
Stack Use

2

What is a stack?

■ A stack is a Last In, First Out (LIFO) data structure
■ Anything added to the stack goes on the “top” of the

stack
■ Anything removed from the stack is taken from the

“top” of the stack
■ Things are removed in the reverse order from that in

which they were inserted

3

Constructing a stack

■ To use Java’s built-in stacks, you need either of
■ import java.util.*;
■ import java.util.Stack;

■ There is just one stack constructor:
 Stack<E> stack = new Stack<E>();

■ E is the type of element (for example, String) that you
intend to put on the stack
■ To get the old (pre-Java 5) behavior, where objects of any

kind can be put on the stack, use <?>

4

Fundamental stack operations

 oldItem = stack.push(item)
■ Adds the item (of type E) to the top of the stack; the item

pushed is also returned as the value of push

 item = stack.pop();
■ Removes the E at the top of the stack and returns it

 item = stack.peek();
■ Returns the top E of the stack but does not remove it from

the stack
 stack.empty()

■ Returns true if there is nothing in the stack

5

Additional stack operation

 int i = stack.search(item);
■ Returns the 1-based position of the element on the stack.

That is, the top element is at position 1, the next element is
at position 2, and so on.

■ Returns -1 if the element is not on the stack
■ This is not a “conventional” stack operation, but is

sometimes useful

6

Inheritance vs. composition
■ This is inheritance: class X extends class Y { ... }

■ X inherits all the (non-private) methods and variables of Y
■ This is appropriate if X is a kind of Y, but not otherwise

■ Because you get all of Y, whether it’s appropriate for X or not
■ Inheritance is often overused

■ This is composition: class X { Y myYvariable; ... }
■ To make a method, say int m(int a), of class Y available to objects of

class X, you use delegation:
class X { ...; int m(int a) { return myYVariable.m(a); } ... }

■ Similarly, class X can have getters and setters that refer to variables of
the object myYVariable

■ Composition is appropriate if class X uses class Y, but isn’t a kind of
class Y

■ If in doubt, use composition rather than inheritance

7

Stack ancestry

■ The Stack class extends (inherits from) the Vector class
■ Hence, anything you can do with a Vector, you can also do with a

Stack
■ For example, you can index into it, add elements to and remove

elements from the middle, etc.
■ This is not how stacks should be used!

■ If you want Vector operations, use a Vector--the Stack methods give
you conventional names for stack operations, but no new capabilities

■ A “stack” is a very specific data structure, defined by the preceding
operations; it just happens to be implemented by extending Vector

■ Even Sun gets things wrong sometimes

■ The Vector class implements the Collection interface
■ Hence, anything you can do with a Collection, you can also do with

a Stack
■ The most useful operation this gives you is toArray()

8

Some uses of stacks

■ Stacks are used for:
■ Any sort of nesting (such as parentheses)
■ Evaluating arithmetic expressions (and other sorts

of expression)
■ Implementing function or method calls
■ Keeping track of previous choices (as in

backtracking)
■ Keeping track of choices yet to be made (as in

creating a maze)

9

A balancing act

■ ([]({()}[()])) is balanced; ([]({()}[())]) is not
■ Simple counting is not enough to check balance
■ You can do it with a stack: going left to right,

■ If you see a (, [, or {, push it on the stack
■ If you see a),], or }, pop the stack and check whether

you got the corresponding (, [, or {
■ When you reach the end, check that the stack is empty

10

Expression evaluation
■ Almost all higher-level languages let you evaluate

expressions, such as 3*x+y or m=m+1
■ The simplest case of an expression is one number (such as

3) or one variable name (such as x)
■ These are expressions

■ In many languages, = is considered to be an operator
■ Its value is (typically) the value of the left-hand side, after the

assignment has occurred
■ Situations sometimes arise where you want to evaluate

expressions yourself, without benefit of a compiler

11

Performing calculations

■ To evaluate an expression, such as 1+2*3+4, you
need two stacks: one for operands (numbers), the
other for operators: going left to right,
■ If you see a number, push it on the number stack
■ If you see an operator,

■ While the top of the operator stack holds an operator of equal
or higher precedence:

■ pop the old operator
■ pop the top two values from the number stack and apply

the old operator to them
■ push the result on the number stack

■ push the new operator on the operator stack
■ At the end, perform any remaining operations

12

Example: 1+2*3+4

■ 1 : push 1 on number stack
■ + : push + on op stack
■ 2 : push 2 on number stack
■ * : because * has higher precedence than +, push * onto op stack
■ 3 : push 3 onto number stack
■ + : because + has lower precedence than *:

■ pop 3, 2, and *
■ compute 2*3=6, and push 6 onto number stack
■ push + onto op stack

■ 4 : push 4 onto number stack
■ end : pop 4, 6 and +, compute 6+4=10, push 10; pop 10, 1, and +,

compute 1+10=11, push 11
■ 11 (at the top of the stack) is the answer

13

Handling parentheses

■ When you see a left parenthesis, (, treat it as a
low-priority operator, and just put it on the operator
stack

■ When you see a right parenthesis ,), perform all the
operations on the operator stack until you reach the
corresponding left parenthesis; then remove the left
parenthesis

