Stacks, Queues, and Deques

> -

Slides adapted from David Matuszek, UPENN

Stacks, Queues, and Deques

= A stack is a last in, first out (LIFO) data structure

« Items are removed from a stack in the reverse order from the
way they were inserted

= A queue 1s a first 1n, first out (FIFO) data structure

= Items are removed from a queue in the same order as they
were inserted

= A deque 1s a double-ended queue—items can be inserted
and removed at either end

Array implementation of stacks

= To implement a stack, items are inserted and removed at
the same end (called the top)

« Efficient array implementation requires that the top of
the stack be towards the center of the array, not fixed at
one end

= To use an array to implement a stack, you need both the
array 1tself and an integer

= The integer tells you either:
= Which location is currently the top of the stack, or
- How many elements are in the stack

Pushing and popping
% 1 2 3 4 5 6 7 8 9
stkil 17 | 23 | 97 | 44

L top = 3 or count = 4

« If the bottom of the stack is at location @, then an empty
stack 1s represented by top = -1 or count = 0@

= To add (push) an element, either:
= Increment top and store the element in stk[top], or

= Store the element in stk[count] and increment count

= To remove (pop) an element, either:

= Get the element from stk[top] and decrement top, or
« Decrement count and get the element in stk[count]

After popping

stk:| 17 (23|97 | 44

%) 1 2 3 4 5 6 7 3 9

L top = 2 or count = 3

= When you pop an element, do you just leave the “deleted”
clement sitting in the array?

« The surprising answer 1s, “it depends”

If this i1s an array of primitives, or if you are programming in C or C++,
then doing anything more 1s just a waste of time

If you are programming in Java, and the array contains objects, you should
set the “deleted” array element to null

Why? To allow it to be garbage collected!

Sharing space

= Of course, the bottom of the stack could be at the other end

e 1 2 3 4 5 6 7 8 9
stk: 44 1 97 | 23 | 17

top = 6—J or count = 4

= Sometimes this 1s done to allow two stacks to share the same
storage area

stks:

%)

1

2

6

7

8

9

49

57

3

44

97

23

17

topStkl = 2 —J

L topStk2

Error checking

= There are two stack errors that can occur:
= Underflow: trying to pop (or peek at) an empty stack
= Overflow: trying to push onto an already full stack

= For underflow, you should throw an exception

= If you don’t catch it yourself, Java will throw an
ArrayIndexOutOfBounds exception

= You could create your own, more informative exception

« For overflow, you could do the same things

= Or, you could check for the problem, and copy everything
into a new, larger array

Linked-list implementation of stacks

= Since all the action happens at the top of a stack, a
singly-linked list (SLL) 1s a fine way to implement it

= The header of the list points to the top of the stack

myStack: S‘

= Pushing 1s inserting an element at the front of the list

44.

97 | @

23 | @

17 | @

Y
Y
Y

= Popping is removing an element from the front of the list

Linked-list implementation details

= With a linked-list representation, overflow will not
happen (unless you exhaust memory, which 1s
another kind of problem)

=« Underflow can happen, and should be handled the
same way as for an array implementation

= When a node 1s popped from a list, and the node
references an object, the reference (the pointer in
the node) does not need to be set to null

= Unlike an array implementation, it really is
removed--you can no longer get to it from the linked
list

= Hence, garbage collection can occur as appropriate

Array implementation of queues

= A queue 1s a first 1n, first out (FIFO) data structure

= This 1s accomplished by inserting at one end (the rear) and
deleting from the other (the front)

% 1 2 3 4 5 6 7
myQueue: 17 | 23 | 97 | 44

front = © J L rear = 3

« To insert: put new element in location 4, and set rear to 4
=« To delete: take element from location 0, and set front to 1

10

Array implementation of queues

front = © ﬁ

Initial queue: 17 | 23

After insertion: 17 | 23

After deletion: 23

F rear = 3
97 | 44
97 | 44 | 333
97 | 44 | 333

front = 1 J

L rear = 4

= Notice how the array contents “crawl” to the right as elements are

inserted and deleted

= This will be a problem after a while!

