J Priority Queues

> -



Prioritvy queue

« A stack 1s first in, last out
= A queue 1s first 1n, first out

= A priority queue 1s least-first-out
= The “smallest” element 1s the first one removed

= (You could also define a largest-first-out priority queue)
= The definition of “smallest” is up to the programmer (for

example, you might define it by implementing
Comparator or Comparable)

= Ifthere are several “smallest” elements, the
implementer must decide which to remove first

- Remove any “smallest” element (don’t care which)
= Remove the first one added



A priority queue ADT

=« Here is one possible ADT:
= PriorityQueue(): a constructor
. void add(Comparable 0): inserts o into the priority queue
. Comparable remove(): removes and returns the least element

. Comparable peek(): returns (but does not remove) the least
element

. boolean isEmpty(): returns true i1ff empty
. int size(): returns the number of elements
. Vvoid clear(): discards all elements



{ Evaluating implementations

= When we choose a data structure, it 1s important to look
at usage patterns

« If we load an array once and do thousands of searches on it,
we want to make searching fast—so we would probably sort
the array

= If we load a huge array and expect to do only a few searches,
we probably don’t want to spend time sorting the array
= For almost all uses of a queue (including a priority
queue), we eventually remove everything that we add

= Hence, when we analyze a priority queue, neither “add”
nor “remove’ 1s more important—we need to look at the
timing for “add + remove”



{ Array implementations

= A priority queue could be implemented as an unsorted
array (with a count of elements)
= Adding an element would take O(?) time (why?)
=« Removing an element would take O(?) time (why?)
= Hence, adding and removing an element takes O(?) time
= This 1s an nefficient representation

= A priority queue could be implemented as a sorted array
(again, with a count of elements)
= Adding an element would take O(?) time (why?)
« Removing an element would take O(?) time (why?)
« Hence, adding and removing an element takes O(?) time
= Again, this 1s inefficient



{ Array implementations

= A priority queue could be implemented as an unsorted
array (with a count of elements)
= Adding an element would take O(1) time (why?)
= Removing an element would take O(n) time (why?)
= Hence, adding and removing an element takes O(n) time
= This 1s an nefficient representation

= A priority queue could be implemented as a sorted array
(again, with a count of elements)
= Adding an element would take O(n) time (why?)
= Removing an element would take O(1) time (why?)
« Hence, adding and removing an element takes O(n) time
= Again, this 1s inefficient



{ Linked list implementations

= A priority queue could be implemented as an unsorted
linked list

= Adding an element would take O(?) time (why?)
=« Removing an element would take O(?) time (why?)

= A priority queue could be implemented as a sorted
linked list

= Adding an element would take O(?) time (why?)
=« Removing an element would take O(?) time (why?)

= As with array representations, adding and removing an
element takes O(?) time
= Again, these are inefficient implementations



{ Linked list implementations

= A priority queue could be implemented as an unsorted
linked list

= Adding an element would take O(1) time (why?)
= Removing an element would take O(n) time (why?)

= A priority queue could be implemented as a sorted
linked list

= Adding an element would take O(n) time (why?)
= Removing an element would take O(1) time (why?)

= As with array representations, adding and removing an
element takes O(n) time
= Again, these are inefficient implementations



{ Binary tree implementations

= A priority queue could be represented as a binary
search tree
= Insertion times would range from O(?) to O(?) (why?)
= Removal times would range from O(?) to O(?) (why?)

= A priority queue could be represented as a balanced
binary search tree
= Insertion and removal could destroy the balance
= We need an algorithm to rebalance the binary tree

= Good rebalancing algorithms require only O(?) time, but
are complicated



{ Binary tree implementations

= A priority queue could be represented as a binary
search tree
= Insertion times would range from O(log n) to O(n) (why?)
= Removal times would range from O(log n) to O(n) (why?)

= A priority queue could be represented as a balanced
binary search tree
= Insertion and removal could destroy the balance
= We need an algorithm to rebalance the binary tree

= Good rebalancing algorithms require only O(log n) time,
but are complicated

10



Heap implementation

= A priority queue can be implemented as a heap

= In order to do this, we have to define the heap property

= In Heapsort, a node has the heap property if it is at least as large as its
children

« For a priority queue, we will define a node to have the heap property if it
1s as least as small as its children (since we are using smaller numbers to
represent higher priorities)

S @t

Heapsort: Blue node Priority queue: Blue node
has the heap property has the heap property

11



Array representation of a heap

&g

lastIndex = 5
0 2 4

1 3 516 7 8 9 10 11 12

3 12 6 18 | 14 8

= Left child of node i 1s 2*i + 1, right child 1s 2*i + 2

= Unless the computation yields a value larger than lastIndex, in
which case there is no such child

« Parentofnodeiis (i-1)/2
= Unlessi ==

12



Using the hea

= To add an element:
« Increase lastIndex and put the new value there
= Reheap the newly added node
= This is called up-heap bubbling or percolating up
= Up-heap bubbling requires O(log n) time
« Toremove an element:
= Remove the element at location O

= Move the element at location lastIndex to location 0, and decrement
lastIndex

= Reheap the new root node (the one now at location 0)
= This is called down-heap bubbling or percolating down
= Down-heap bubbling requires O(log n) time

= Thus, it requires O(log n) time to add and remove an element

13



{ Comments

= A priority queue 1s a data structure that 1s designed to
return elements in order of priority

« Efficiency is usually measured as the sum of the time
it takes to add and to remove an element
= Simple implementations take O(n) time
- Heap implementations take O(log n) time
- Balanced binary tree implementations take O(log n) time
= Binary tree implementations, without regard to balance, can
take O(n) (linear) time
= Thus, for any sort of heavy-duty use, heap or balanced
binary tree implementations are better

14



Java 5 java.util.PriorityQueue

= Java 5 finally has a PriorityQueue class, based on heaps

Has redundant methods because it implements two similar interfaces

PriorityQueue<E> queue = new PriorityQueue<E>();
- Uses the natural ordering of elements (that is, Comparable)
= There is another constructor that takes a Comparator argument

boolean add(E o) — from the Collection interface
boolean offer(E 0) — from the Queue interface

E peek() — from the Queue interface

boolean remove(Object o) — from the Collection interface
E poll() — from the Queue interface (returns null if queue is empty)

void clear()
int size()

15



16



