
adapted from David Luebke

Hashing

David Luebke

Review: Linked Lists

● Think about a linked list as a structure for
dynamic sets. What is the running time of:
■ Min() and Max()?
■ Successor()?
■ Delete()?

○ How can we make this O(1)?
■ Predecessor()?
■ Search()?
■ Insert()?

Goal: make these O(lg n) time
in a linked-list setting

These all take O(1) time
in a doubly linked list.
Can you think of a way
to do these in O(1) time
in a red-black tree?
A: threaded red-black
tree w/ doubly linked list
connecting nodes in
sorted order

Idea: keep several levels of linked lists, with
high-level lists skipping some low-level items

David Luebke

Skip Lists (not included)

● The basic idea:

● Keep a doubly-linked list of elements
■ Min, max, successor, predecessor: O(1) time
■ Delete is O(1) time, Insert is O(1)+Search time

● During insert, add each level-i element to level
i+1 with probability p (e.g., p = 1/2 or p = 1/4)

level 1

3 9 12 18 29 35 37

level 2
level 3

David Luebke

Skip List Search (not included)

● To search for an element with a given key:
■ Find location in top list

○ Top list has O(1) elements with high probability
○ Location in this list defines a range of items in next list

■ Drop down a level and recurse
● O(1) time per level on average
● O(lg n) levels with high probability
● Total time: O(lg n)

David Luebke

Skip List Insert (not included)

● Skip list insert: analysis
■ Do a search for that key
■ Insert element in bottom-level list
■ With probability p, recurse to insert in next level
■ Expected number of lists = 1+ p + p2 + … = ???

= 1/(1-p) = O(1) if p is constant
■ Total time = Search + O(1) = O(lg n) expected

● Skip list delete: O(1)

David Luebke

Skip Lists (not included)

● O(1) expected time for most operations
● O(lg n) expected time for insert
● O(n2) time worst case (Why?)

■ But random, so no particular order of insertion
evokes worst-case behavior

● O(n) expected storage requirements (Why?)
● Easy to code

Hashing Tables

● Motivation: symbol tables
■ A compiler uses a symbol table to relate symbols

to associated data
○ Symbols: variable names, procedure names, etc.
○ Associated data: memory location, call graph, etc.

■ For a symbol table (also called a dictionary), we
care about search, insertion, and deletion

■ We typically don’t care about sorted order

Hash Tables

● More formally:
■ Given a table T and a record x, with key (= symbol)

and satellite data, we need to support:
○ Insert (T, x)
○ Delete (T, x)
○ Search(T, x)

■ We want these to be fast, but don’t care about sorting
the records

● The structure we will use is a hash table
■ Supports all the above in O(1) expected time!

Hashing: Keys

● In the following discussions we will consider
all keys to be (possibly large) natural numbers
■ How can we convert floats to natural

numbers for hashing purposes?
■ How can we convert ASCII strings to

natural numbers for hashing purposes?

Direct Addressing

● Suppose:
■ The range of keys is 0..m-1
■ Keys are distinct

● The idea:
■ Set up an array T[0..m-1] in which

○ T[i] = x if x∈ T and key[x] = i
○ T[i] = NULL otherwise

■ This is called a direct-address table
○ Operations take O(1) time!
○ So what’s the problem?

Direct Addressing

● .

Direct Addressing

● .

The Problem With
Direct Addressing

● Direct addressing works well when the range
m of keys is relatively small

● But what if the keys are 32-bit integers?
■ Problem 1: direct-address table will have

232 entries, more than 4 billion
■ Problem 2: even if memory is not an issue, the

time to initialize the elements to NULL may be
● Solution: map keys to smaller range 0..m-1
● This mapping is called a hash function

Hash Functions

● Next problem: collision
T

0

m - 1

h(k1)
h(k4)

h(k2) = h(k5)

h(k3)

k4

k2 k3

k1

k5

U
(universe of keys)

K
(actual
keys)

Resolving Collisions

● How can we solve the problem of collisions?
● Avoid collisions
● Solution 1: chaining
● Solution 2: open addressing

Chaining

● Chaining puts elements that hash to the same
slot in a linked list:

——

——

——

——

——

——

T

k4

k2
k3

k1

k5

U
(universe of keys)

K
(actual
keys)

k6
k8

k7

k1 k4
—
—

k5 k2

k3

k8 k6
—
—

—
—

k7
—
—

Chaining

Chaining

● How do we insert an element?
■ The worst-case running time for insertion?

——

——

——

——

——

——

T

k4

k2
k3

k1

k5

U
(universe of keys)

K
(actual
keys)

k6
k8

k7

k1 k4
—
—

k5 k2

k3

k8 k6
—
—

—
—

k7
—
—

Chaining

——

——

——

——

——

——

T

k4

k2
k3

k1

k5

U
(universe of keys)

K
(actual
keys)

k6
k8

k7

k1 k4
—
—

k5 k2

k3

k8 k6
—
—

—
—

k7
—
—

● How do we delete an element?
■ Do we need a doubly-linked list for efficient delete?

Chaining

● How do we search for a element with a given key?

——

——

——

——

——

——

T

k4

k2
k3

k1

k5

U
(universe of keys)

K
(actual
keys)

k6
k8

k7

k1 k4
—
—

k5 k2

k3

k8 k6
—
—

—
—

k7
—
—

Analysis of Chaining

● Assume simple uniform hashing: each key in
table is equally likely to be hashed to any slot

● Given n keys and m slots in the table: the
load factor α = n/m = average # keys per slot

● What will be the cost of an unsuccessful
search for a key?
■ Worst case?
■ Average case?

● What will be the cost of a successful search for
a key?

