
Heapsort

2

Why study Heapsort?

■ It is a well-known, traditional sorting algorithm
you will be expected to know

■ Heapsort is always O(n log n)
■ Quicksort is usually O(n log n) but in the worst case

slows to O(n2)
■ Quicksort is generally faster, but Heapsort is better in

time-critical applications
■ Heapsort is a really cool algorithm!

3

What is a “heap”?

■ Definitions of heap:
1. A large area of memory from which the

programmer can allocate blocks as needed, and
deallocate them (or allow them to be garbage
collected) when no longer needed

2. A balanced, left-justified binary tree in which
no node has a value greater than the value in its
parent

■ These two definitions have little in common
■ Heapsort uses the second definition

4

Balanced binary trees
■ Recall:

■ The depth of a node is its distance from the root
■ The depth of a tree is the depth of the deepest node

■ A binary tree of depth n is balanced if all the nodes at
depths 0 through n-2 have two children

Balanced Balanced Not balanced

n-2
n-1
n

5

Left-justified binary trees

■ A balanced binary tree of depth n is
left-justified if:
■ it has 2n nodes at depth n (the tree is “full”), or

■ it has 2k nodes at depth k, for all k < n, and all
the leaves at depth n are as far left as possible

Left-justified Not left-justified

6

Plan of attack

■ First, we will learn how to turn a binary tree into a heap
■ Next, we will learn how to turn a binary tree back into a

heap after it has been changed in a certain way
■ Finally (this is the cool part) we will see how to use

these ideas to sort an array

7

The heap property

■ A node has the heap property if the value in the
node is as large as or larger than the values in its
children

■ All leaf nodes automatically have the heap property
■ A binary tree is a heap if all nodes in it have the

heap property

12

8 3
Blue node has
heap property

12

8 12

Blue node has
heap property

12

8 14

Blue node does not
have heap property

8

siftUp

■ Given a node that does not have the heap property, you can
give it the heap property by exchanging its value with the
value of the larger child

■ This is sometimes called sifting up
■ Notice that the child may have lost the heap property

14

8 12

Blue node has
heap property

12

8 14

Blue node does not
have heap property

9

Constructing a heap I

■ A tree consisting of a single node is automatically
a heap

■ We construct a heap by adding nodes one at a time:
■ Add the node just to the right of the rightmost node in

the deepest level
■ If the deepest level is full, start a new level

■ Examples:

Add a new
node here

Add a new
node here

10

Constructing a heap II
■ Each time we add a node, we may destroy the heap

property of its parent node
■ To fix this, we sift up
■ But each time we sift up, the value of the topmost node

in the sift may increase, and this may destroy the heap
property of its parent node

■ We repeat the sifting up process, moving up in the tree,
until either
■ We reach nodes whose values don’t need to be swapped

(because the parent is still larger than both children), or
■ We reach the root

11

Constructing a heap III

8 8

10

10

8

10

8 5

10

8 5

12

10

12 5

8

12

10 5

8

1 2 3

4

12

Other children are not affected

■ The node containing 8 is not affected because its parent gets larger, not
smaller

■ The node containing 5 is not affected because its parent gets larger, not
smaller

■ The node containing 8 is still not affected because, although its parent got
smaller, its parent is still greater than it was originally

12

10 5

8 14

12

14 5

8 10

14

12 5

8 10

13

A sample heap
■ Here’s a sample binary tree after it has been heapified

■ Notice that heapified does not mean sorted
■ Heapifying does not change the shape of the binary tree;

this binary tree is balanced and left-justified because it
started out that way

19

1418

22

321

14

119

15

25

1722

14

Removing the root
■ Notice that the largest number is now in the root
■ Suppose we discard the root:

We need to “promote” some other node to be the new root

15

Removing the root (animated)
■ Here’s our “rootless” binary tree:

■ How can we fix the binary tree so it is once again balanced
and left-justified?

■ Solution: remove the rightmost leaf at the deepest level and
use it for the new root

19

1418

22

321

14

1
1

9

15

1722

11

16

The reHeap method I
■ Our tree is balanced and left-justified, but no longer a heap
■ However, only the root lacks the heap property

■ We can siftUp() the root
■ After doing this, one and only one of its children may have

lost the heap property

19

1418

22

321

14

9

15

1722

11

17

The reHeap method II
■ Now the left child of the root (still the number 11) lacks

the heap property

■ We can siftUp() this node
■ After doing this, one and only one of its children may have

lost the heap property

19

1418

22

321

14

9

15

1711

22

18

The reHeap method III
■ Now the right child of the left child of the root (still the

number 11) lacks the heap property:

■ We can siftUp() this node
■ After doing this, one and only one of its children may have

lost the heap property —but it doesn’t, because it’s a leaf

19

1418

11

321

14

9

15

1722

22

19

The reHeap method IV
■ Our tree is once again a heap, because every node in it has

the heap property

■ Once again, the largest (or a largest) value is in the root
■ We can repeat this process until the tree becomes empty
■ This produces a sequence of values in order largest to smallest