11

Circular arrays

= We can treat the array holding the queue elements as
circular (joined at the ends)

(@ 1 2 3 4 5 6 7

myQueue: 44 | 55

11

22

33

»

rear = 1J

front = 5 J

= Elements were added to this queue in the order 11, 22, 33,
44,55, and will be removed in the same order

« Use: front = (front + 1) % myQueue.length;

and: rear = (rear + 1) % myQueue.length;

12

Full and empty queues

« If the queue were to become completely full, 1t would look

like this:
() 1 2 3 4 5 6 7

myQueue: 44 | 55 |66 | 77 | 88 | 11 | 22 | 33

rear = 4J L1Cr‘on’c = 5

« If we were then to remove all eight elements, making the queue
completely empty, 1t would look like this:

%) 1 2 3 4 5 6 7

myQueue:

rear = 4J L1Cr‘on’c

= 5
This 1s a problem!

Full and empty queues: solutions

myQueue:

Solution #2: (Slightly more efficient) Keep a gap between
clements: consider the queue full when 1t has n-1 elements

count

myQueue:

Solution #1: Keep an additional variable

o 1 2 3 4 5 6 7
44 | 55 | 66 | 77 | 88 | 11 | 22 | 33
= 8 rear = 4J L1Cr‘on’c =5

%)

1

2

3

4

5

6

7

44

55

66

77

11

22

33

rear = 3J

L front

5

14

Linked-list implementation of queues

= In a queue, insertions occur at one end, deletions at
the other end

= Operations at the front of a singly-linked list (SLL)
are O(1), but at the other end they are O(n)

= Because you have to find the last element each time

« BUT: there 1s a simple way to use a singly-linked list
to implement both insertions and deletions 1n O(1)
time

= You always need a pointer to the first thing in the list

= You can keep an additional pointer to the last thing in the
list

15

SLL implementation of queues

= In an SLL you can easily find the successor of a
node, but not its predecessor
= Remember, pointers (references) are one-way

= If you know where the /ast node 1n a list 1s, 1t’s hard
to remove that node, but it’s easy to add a node
after 1t

= Hence,
= Use the first element in an SLL as the front of the queue
= Use the last element 1n an SLL as the rear of the queue
= Keep pointers to both the front and the rear of the SLL

16

Enqueueing a node

. < Node to be
1? st Qqueued
first| e
\

17 | @

To enqueue (add) a node:
Find the current last node
Change 1t to point to the new last node
Change the 1ast pointer in the list header

17

Dequeueing a node

last | @
first

= To dequeue (remove) a node:

44

»
>

97

»
>

23

—

.W%\

»
>

17

= Copy the pointer from the first node into the header

18

(Queue implementation details

= With an array implementation:
= you can have both overflow and underflow
= you should set deleted elements to null

= With a linked-list implementation:
= you can have underflow
= overflow 1s a global out-of-memory condition
= there 1s no reason to set deleted elements to null

19

Deques

A deque 1s a double-ended gueue
Insertions and deletions can occur at either end
Implementation 1s similar to that for queues

Deques are not heavily used

You should know what a deque 1s, but we won’t
explore them much further

20

java.util.Stack

« The Stack ADT, as provided in java.util.Stack:

Stack(): the constructor

boolean empty() (butalso inherits isEmpty())
Object push(Object item)

Object peek()

Object pop()

int search(Object o): Returns the 1-based position of
the object on this stack

21

java.util Interface Queue<E>

Java provides a queue inferface and several implementations

boolean add(E e)

« Inserts the specified element into this queue if it is possible to do so immediately
without violating capacity restrictions, returning true upon success and throwing
an IllegalStateException if no space is currently available.

E element()
= Retrieves, but does not remove, the head of this queue.
boolean offer(E e)

= Inserts the specified element into this queue if it is possible to do so immediately
without violating capacity restrictions.

