| Heapsort

M-

| Why study Heapsort?

« It 1s a well-known, traditional sorting algorithm
you will be expected to know
« Heapsort is always O(n log n)

= Quicksort is usually O(n log n) but in the worst case
slows to O(n?)

= Quicksort 1s generally faster, but Heapsort 1s better in
time-critical applications

= Heapsort 1s a really cool algorithm!

| What 1s a “heap”?

= Definitions of heap:

1. A large area of memory from which the
programmer can allocate blocks as needed, and
deallocate them (or allow them to be garbage
collected) when no longer needed

». A balanced, left-justified binary tree in which
no node has a value greater than the value 1n 1ts
parent

= These two definitions have little in common
= Heapsort uses the second definition

| Balanced binary trees

= Recall:

« The depth of a node 1s its distance from the root
« The depth of a tree 1s the depth of the deepest node

= A binary tree of depth n 1s balanced 1f all the nodes at
depths 0 through n-2 have two children

/\ /\ /\ /\ /\

S N Y A N S T 666666

Balanced Balanced Not balanced

| Left-justified binary trees

= A balanced binary tree of depth n 1s
left-justified 1f:

. it has 2" nodes at depth n (the tree 1s “full”), or

. it has 2% nodes at depth Kk, for all k < n, and all
the leaves at depth n are as far left as possible

Q Q
\
O/Og ?O\O O/O\j O/O\O
5858 S b8 &b

Left-justified Not left-justified

| Plan of attack

« First, we will learn how to turn a binary tree into a heap

= Next, we will learn how to turn a binary tree back into a
heap after it has been changed 1n a certain way

= Finally (this 1s the cool part) we will see how to use
these 1deas to sort an array

| The heap property

= A node has the heap property i1f the value in the
node is as large as or larger than the values in its

children
Blue node has Blue node has Blue node does not
heap property heap property have heap property

« All leaf nodes automatically have the heap property

= A binary tree 1s a heap 1f al/ nodes 1n 1t have the
heap property

siftU

= Given a node that does not have the heap property, you can
give 1t the heap property by exchanging its value with the
value of the larger child

-

Blue node does not Blue node has
have heap property heap property

= This 1s sometimes called sifting up
= Notice that the child may have lost the heap property

| Constructing a heap |

= A tree consisting of a single node 1s automatically
a heap

= We construct a heap by adding nodes one at a time:

= Add the node just to the right of the rightmost node in
the deepest level

« If the deepest level 1s full, start a new level

Add a new Add a new
node here node here

=« Examples:

| Constructing a heap 11

= Each time we add a node, we may destroy the heap
property of its parent node

« To fix this, we sift up

= But each time we sift up, the value of the topmost node
in the sift may increase, and this may destroy the heap
property of its parent node

= We repeat the sifting up process, moving up 1n the tree,
until either

« We reach nodes whose values don’t need to be swapped
(because the parent 1s stil/ larger than both children), or

=« We reach the root

10

| Constructing a heap III
s &
©

3

5@ ot g

11

Other children are not affected

oL 5 ft@ ft@

The node containing 8 is not affected because its parent gets larger, not
smaller

The node containing 5 is not affected because its parent gets larger, not
smaller

The node containing 8 is still not affected because, although its parent got
smaller, its parent is still greater than it was originally

12

| A sample heap

« Here’s a sample binary tree after it has been heapified

@@G) @@ -

= Notice that heapified does not mean sorted

= Heapifying does not change the shape of the binary tree;

this binary tree is balanced and left-justified because it
started out that way

13

| Removing the root

= Notice that the largest number 1s now in the root
= Suppose we discard the root:

S & N

We need to “promote” some other node to be the new root

14

| Removing the root (animated)

= Here’s our “rootless” binary tree:

« How can we fix the binary tree so it is once again balanced
and left-justified?

= Solution: remove the rightmost leaf at the deepest level and
use 1t for the new root

15

| The reHeap method I

= Our tree 1s balanced and left-justified, but no longer a heap
« However, only the root lacks the heap property

©
S

@QCD @ -

= We can siftUp() the root

= After doing this, one and only one of its children may have
lost the heap property

16

| The reHeap method II

= Now the left child of the root (still the number 11) lacks
the heap property

(113
S ®
o @ & O

= We can siftUp() this node

= After doing this, one and only one of its children may have
lost the heap property

17

| The reHeap method III

= Now the right child of the left child of the root (still the
number 11) lacks the heap property'

‘ ‘@ @@

= We can siftUp() this node

= After doing this, one and only one of its children may have
lost the heap property —but it doesn’t, because it’s a leaf

18

The reHeap method IV

= Our tree 1s once again a heap, because every node in 1t has
the heap property

2 ®

ONOMONO

= Once again, the largest (or a largest) value is in the root
= We can repeat this process until the tree becomes empty
= This produces a sequence of values in order largest to smallest

19

Sortin

= What do heaps have to do with sorting an array?

