild=null;
 // left, root, right
 void inOrderTraverse(){
 if (leftChild!=null)
 leftChild.inOrderTraverse();
 System.out.println(val);
 if (rightChild!=null)
 rightChild.inOrderTraverse();
 }
}

17

Postorder traversal

■ In postorder, the root is visited last
public class MyBinaryTree {
 BinaryTreeNode root;
 void postOrderTraverse(){
 if (root!=null)
 root.postOrderTraverse();
 }
}
public class BinaryTreeNode {
 int val;
 BinaryTreeNode leftChild=null;
 BinaryTreeNode rightChild=null;
 // left, root, right
 void postOrderTraverse(){
 if (leftChild!=null)
 leftChild.inOrderTraverse();
 if (rightChild!=null)
 rightChild.inOrderTraverse();

 System.out.println(val);
 }
}

18

Tree traversals using “flags”
http://tinyurl.com/y7aa6w7j

■ The order in which the nodes are visited during a tree
traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

■ To traverse the tree, collect the flags:

preorder inorder postorder

A

B C

D E F G

19

Tree traversals using “flags”
■ The order in which the nodes are visited during a tree

traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

■ To traverse the tree, collect the flags:

preorder
root-left-right

inorder
left-root-right

postorder
left-right-root

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C A

20

Copying a binary tree
public class MyBinaryTree {

 BinaryTreeNode root=null;

 MyBinaryTree copyTree(){

 MyBinaryTree newTree = new MyBinaryTree();

 if (root!=null)

 newTree.root = root.copyNode();

 return newTree;

 }

}

public class BinaryTreeNode {

 int val;

 BinaryTreeNode leftChild=null;

 BinaryTreeNode rightChild=null;

 BinaryTreeNode(int val, BinaryTreeNode leftChild, BinaryTreeNode rightChild){

 this.val = val;

 this.leftChild = leftChild;

 this.rightChild = rightChild;

 }

 BinaryTreeNode copyNode(){

 BinaryTreeNode newLeft=null;

 BinaryTreeNode newRight=null;

 if (leftChild!=null)

 newLeft = leftChild.copyNode();

 if (rightChild!=null)

 newRight = rightChild.copyNode();

 BinaryTreeNode newNode = BinaryTreeNode(val, newLeft, newRight);

 return newNode;

 }

}

21

Other traversals

■ The other traversals are the reverse of these three
standard ones
■ That is, the right subtree is traversed before the left subtree

is traversed
■ Reverse preorder: root, right subtree, left subtree
■ Reverse inorder: right subtree, root, left subtree
■ Reverse postorder: right subtree, left subtree, root

22

The End

http://www.cienciasatlantico.blogsek.es/2013/05/07/evolution-and-the-tree-of-life/evolutionary-tree-original/