E peek()

= Retrieves (not removes), the head of the queue /returns null if this queue 1s empty.
E poll()

= Retrieves and removes the head of this queue / returns null if this queue is empty.
E remove()

« Retrieves and removes the head of this queue.

Source: Java 6 API 29

java.util Interface Deque<E>

= Java 6 now has a Deque interface

There are 12 methods:
« Add, remove, or examine an element...

= ...at the head or the tail of the queue...

= ...and either throw an exception, or return a special value (null or
false) if the operation fails

First Element (Head)

Last Element (Tail)

Throws exception

Special value

Throws exception|Special value

Insert

addFirstie)

offerFirst(e)

addLast (e) offerLast(e)

Remove

removeFirst{)

pollFirst ()

removelLast () pollLast{)

Examine

getFirst ()

peekFirst ()

getLast () peekLast ()

Source: Java 6 API

23

Java Collection Framework
hierarchy

A collection 1s a container object that
holds a group of objects, often referred
to as elements. The Java Collections
Framework supports three types of
collections, named sets, /lists, and
maps.

24

Java Collection Framework
hierarchy, cont.

Set and List are subinterfaces of Collection.

I ¢
4 AbstractSet {

AbstractCollection {

Collection ‘

CVecor ¥

AbstractList {

o ¥

R ArrayList

AbstractSequentical List { LinkedList

I ¢

Queue ‘

Concrete Classes

Abstract Classes

J . Collections as containers
|

= Containers can be studied under three points of views.

« How to access the container elements

- Arrays: Accessing is done using array index

= Stacks: Done using LIFO (Last In First Out)
= Queue: Done using FIFO (First In First Out)

= How to store container elements in memory

= Some containers are finite and some are infinite

= How to traverse (visit) the elements of the container

Source: http://en.wikipedia.org/wiki/Collection_class

J ! Methods for container classes

= Container classes are expected to implement methods to
do the following:
= Create a new empty container (constructor),
= Report the number of objects it stores (size),
= Delete all the objects in the container (clear),
= Insert new objects into the container,
= Remove objects from 1it,
= Provide access to the stored objects.

= Containers are sometimes implemented 1n conjunction
with 1iterators.

Source: http://en.wikipedia.org/wiki/Collection class

;1 . The Collection interface

= Much of the elegance of the Collections Framework arises
from the intelligent use of interfaces

= The Collection interface specifies (among many other
operations):
- boolean add(E o)
= boolean contains(Object 0)
- boolean remove(Object o)
= boolean isEmpty()
= int size()
= Object[] toArray()
- Iterator<E> iterator()

= You should learn all the methods of the Collection
interface--all are important

28

;1 . The Iterator interface

= An iterator 1s an object that will return the elements of a
collection, one at a time

« interface Iterator<E>
= boolean hasNext()

= Returns true if the iteration has more elements

= E next()

= Returns the next element in the iteration

= Vvoid remove()

- Removes from the underlying collection the last element returned by
the iterator (optional operation)

29

«interface»
java.lang Iterable<E>

+iterator(): Herator<<E>

«interface»
java.util. Collection<E>

+add(o: E): boolean

+addAll{c: Collection<? extends E>): boolean

+clear(): void

+contai ns(o: Object): boolean

+contai nsAll(c: Collection<? =):boolean
+equals(o: Object) : boolean
+hashCode(): int

+isEmpiy(): boolean

+remove(o: Object): boolean
+removedll ¢: Collection<?>): boolean

+toArray(): Object {]

«interface»
java.util Iterator<E>

+hasNext(): boolean
+next(): E

+remove() : void

Retum s an iterator for the elements in this collect ion.

The Collection interface is the root interface for

manipulating a collection of objects.

Adds anew element o to this col lection.

Adds all the elements in the collection c to this collection.
Removes all the elements from this collection.