= Here’s the neat part:

= Because the binary tree is balanced and left justified, 1t can be
represented as an array
= Danger: This representation works well only with balanced,
left-justified binary trees
= All our operations on binary trees can be represented as
operations on arrays

« 10 sort:
heapify the array;
while the array isn't empty {
remove and replace the root;
reheap the new root node;

}

20

| Mapping into an array

“ @@CD @@ -

1 3 5 /7 8 9 10 11 12

25 1 22 | 17 | 19 | 22 | 14 | 15 | 18 | 14 | 21 3 9 11

= Notice:
= The left child of index i 1s at index 2*i+1
= The right child of index i 1s at index 2*i+2
= Example: the children of node 3 (19) are 7 (18) and 8 (14)

Removing and replacing the root

« The “root” 1s the first element in the array
= The “rightmost node at the deepest level” 1s the last element

= Swap them...

o 1 2 3 4 5 6 7 8 9 10 11 12

[SV)
O
-
=

25 122 |17 | 19 | 22 | 14 | 15 | 18 | 14 | 21

ﬁ?3456789101112\

11 {22 (17 [19| 22 | 14 | 15 | 18 | 14 | 21 3 9 25

= ...And pretend that the last element in the array no longer
exists—that 1s, the “last index™ 1s 11 (containing the value 9)

Reheap and repeat

= Reheap the root node (index 0, containing 11)...

0O 1 2 3 4 5 6 7 8 9 10 11 12
11| 221171 19| 22|14 | 15| 18 | 14 | 21 3 9 25
0O 1 2 3 4 5 6 7 8 9 10 11 12
22 | 22 11719 21| 14| 15| 18 | 14 | 11 3 25
S—
O 1 2 3 4 5 6 7 8 9 10 11 12\
22 | 17119 | 22| 14| 15| 18 | 14 | 21 3 22 § 25

= ...And again, remove and replace the root node

= Remember, though, that the “last” array index 1s changed

= Repeat until the last becomes first, and the array is sorted!

23

Implementation

// Ferhat Sal's implementation of Heap Sort. Thanks Ferhat!
package Heap;

import java.util.*;
public class Heap {

private int[] heaparr = null;

public Heap() {
this.heaparr = new int[] { 25, 22, 17, 19, 22, 14, 15, 18, 14, 21, 3, 9, 11};
// for testing with different data
//this.heaparr = new int[] { 55,49,38,44,41,32,29,18,11,25,27,5,12,20,13,1};
//this.heapSort(heaparr);
}

private void swap(int[] arr, int index1, int index2) {
int tmp = arr[index2];
arr[index2] = arr[index1];
arr[index1] = tmp;
System.out.println(“swap : " + Arrays.toString(arr));

24

public void heapSort(int[] heap) {
int n = heap.length;
for (int 1 = 0; i < n; i++) {
int wall = n-i-1 ;
System.out.println("i: " + i +" " + Arrays.toString(heap));
swap(heap, 6, n - i - 1);
int current = 0;
while (current < wall) { // loop until we did not reach to "virtual wall" and we have
still children
int biggest = current ; // set current as biggest
int left = current * 2 + 1;
int right = current * 2 + 2;
// If Lleft child is bigger than root
if (left < wall && heap[left] > heap[biggest]) {
biggest = left;

// If right child is bigger than biggest

if (right < wall && heap[right] > heap[biggest]) {
biggest = right;

}

// If biggest 1is not current

if (biggest != current) {
swap(heap, current, biggest);

}
else {

break; // max 1s current , no need to continue
}

current = biggest ;

« Here’s how the algorithm starts:
heapify the array;

= Heapifying the array: we add each of n nodes

= Each node has to be sifted up, possibly as far as the root

- Since the binary tree is perfectly balanced, sifting up a single
node takes O(log n) time

= Since we do this n times, heapifying takes n*O(log n)
time, that 1s, O(n log n) time

26

| Analysis II

Here’s the rest of the algorithm:

while the array isn't empty {
remove and replace the root;
reheap the new root node;

»

We do the while loop n times (actually, n-1 times),
because we remove one of the n nodes each time

Removing and replacing the root takes O(1) time

Therefore, the total time 1s n times however long i1t
takes the reheap method

27

| Analysis III

= To reheap the root node, we have to follow one path
from the root to a leaf node (and we might stop before
we reach a leaf)

= The binary tree 1s perfectly balanced

= Therefore, this path is O(log n) long
= And we only do O(1) operations at each node
= Therefore, reheaping takes O(log n) times

= Since we reheap inside a while loop that we do n times,

the total time for the while loop is N*O(log n), or
O(n log n)

28

| Analysis IV

Here’s the algorithm again:

We have seen that heapifying takes O(n log n) time

r

I

r

~1

I'he while loop takes O(n log n) time

~1

T'he total time 1s therefore O(n log n) + O(n log n)

heapify the array;

while the array isn’t empty {
remove and replace the root;
reheap the new root node;

}

~1

T'his 1s the same as O(n log n) time

29

| The End

30

