
Stacks, Queues, and Deques

Slides adapted from David Matuszek, UPENN

2

Stacks, Queues, and Deques

■ A stack is a last in, first out (LIFO) data structure
■ Items are removed from a stack in the reverse order from the

way they were inserted
■ A queue is a first in, first out (FIFO) data structure

■ Items are removed from a queue in the same order as they
were inserted

■ A deque is a double-ended queue—items can be inserted
and removed at either end

3

Array implementation of stacks

■ To implement a stack, items are inserted and removed at
the same end (called the top)

■ Efficient array implementation requires that the top of
the stack be towards the center of the array, not fixed at
one end

■ To use an array to implement a stack, you need both the
array itself and an integer

■ The integer tells you either:
■ Which location is currently the top of the stack, or
■ How many elements are in the stack

4

Pushing and popping

■ If the bottom of the stack is at location 0, then an empty
stack is represented by top = -1 or count = 0

■ To add (push) an element, either:
■ Increment top and store the element in stk[top], or
■ Store the element in stk[count] and increment count

■ To remove (pop) an element, either:
■ Get the element from stk[top] and decrement top, or
■ Decrement count and get the element in stk[count]

top = 3 or count = 4

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

5

After popping

■ When you pop an element, do you just leave the “deleted”
element sitting in the array?

■ The surprising answer is, “it depends”
■ If this is an array of primitives, or if you are programming in C or C++,

then doing anything more is just a waste of time
■ If you are programming in Java, and the array contains objects, you should

set the “deleted” array element to null
■ Why? To allow it to be garbage collected!

top = 2 or count = 3

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

6

Sharing space
■ Of course, the bottom of the stack could be at the other end

top = 6 or count = 4

17239744

0 1 2 3 4 5 6 7 8 9

stk:

■ Sometimes this is done to allow two stacks to share the same
storage area

topStk2 = 6

1723974449 57 3

0 1 2 3 4 5 6 7 8 9

stks:

topStk1 = 2

7

Error checking

■ There are two stack errors that can occur:
■ Underflow: trying to pop (or peek at) an empty stack
■ Overflow: trying to push onto an already full stack

■ For underflow, you should throw an exception
■ If you don’t catch it yourself, Java will throw an

ArrayIndexOutOfBounds exception
■ You could create your own, more informative exception

■ For overflow, you could do the same things
■ Or, you could check for the problem, and copy everything

into a new, larger array

8

Linked-list implementation of stacks

■ Since all the action happens at the top of a stack, a
singly-linked list (SLL) is a fine way to implement it

■ The header of the list points to the top of the stack

44 97 23 17

myStack:

■ Pushing is inserting an element at the front of the list
■ Popping is removing an element from the front of the list

9

Linked-list implementation details

■ With a linked-list representation, overflow will not
happen (unless you exhaust memory, which is
another kind of problem)

■ Underflow can happen, and should be handled the
same way as for an array implementation

■ When a node is popped from a list, and the node
references an object, the reference (the pointer in
the node) does not need to be set to null

■ Unlike an array implementation, it really is
removed--you can no longer get to it from the linked
list

■ Hence, garbage collection can occur as appropriate

10

Array implementation of queues
■ A queue is a first in, first out (FIFO) data structure
■ This is accomplished by inserting at one end (the rear) and

deleting from the other (the front)

■ To insert: put new element in location 4, and set rear to 4
■ To delete: take element from location 0, and set front to 1

17 23 97 44

0 1 2 3 4 5 6 7

myQueue:

rear = 3front = 0

11

Array implementation of queues

■ Notice how the array contents “crawl” to the right as elements are
inserted and deleted

■ This will be a problem after a while!

17 23 97 44 333After insertion:

23 97 44 333After deletion:

rear = 4front = 1

17 23 97 44Initial queue:

rear = 3front = 0

12

Circular arrays
■ We can treat the array holding the queue elements as

circular (joined at the ends)

44 55 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 1 front = 5

■ Elements were added to this queue in the order 11, 22, 33,
44, 55, and will be removed in the same order

■ Use: front = (front + 1) % myQueue.length;
and: rear = (rear + 1) % myQueue.length;

13

Full and empty queues
■ If the queue were to become completely full, it would look

like this:

■ If we were then to remove all eight elements, making the queue
completely empty, it would look like this:

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5
This is a problem!

14

Full and empty queues: solutions
■ Solution #1: Keep an additional variable

■ Solution #2: (Slightly more efficient) Keep a gap between
elements: consider the queue full when it has n-1 elements

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5count = 8

44 55 66 77 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 3 front = 5

15

Linked-list implementation of queues

■ In a queue, insertions occur at one end, deletions at
the other end

■ Operations at the front of a singly-linked list (SLL)
are O(1), but at the other end they are O(n)

■ Because you have to find the last element each time
■ BUT: there is a simple way to use a singly-linked list

to implement both insertions and deletions in O(1)
time

■ You always need a pointer to the first thing in the list
■ You can keep an additional pointer to the last thing in the

list

16

SLL implementation of queues

■ In an SLL you can easily find the successor of a
node, but not its predecessor

■ Remember, pointers (references) are one-way
■ If you know where the last node in a list is, it’s hard

to remove that node, but it’s easy to add a node
after it

■ Hence,
■ Use the first element in an SLL as the front of the queue
■ Use the last element in an SLL as the rear of the queue
■ Keep pointers to both the front and the rear of the SLL

