
Priority Queues

2

Priority queue

■ A stack is first in, last out
■ A queue is first in, first out
■ A priority queue is least-first-out

■ The “smallest” element is the first one removed
■ (You could also define a largest-first-out priority queue)

■ The definition of “smallest” is up to the programmer (for
example, you might define it by implementing
Comparator or Comparable)

■ If there are several “smallest” elements, the
implementer must decide which to remove first

■ Remove any “smallest” element (don’t care which)
■ Remove the first one added

3

A priority queue ADT

■ Here is one possible ADT:
■ PriorityQueue(): a constructor
■ void add(Comparable o): inserts o into the priority queue
■ Comparable remove(): removes and returns the least element
■ Comparable peek(): returns (but does not remove) the least

element
■ boolean isEmpty(): returns true iff empty
■ int size(): returns the number of elements
■ void clear(): discards all elements

4

Evaluating implementations
■ When we choose a data structure, it is important to look

at usage patterns
■ If we load an array once and do thousands of searches on it,

we want to make searching fast—so we would probably sort
the array

■ If we load a huge array and expect to do only a few searches,
we probably don’t want to spend time sorting the array

■ For almost all uses of a queue (including a priority
queue), we eventually remove everything that we add

■ Hence, when we analyze a priority queue, neither “add”
nor “remove” is more important—we need to look at the
timing for “add + remove”

5

Array implementations
■ A priority queue could be implemented as an unsorted

array (with a count of elements)
■ Adding an element would take O(?) time (why?)
■ Removing an element would take O(?) time (why?)
■ Hence, adding and removing an element takes O(?) time
■ This is an inefficient representation

■ A priority queue could be implemented as a sorted array
(again, with a count of elements)
■ Adding an element would take O(?) time (why?)
■ Removing an element would take O(?) time (why?)
■ Hence, adding and removing an element takes O(?) time
■ Again, this is inefficient

6

Array implementations
■ A priority queue could be implemented as an unsorted

array (with a count of elements)
■ Adding an element would take O(1) time (why?)
■ Removing an element would take O(n) time (why?)
■ Hence, adding and removing an element takes O(n) time
■ This is an inefficient representation

■ A priority queue could be implemented as a sorted array
(again, with a count of elements)
■ Adding an element would take O(n) time (why?)
■ Removing an element would take O(1) time (why?)
■ Hence, adding and removing an element takes O(n) time
■ Again, this is inefficient

7

Linked list implementations
■ A priority queue could be implemented as an unsorted

linked list
■ Adding an element would take O(?) time (why?)
■ Removing an element would take O(?) time (why?)

■ A priority queue could be implemented as a sorted
linked list
■ Adding an element would take O(?) time (why?)
■ Removing an element would take O(?) time (why?)

■ As with array representations, adding and removing an
element takes O(?) time
■ Again, these are inefficient implementations

8

Linked list implementations
■ A priority queue could be implemented as an unsorted

linked list
■ Adding an element would take O(1) time (why?)
■ Removing an element would take O(n) time (why?)

■ A priority queue could be implemented as a sorted
linked list
■ Adding an element would take O(n) time (why?)
■ Removing an element would take O(1) time (why?)

■ As with array representations, adding and removing an
element takes O(n) time
■ Again, these are inefficient implementations

9

Binary tree implementations

■ A priority queue could be represented as a binary
search tree
■ Insertion times would range from O(?) to O(?) (why?)
■ Removal times would range from O(?) to O(?) (why?)

■ A priority queue could be represented as a balanced
binary search tree
■ Insertion and removal could destroy the balance
■ We need an algorithm to rebalance the binary tree
■ Good rebalancing algorithms require only O(?) time, but

are complicated

10

Binary tree implementations

■ A priority queue could be represented as a binary
search tree
■ Insertion times would range from O(log n) to O(n) (why?)
■ Removal times would range from O(log n) to O(n) (why?)

■ A priority queue could be represented as a balanced
binary search tree
■ Insertion and removal could destroy the balance
■ We need an algorithm to rebalance the binary tree
■ Good rebalancing algorithms require only O(log n) time,

but are complicated

11

Heap implementation
■ A priority queue can be implemented as a heap
■ In order to do this, we have to define the heap property

■ In Heapsort, a node has the heap property if it is at least as large as its
children

■ For a priority queue, we will define a node to have the heap property if it
is as least as small as its children (since we are using smaller numbers to
represent higher priorities)

1
2

8 3
Heapsort: Blue node
has the heap property

3

8 1
2

Priority queue: Blue node
has the heap property

12

Array representation of a heap

■ Left child of node i is 2*i + 1, right child is 2*i + 2
■ Unless the computation yields a value larger than lastIndex, in

which case there is no such child
■ Parent of node i is (i – 1)/2

■ Unless i == 0

12

1418

6

8

3

3 12 6 18 14 8

 0 1 2 3 4 5 6 7 8 9 10 11 12

lastIndex = 5

13

Using the heap

■ To add an element:
■ Increase lastIndex and put the new value there
■ Reheap the newly added node

■ This is called up-heap bubbling or percolating up
■ Up-heap bubbling requires O(log n) time

■ To remove an element:
■ Remove the element at location 0
■ Move the element at location lastIndex to location 0, and decrement

lastIndex
■ Reheap the new root node (the one now at location 0)

■ This is called down-heap bubbling or percolating down
■ Down-heap bubbling requires O(log n) time

■ Thus, it requires O(log n) time to add and remove an element

14

Comments
■ A priority queue is a data structure that is designed to

return elements in order of priority
■ Efficiency is usually measured as the sum of the time

it takes to add and to remove an element
■ Simple implementations take O(n) time
■ Heap implementations take O(log n) time
■ Balanced binary tree implementations take O(log n) time
■ Binary tree implementations, without regard to balance, can

take O(n) (linear) time
■ Thus, for any sort of heavy-duty use, heap or balanced

binary tree implementations are better

15

Java 5 java.util.PriorityQueue
■ Java 5 finally has a PriorityQueue class, based on heaps

■ Has redundant methods because it implements two similar interfaces

■ PriorityQueue<E> queue = new PriorityQueue<E>();
■ Uses the natural ordering of elements (that is, Comparable)
■ There is another constructor that takes a Comparator argument

■ boolean add(E o) – from the Collection interface
■ boolean offer(E o) – from the Queue interface

■ E peek() – from the Queue interface

■ boolean remove(Object o) – from the Collection interface
■ E poll() – from the Queue interface (returns null if queue is empty)

■ void clear()
■ int size()

16

The End