Returns true ifthis coll ection contains the element o.
Returns true ifthis coll ection contains all the elements in c.
Returns true ifthis coll ection is equal to another collection o.
Returns the hash code for this colledt ion.

Returns true ifthis coll ection contains no elements.
Removes the element o from this cd lection.

Removes all the elements in ¢ from this collection.

Retains the elements that are both in ¢ and in this collection.
Returns the number of elements in this cad lection.

Returns an array of Object for the elements in this collecti on.

Returns true ifthis iterator has more elements to traverse.
Returns the next element fiom this iterator.

Removes the last element obtained u sing the next m ethod.

The List Interface

A set stores non-duplicate elements. To
allow duplicate elements to be stored
in a collection, you need to use a list. A
list can not only store duplicate
elements, but can also allow the user to
specify where the element 1s stored.
The user can access the element by
index.

The List Interface, cont.

«interfacey

java.util. Collection<FE™>

«interface»
Java.util List<F>

+add(index: int, element:E): boolean

+addAllindex: int, c: Collection<? extends E=)
: boolean

+get(index: int): E

+indexOffelement: Object): int
+lastindexOf{element: Object): int
+listlterator(): Listlterator<E>
+listlterator(startindex: int): Listlterator<E>
+remove(index: int): E

+set(index: int, element: E): E
+subList(fromindex: int, tolndex: int): List<E>

Adds a new element at the specified index.

Adds all the elements in ¢ to this list at the specified
index.

Returns the element 1n this list at the specified index.
Returns the index of the first matching element.
Returns the index of the last matching element.
Returns the list iterator for the elements in this list.
Returns the iterator for the elements from startindex.
Removes the element at the specified index.

Sets the element at the specified index.

Returns a sublist from fromIndex to tolndex.

The List Iterator

«interfacey
Java.util Iterator<E>

«1interface»
Java.util. Listlterator<Ic>

+add(o: E): void

+hasPrevious(): boolean

+nextindex(): int
+previous(): E
+previousindex(): int
+set(o: E): void

Adds the specified object to the list.

Returns true if this list iterator has more elements
when traversing backward.

Retums the index of the next element.
Retums the previous element in this list iterator.
Retums the index of the previous element.

Replaces the last element returned by the previous or
next method with the specified element.

ArrayList and LinkedList

The ArrayList class and the LinkedList class are
concrete implementations of the List interface.
Which of the two classes you use depends on your
specific needs. If you need to support random
access through an index without nserting or
removing elements from any place other than the
end, ArrayList offers the most efficient collection.
If, however, your application requires the insertion
or deletion of elements from any place 1n the list,
you should choose LinkedList. A list can grow or
shrink dynamically. An array 1s fixed once it is
created. If your application does not require
insertion or deletion of elements, the most

AfFCi 1ot Aata cdtvrrinfr1ivoa 1 LM A At rrax 7

java.util.ArrayList

«interfacey
Jjava.util.Collection<E>

«interfacey
Java.util. List<[>

java.util. ArrayList<E>

+ArrayList() Creates an empty list with the default initial capacity.
+ArrayList(c: Collection<? extends E>) [Creates an array list from an existing collection.
+ArrayList(initialCapacity: int) Creates an empty list with the specified initial capacity.

+trimToS1ze(): void Trims the capacity of this ArrayList instance to be the
list's current size.

java.util.LinkedList

«nterface»
java.util. Collection<E>

«interfacey
Jjava.util List<E>

java.util.LinkedList<E>

+LinkedList() Creates a default empty linked list.

+LinkedList(c: Collection<? extends E>) |Creates a linked list from an existing collection.
+addFirst(o: E): void Adds the object to the head of this list.

+addLast(o: E): void Adds the object to the tail of this list.

+getFirst(): E Returns the first element from this list.

+getLast(): E Retumns the last element from this list.
+removeFirst(): E Retums and removes the first element from this list.

+removeLast(): E Retumns and removes the last element from this list.

The End

37

