| Stack Use

M-

| What 1s a stack?

= A stack 1s a Last In, First Out (LIFO) data structure

= Anything added to the stack goes on the “top” of the
stack

= Anything removed from the stack 1s taken from the
“top” of the stack

= Things are removed 1n the reverse order from that in
which they were inserted

| Constructing a stack

= To use Java’s built-in stacks, you need either of
« import java.util.”;
« import java.util.Stack;

= There 1s just one stack constructor:
Stack<E> stack = new Stack<E>();

= E is the type of element (for example, String) that you
intend to put on the stack

= To get the old (pre-Java 5) behavior, where objects of any
kind can be put on the stack, use <?>

| Fundamental stack operations

oldltem = stack.push(item)

= Adds the item (of type E) to the top of the stack; the item
pushed is also returned as the value of push

item = stack.pop();

= Removes the E at the top of the stack and returns it

item = stack.peek();

= Returns the top E of the stack but does not remove 1t from
the stack

stack.empty()

= Returns true if there 1s nothing in the stack

Additional stack operation

int i = stack.search(item);

= Returns the /-based position of the element on the stack.
That 1s, the top element is at position 1, the next element is
at position 2, and so on.

=« Returns -1 if the element is not on the stack

« This 1s not a “conventional” stack operation, but is
sometimes useful

Inheritance vs. composition

= This is inheritance: class X extends class Y { ... }

= X inherits all the (non-private) methods and variables of Y

= This is appropriate if X is a kind of Y, but not otherwise
- Because you get all of Y, whether it’s appropriate for X or not

« Inheritance is often overused

= This is composition: class X { Y myYvariable; ... }

= To make a method, say int m(int a), of class Y available to objects of
class X, you use delegation:
class X { ...; int m(int a) { return myYVariable.m(a); } ... }

= Similarly, class X can have getters and setters that refer to variables of
the object myYVariable

= Composition is appropriate if class X uses class Y, but isn’t a kind of
class Y

= If 1n doubt, use composition rather than inheritance

Stack ancestry

« The Stack class extends (inherits from) the Vector class

= Hence, anything you can do with a Vector, you can also do with a
Stack

- For example, you can index into it, add elements to and remove
elements from the middle, etc.

= This 1s not how stacks should be used!

- If you want Vector operations, use a Vector--the Stack methods give
you conventional names for stack operations, but no new capabilities

- A “stack” is a very specific data structure, defined by the preceding
operations; it just happens to be implemented by extending Vector

- Even Sun gets things wrong sometimes

= The Vector class implements the Collection interface

= Hence, anything you can do with a Collection, you can also do with
a Stack

= The most useful operation this gives you is toArray()

| Some uses of stacks

= Stacks are used for:

Any sort of nesting (such as parentheses)

Evaluating arithmetic expressions (and other sorts
of expression)

Implementing function or method calls

Keeping track of previous choices (as in
backtracking)

Keeping track of choices yet to be made (as in
creating a maze)

| A balancing act

= (1GOOI is balanced; ([1(x()3[())]) is not

= Simple counting 1s not enough to check balance

= You can do 1t with a stack: going left to right,
« Ifyouseea (, [, or{, push it on the stack

= If youseea),], or }, pop the stack and check whether
you got the corresponding (, [, or {

= When you reach the end, check that the stack is empty

Expression evaluation

Almost all higher-level languages let you evaluate
expressions, such as 3*X+y or m=m-+1

The simplest case of an expression 1s one number (such as
3) or one variable name (such as Xx)

« These are expressions

In many languages, = 1s considered to be an operator

= Its value is (typically) the value of the left-hand side, after the
assignment has occurred

Situations sometimes arise where you want to evaluate
expressions yourself, without benefit of a compiler

10

Performing calculations

= To evaluate an expression, such as 1+2*3+4, you
need two stacks: one for operands (numbers), the
other for operators: going left to right,
= If you see a number, push it on the number stack

= If you see an operator,

- While the top of the operator stack holds an operator of equal
or higher precedence:

= pop the old operator

= pop the top two values from the number stack and apply
the old operator to them

« push the result on the number stack
- push the new operator on the operator stack

= At the end, perform any remaining operations

11

Example: 1+2*3+4

1 : push 1 on number stack
+ : push + on op stack
2 : push 2 on number stack
* . because * has higher precedence than +, push * onto op stack
3 : push 3 onto number stack
+ : because + has lower precedence than *:
= pop3,2,and*
= compute 2*3=6, and push 6 onto number stack
= push + onto op stack
4 : push 4 onto number stack

end : pop 4, 6 and +, compute 6+4=10, push 10; pop 10, 1, and +,
compute 1+10=11, push 11

11 (at the top of the stack) is the answer

12

| Handling parentheses

= When you see a left parenthesis, (, treat it as a

low-priority operator, and just put 1t on the operator
stack

= When you see a right parenthesis ,), perform all the
operations on the operator stack until you reach the
corresponding left parenthesis; then remove the left
parenthesis

13

Handling variables

= There are two ways to handle variables 1n an
expression:

= When you encounter the variable, look up its value, and put
its value on the operand (number) stack

- This simplifies working with the stack, since everything
on it 1S a number

= When you encounter a variable, put the variable itself on
the stack; only look up its value later, when you need it