17

Enqueueing a node

17

Node to be
enqueued

To enqueue (add) a node:
Find the current last node
Change it to point to the new last node
Change the last pointer in the list header

2344

last
first

97

18

Dequeueing a node

■ To dequeue (remove) a node:
■ Copy the pointer from the first node into the header

44 97 23 17

last
first

19

Queue implementation details

■ With an array implementation:
■ you can have both overflow and underflow
■ you should set deleted elements to null

■ With a linked-list implementation:
■ you can have underflow
■ overflow is a global out-of-memory condition
■ there is no reason to set deleted elements to null

20

Deques

■ A deque is a double-ended queue
■ Insertions and deletions can occur at either end
■ Implementation is similar to that for queues
■ Deques are not heavily used
■ You should know what a deque is, but we won’t

explore them much further

21

java.util.Stack

■ The Stack ADT, as provided in java.util.Stack:
■ Stack(): the constructor
■ boolean empty() (but also inherits isEmpty())
■ Object push(Object item)

■ Object peek()

■ Object pop()

■ int search(Object o): Returns the 1-based position of
the object on this stack

22

java.util Interface Queue<E>
■ Java provides a queue interface and several implementations

■ boolean add(E e)
■ Inserts the specified element into this queue if it is possible to do so immediately

without violating capacity restrictions, returning true upon success and throwing
an IllegalStateException if no space is currently available.

■ E element()
■ Retrieves, but does not remove, the head of this queue.

■ boolean offer(E e)
■ Inserts the specified element into this queue if it is possible to do so immediately

without violating capacity restrictions.
■ E peek()

■ Retrieves (not removes), the head of the queue /returns null if this queue is empty.
■ E poll()

■ Retrieves and removes the head of this queue / returns null if this queue is empty.
■ E remove()

■ Retrieves and removes the head of this queue.

Source: Java 6 API

23

java.util Interface Deque<E>
■ Java 6 now has a Deque interface
■ There are 12 methods:

■ Add, remove, or examine an element...
■ ...at the head or the tail of the queue...
■ ...and either throw an exception, or return a special value (null or

false) if the operation fails

Source: Java 6 API

* 24

Java Collection Framework
hierarchy

A collection is a container object that
holds a group of objects, often referred
to as elements. The Java Collections
Framework supports three types of
collections, named sets, lists, and
maps.

*

Java Collection Framework
hierarchy, cont.

Set and List are subinterfaces of Collection.

Collections as containers

■ Containers can be studied under three points of views.
■ How to access the container elements

■ Arrays: Accessing is done using array index
■ Stacks: Done using LIFO (Last In First Out)
■ Queue: Done using FIFO (First In First Out)

■ How to store container elements in memory
■ Some containers are finite and some are infinite

■ How to traverse (visit) the elements of the container

Source: http://en.wikipedia.org/wiki/Collection_class

Methods for container classes

■ Container classes are expected to implement methods to
do the following:

■ Create a new empty container (constructor),
■ Report the number of objects it stores (size),
■ Delete all the objects in the container (clear),
■ Insert new objects into the container,
■ Remove objects from it,
■ Provide access to the stored objects.

■ Containers are sometimes implemented in conjunction
with iterators.

Source: http://en.wikipedia.org/wiki/Collection_class

28

The Collection interface

■ Much of the elegance of the Collections Framework arises
from the intelligent use of interfaces

■ The Collection interface specifies (among many other
operations):

■ boolean add(E o)
■ boolean contains(Object o)
■ boolean remove(Object o)
■ boolean isEmpty()
■ int size()
■ Object[] toArray()
■ Iterator<E> iterator()

■ You should learn all the methods of the Collection
interface--all are important

29

The Iterator interface

■ An iterator is an object that will return the elements of a
collection, one at a time

■ interface Iterator<E>
■ boolean hasNext()

■ Returns true if the iteration has more elements

■ E next()
■ Returns the next element in the iteration

■ void remove()
■ Removes from the underlying collection the last element returned by

the iterator (optional operation)

*

The Collection Interface
The Collection interface is the root interface for

manipulating a collection of objects.

*

The List Interface

A set stores non-duplicate elements. To
allow duplicate elements to be stored
in a collection, you need to use a list. A
list can not only store duplicate
elements, but can also allow the user to
specify where the element is stored.
The user can access the element by
index.

*

The List Interface, cont.

*

The List Iterator

*

ArrayList and LinkedList

The ArrayList class and the LinkedList class are
concrete implementations of the List interface.
Which of the two classes you use depends on your
specific needs. If you need to support random
access through an index without inserting or
removing elements from any place other than the
end, ArrayList offers the most efficient collection.
If, however, your application requires the insertion
or deletion of elements from any place in the list,
you should choose LinkedList. A list can grow or
shrink dynamically. An array is fixed once it is
created. If your application does not require
insertion or deletion of elements, the most
efficient data structure is the array.

*

java.util.ArrayList

*

java.util.LinkedList

37

The End