14

Handling variables

■ There are two ways to handle variables in an
expression:
■ When you encounter the variable, look up its value, and put

its value on the operand (number) stack
■ This simplifies working with the stack, since everything

on it is a number
■ When you encounter a variable, put the variable itself on

the stack; only look up its value later, when you need it
■ This allows you to have embedded assignments, such as

12 + (x = 5) * x

15

Handling the = operator

■ The assignment operator is just another operator
■ It has a lower precedence than the arithmetic operators
■ It should have a higher precedence than (

■ To evaluate the = operator:
■ Evaluate the right-hand side (this will already have

been done, if = has a low precedence)
■ Store the value of the right-hand side into the variable

on the left-hand side
■ You can only do this if your stack contains variables

as well as numbers
■ Push the value onto the stack

16

At the end

■ Two things result in multiple special cases
■ You frequently need to compare the priority of the current

operator with the priority of the operator at the top of the
stack—but the stack may be empty

■ Earlier, I said: “At the end, perform any remaining operations”
■ There is a simple way to avoid these special cases

■ Invent a new “operator,” say, $, and push it on the stack
initially

■ Give this operator the lowest possible priority
■ To “apply” this operator, just quit—you’re done

17

Some things that can go wrong
■ The expression may be ill-formed:

 2 + 3 +
■ When you go to evaluate the second +, there won’t be two

numbers on the stack
 1 2 + 3

■ When you are done evaluating the expression, you have more
than one number on the stack

 (2 + 3
■ You have an unmatched (on the stack

 2 + 3)
■ You can’t find a matching (on the stack

■ The expression may use a variable that has not
been assigned a value

18

Types of storage

■ In almost all languages (including Java), data is stored
in two different ways:
■ Temporary variables—parameters and local variables of a

method—are stored in a stack
■ These values are popped off the stack when the method returns
■ The value returned from a method is also temporary, and is put on the

stack when the method returns, and removed again by the calling
program

■ More permanent variables—objects and their instance
variables and class variables—are kept in a heap

■ They remain on the heap until they are “freed” by the programmer (C,
C++) or garbage collected (Java)

19

Stacks in Java

■ Stacks are used for local variables (including
parameters)
void methodA() {
 int x, y; // puts x, y on stack
 y = 0;
 methodB();
 y++;
}
void methodB() {
 int y, z; // puts y, z on stack
 y = 5;
 return; // removes y, z
} x

y

y

z

20

Recursion
■ A recursive definition is when something is defined partly in

terms of itself
■ Here’s the mathematical definition of factorial:

■ Here’s the programming definition of factorial:
 static int factorial(int n) {

 if (n <= 1) return 1;
 else return n * factorial(n - 1);
}

factorial(n) =
1, if n <= 1
n * factorial(n – 1) otherwise

21

Supporting recursion
 static int factorial(int n) {

 if (n <= 1) return 1;
 else return n * factorial(n - 1);
}

■ If you call x = factorial(3), this enters the factorial method
with n=3 on the stack

■ | factorial calls itself, putting n=2 on the stack
■ | | factorial calls itself, putting n=1 on the stack
■ | | factorial returns 1
■ | factorial has n=2, computes and returns 2*1 = 2
■ factorial has n=3, computes and returns 3*2 = 6

22

Factorial (animation 1)

■ x = factorial(3)

■ static int factorial(int n) { //n=3
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

r is put on stack with value 1

All references to r use this r

All references to n use this n

3 is put on stack as n

Now we recur with 2...

23

Factorial (animation 2)

■ r = n * factorial(n - 1);

■ static int factorial(int n) {//n=2
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

r is put on stack with value 1

Now using this r

And this n

Now we recur with 1...

n=2

r=1

2 is put on stack as n

24

Factorial (animation 3)

■ r = n * factorial(n - 1);

■ static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

r is put on stack with value 1
Now using this r

And
this n

n=2

r=1

n=1

r=1

1 is put on stack as n

Now we pop r and n
off the stack and return
1 as factorial(1)

25

n=1

r=1

Factorial (animation 4)

■ r = n * factorial(n - 1);

■ static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

Now using this r
And
this n

n=2

r=1

r=1

n=1fac=1

Now we pop r and n
off the stack and return
1 as factorial(1)

26

Factorial (animation 5)

■ r = n * factorial(n - 1);

■ static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1

Now using this r

And
this n

2 * 1 is 2;
Pop r and n;
Return 2

r=1

n=2

1

fac=2

27

Factorial (animation 6)

■ x = factorial(3)

■ static int factorial(int n) {
 int r = 1;
 if (n <= 1) return r;
 else {
 r = n * factorial(n - 1);
 return r;
 }
}

n=3

r=1Now using this r

And
this n

3 * 2 is 6;
Pop r and n;
Return 6

2
r=1

n=3fac=
6

28

Stack frames

■ Rather than pop variables off the stack one at a
time, they are usually organized into stack
frames

■ Each frame provides a set of variables and
their values

■ This allows variables to be popped off all at
once

■ There are several different ways stack frames
can be implemented

n=3

r=1

n=2

r=1

n=1

r=1

29

Summary

■ Stacks are useful for working with any nested structure,
such as:
■ Arithmetic expressions
■ Nested statements in a programming language
■ Any sort of nested data

30

The End

http://www.gottatoy.com/Fisher-Price-Brilliant-Basics-Rock-A-Stack-Baby-Toy_p_856.html