- This allows you to have embedded assignments, such as
12+ (x=5) *x

14

| Handling the = operator

= The assignment operator 1s just another operator

It has a lower precedence than the arithmetic operators
It should have a higher precedence than (

= To evaluate the = operator:

Evaluate the right-hand side (this will already have
been done, if = has a low precedence)

Store the value of the right-hand side into the variable
on the left-hand side

= You can only do this 1f your stack contains variables
as well as numbers

Push the value onto the stack

15

At the end

= Two things result in multiple special cases

= You frequently need to compare the priority of the current
operator with the priority of the operator at the top of the
stack—but the stack may be empty

« Earlier, I said: “At the end, perform any remaining operations”

= There 1s a simple way to avoid these special cases
= Invent a new “operator,” say, $, and push it on the stack
initially
= G1ve this operator the lowest possible priority
= To “apply” this operator, just quit—you’re done

16

Some things that can go wrong

= The expression may be 1ll-formed:
2+ 3+

= When you go to evaluate the second +, there won’t be two
numbers on the stack

12+ 3

= When you are done evaluating the expression, you have more
than one number on the stack

(2+3
= You have an unmatched (on the stack
2+ 3)
= You can’t find a matching (on the stack
= The expression may use a variable that has not
been assigned a value

17

Types of storage

In almost all languages (including Java), data 1s stored
in two different ways:

= Temporary variables—parameters and local variables of a
method—are stored 1n a stack
- These values are popped off the stack when the method returns
- The value returned from a method is also temporary, and is put on the
stack when the method returns, and removed again by the calling
program
= More permanent variables—objects and their instance
variables and class variables—are kept 1n a seap

- They remain on the heap until they are “freed” by the programmer (C,
C++) or garbage collected (Java)

18

Stacks 1n Java

= Stacks are used for local variables (including
parameters)

void methodA() {
int x, y; // puts x, y on stack
y=0;
methodB();

y+t,

3
void methodB() {

inty, z; // putsy, z on stack
y =5;

return; // removes y, z

} X

Recursion

A recursive definition 1s when something 1s defined partly in
terms of itself

Here’s the mathematical definition of factorial;

factorial(n) = l,ifn<=1
actoriaiing = n * factorial(n — 1) otherwise

Here’s the programming definition of factorial:
static int factorial(int n) {

if (n<=1) return 1;

else return n * factorial(n - 1);

}

20

| Supporting recursion

static int factorial(int n) {
if (n <=1) return 1;
else return n * factorial(n - 1);
3
« Ifyou call x = factorial(3), this enters the factorial method

with n=3 on the stack

- factorial calls itself, putting n=2 on the stack

: | factorial calls itself, putting n=1 on the stack
: | factorial returns 1

- factorial has n=2, computes and returns 2*1 = 2

« factorial has n=3, computes and returns 3*2 = 6

21

| Factorial (animation 1)

« X = factorial(3)

3 is put on stack as n

« static int factorial(int h) { //n=3

intr= 1, r is put on stack with value 1
if (n <=1) returnr;

else {
r =n * factorial(n - 1);
return r;

3

All references to r use this r

All references to N use this N

Now we recur with 2...

22

| Factorial (animation 2)

. r=n*factorial(n - 1);

%ﬂ on stack as n
« static int factorial(int h) {//n=2

}

intr= 1, r is put on stack with value 1
if (n <=1) return r;

else { Now using this r
r =n * factorial(n - 1); |

L Now we recur with 1...

23

| Factorial (animation 3)

. r=n*factorial(n - 1);

1 is put on stack as n

= static int factorial(int) { Now using this r

}

iNtr=1; risputonstack with value 1 And

if (n <= 1) return r; this N
else {
r=n * facgorial(n - 1);
return r;
}
Now we pop r and n

off the stack and return
1 as factorial(1)

24

| Factorial (animation 4)

= r=n*factorial(n - 1);

~_ .

« static int factorial(int n) { Now using this r \
intr=1; And |
if (n <= 1) return r; this n [
else { | r=1

r =n * factorial(n - 1);
return r; n=2
3 r=1
} Now we pop r and n
off the stack and return n=3

1 as factorial(1)

| Factorial (animation 5)

= r=n*factorial(n - 1);

« static int factorial(int n) {
intr=1;
if (n <=1) returnr;
else { Now using this r
r =n * factorial(n - 1); And
return r; | i
) } ; r=1
2 * 1is 2; n=3

Pop r and n;
Return 2

| Factorial (animation 6)

« X = factorial(3)

« static int factorial(int n) {

TN

}

N

intr=1;

else {

}

if (n <=1) returnr;
r =n * factorial(n - 1);
return 'r; v ’
3 * 9 iSZG; Now using this r
Pop r and n; And
this N

Return 6

27

Stack frames

Rather than pop variables off the stack one at a
time, they are usually organized into stack
frames

Each frame provides a set of variables and
their values

This allows variables to be popped off all at
once

There are several different ways stack frames
can be implemented

<

<

r=1

n=1

r=1

n=2

r=1

n=3

28

Summar

= Stacks are useful for working with any nested structure,
such as:
« Arithmetic expressions
= Nested statements in a programming language
= Any sort of nested data

29

http://www.gottatoy.com/Fisher-Price-Brilliant-Basics-Rock-A-Stack-Baby-Toy_p_856.html

30