19

1418

21

311

14

9

15

1722

22

20

Sorting
■ What do heaps have to do with sorting an array?
■ Here’s the neat part:

■ Because the binary tree is balanced and left justified, it can be
represented as an array

■ Danger: This representation works well only with balanced,
left-justified binary trees

■ All our operations on binary trees can be represented as
operations on arrays

■ To sort:
 heapify the array;
 while the array isn’t empty {
 remove and replace the root;
 reheap the new root node;
}

21

Mapping into an array

■ Notice:
■ The left child of index i is at index 2*i+1
■ The right child of index i is at index 2*i+2
■ Example: the children of node 3 (19) are 7 (18) and 8 (14)

19

1418

22

321

14

119

15

25

1722

25 22 17 19 22 14 15 18 14 21 3 9 11

 0 1 2 3 4 5 6 7 8 9 10 11 12

22

Removing and replacing the root

■ The “root” is the first element in the array
■ The “rightmost node at the deepest level” is the last element
■ Swap them...

■ ...And pretend that the last element in the array no longer
exists—that is, the “last index” is 11 (containing the value 9)

25 22 17 19 22 14 15 18 14 21 3 9 11

 0 1 2 3 4 5 6 7 8 9 10 11 12

11 22 17 19 22 14 15 18 14 21 3 9 25

 0 1 2 3 4 5 6 7 8 9 10 11 12

23

Reheap and repeat
■ Reheap the root node (index 0, containing 11)...

■ Remember, though, that the “last” array index is changed
■ Repeat until the last becomes first, and the array is sorted!

22 22 17 19 21 14 15 18 14 11 3 9 25

 0 1 2 3 4 5 6 7 8 9 10 11 12

9 22 17 19 22 14 15 18 14 21 3 22 25

 0 1 2 3 4 5 6 7 8 9 10 11 12

11 22 17 19 22 14 15 18 14 21 3 9 25

 0 1 2 3 4 5 6 7 8 9 10 11 12

■ ...And again, remove and replace the root node

Implementation
// Ferhat Sal's implementation of Heap Sort. Thanks Ferhat!

package Heap;

import java.util.*;

public class Heap {

 private int[] heaparr = null;

 public Heap() {

 this.heaparr = new int[] { 25, 22, 17, 19, 22, 14, 15, 18, 14, 21, 3, 9, 11};

 // for testing with different data

 //this.heaparr = new int[] { 55,49,38,44,41,32,29,18,11,25,27,5,12,20,13,1};

 //this.heapSort(heaparr);

 }

 private void swap(int[] arr, int index1, int index2) {

 int tmp = arr[index2];

 arr[index2] = arr[index1];

 arr[index1] = tmp;

 System.out.println("swap : " + Arrays.toString(arr));

 }

}

24

 public void heapSort(int[] heap) {

 int n = heap.length;

 for (int i = 0; i < n; i++) {

 int wall = n-i-1 ;

 System.out.println("i: " + i +" " + Arrays.toString(heap));

 swap(heap, 0, n - i - 1);

 int current = 0;

 while (current < wall) { // loop until we did not reach to "virtual wall" and we have

still children

 int biggest = current ; // set current as biggest

 int left = current * 2 + 1;

 int right = current * 2 + 2;

 // If left child is bigger than root

 if (left < wall && heap[left] > heap[biggest]) {

 biggest = left;

 }

 // If right child is bigger than biggest

 if (right < wall && heap[right] > heap[biggest]) {

 biggest = right;

 }

 // If biggest is not current

 if (biggest != current) {

 swap(heap, current, biggest);

 }

 else {

 break; // max is current , no need to continue

 }

 current = biggest ;

 }

 }

 } 25

26

Analysis I

■ Here’s how the algorithm starts:
 heapify the array;

■ Heapifying the array: we add each of n nodes
■ Each node has to be sifted up, possibly as far as the root

■ Since the binary tree is perfectly balanced, sifting up a single
node takes O(log n) time

■ Since we do this n times, heapifying takes n*O(log n)
time, that is, O(n log n) time

27

Analysis II

■ Here’s the rest of the algorithm:
 while the array isn’t empty {
 remove and replace the root;
 reheap the new root node;
}

■ We do the while loop n times (actually, n-1 times),
because we remove one of the n nodes each time

■ Removing and replacing the root takes O(1) time
■ Therefore, the total time is n times however long it

takes the reheap method

28

Analysis III

■ To reheap the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

■ The binary tree is perfectly balanced
■ Therefore, this path is O(log n) long

■ And we only do O(1) operations at each node
■ Therefore, reheaping takes O(log n) times

■ Since we reheap inside a while loop that we do n times,
the total time for the while loop is n*O(log n), or
O(n log n)

29

Analysis IV

■ Here’s the algorithm again:
 heapify the array;
 while the array isn’t empty {
 remove and replace the root;
 reheap the new root node;
}

■ We have seen that heapifying takes O(n log n) time
■ The while loop takes O(n log n) time
■ The total time is therefore O(n log n) + O(n log n)
■ This is the same as O(n log n) time

30

The End