Analysis of Chaining

● Assume simple uniform hashing: each key in
table is equally likely to be hashed to any slot

● Given n keys and m slots in the table, the
load factor α = n/m = average # keys per slot

● What will be the average cost of an
unsuccessful search for a key? A: O(1+α)

● What will be the average cost of a successful
search? A: O(1 + α/2) = O(1 + α)

David Luebke

Analysis of Chaining Continued

● So the cost of searching = O(1 + α)
● If the number of keys n is proportional to the

number of slots in the table, what is α?
● A: α = O(1)

■ In other words, we can make the expected cost of
searching constant if we make α constant

Choosing A Hash Function

● Clearly choosing the hash function well is
crucial
■ What will a worst-case hash function do?
■ What will be the time to search in this case?

● What are desirable features of the hash
function?
■ Should distribute keys uniformly into slots
■ Should not depend on patterns in the data

Choosing A Hash Function

● Heuristic techniques can often be used to create a hash
function that performs well.

● Qualitative information about distribution of keys may be
useful in this design process.

● For example, consider a compiler’s symbol table, in
which the keys are character strings representing
identifiers in a program.

● Closely related symbols, such as pt and pts, often occur
in the same program.

● A good hash function would minimize the chance that
such variants hash to the same slot.

Interpreting keys as natural
numbers

● most use the universe of keys is the set N = {0, 1, 2, . . .}
● a character string?
● radix notation:

■ pt?
■ the pair of decimal integers (112, 116), since p = 112

and t = 116
■ radix-128 integer, pt becomes (112 · 128)+116 =

14452

Hash Functions:
The Division Method

● h(k) = k mod m
■ In words: hash k into a table with m slots using the slot

given by the remainder of k divided by m
■ Hashing is quite fast!

● What happens to elements with adjacent values of k?
● What happens if m is a power of 2 (say 2P)?

■ h(k) is just the p lowest-order bits of k
■ It is better to make the hash function depend on all the bits of the key.

● What if m is a power of 10?
● Upshot: pick table size m = prime number not too close to a

power of 2 (or 10)

Hash Functions:
The Multiplication Method

● For a constant A, 0 < A < 1:
● h(k) = ⎣ m (kA - ⎣kA⎦) ⎦

What does this term represent?

Hash Functions:
The Multiplication Method

● For a constant A, 0 < A < 1:
● h(k) = ⎣ m (kA - ⎣kA⎦) ⎦

● the value of m is not critical
● Choose m = 2P

● Choose A not too close to 0 or 1
● Knuth: Good choice for A = (√5 - 1)/2

Fractional part of kA

Hash Functions:
Malicious adversary

● Scenario:
■ You are given an assignment to implement hashing
■ You will self-grade in pairs, testing and grading

your partner’s implementation
■ In a blatant violation of the honor code, your

partner:
○ Analyzes your hash function
○ Picks a sequence of “worst-case” keys, causing your

implementation to take O(n) time to search

Hash Functions:
Universal Hashing

● As before, when attempting to foil an
malicious adversary: randomize the algorithm

● Universal hashing: pick a hash function
randomly in a way that is independent of the
keys that are actually going to be stored
■ Guarantees good performance on average, no

matter what keys adversary chooses

Review: The Division Method

● h(k) = k mod m
■ In words: hash k into a table with m slots using the

slot given by the remainder of k divided by m
● Elements with adjacent keys hashed to

different slots: good
● If keys bear relation to m: bad
● Upshot: pick table size m = prime number not

too close to a power of 2 (or 10)

Review: The Multiplication Method

● For a constant A, 0 < A < 1:
● h(k) = ⎣ m (kA - ⎣kA⎦) ⎦

● Upshot:
■ Choose m = 2P

■ Choose A not too close to 0 or 1
■ Knuth: Good choice for A = (√5 - 1)/2

Fractional part of kA

Review: Universal Hashing

● When attempting to foil an malicious
adversary, randomize the algorithm

● Universal hashing: pick a hash function
randomly when the algorithm begins
(not upon every insert!)
■ Guarantees good performance on average, no

matter what keys adversary chooses
■ Need a family of hash functions to choose from

Universal Hashing

● Let 𝓗 be a (finite) collection of hash functions
■ …that map a given universe U of keys…
■ …into the range {0, 1, …, m - 1}.

● 𝓗 is said to be universal if:
■ for each pair of distinct keys x, y ∈ U,

the number of hash functions h ∈ 𝓗
for which h(x) = h(y) is |𝓗 | /m

■ In other words:
○ With a random hash function from 𝓗, the chance of a

collision between x and y is exactly 1/m (x ≠ y)

Universal Hashing

● Theorem 12.3:
■ Choose h from a universal family of hash functions
■ Hash n keys into a table of m slots, n ≤ m
■ Then the expected number of collisions involving a

particular key x is less than 1
■ Proof:

○ For each pair of keys y, z, let cyx = 1 if y and z collide, 0 otherwise
○ E[cyz] = 1/m (by definition)
○ Let Cx be total number of collisions involving key x
○

○ Since n ≤ m, we have E[Cx] < 1

A Universal Hash Function

● Choose table size m to be prime
● Decompose key x into r+1 bytes, so that

x = {x0, x1, …, xr}
■ Only requirement is that max value of byte < m
■ Let a = {a0, a1, …, ar} denote a sequence of r+1

elements chosen randomly from {0, 1, …, m - 1}
■ Define corresponding hash function ha ∈ 𝓗:

■ With this definition, 𝓗 has mr+1 members

A Universal Hash Function

● 𝓗 is a universal collection of hash functions
(Theorem 12.4)

● How to use:
■ Pick r based on m and the range of keys in U
■ Pick a hash function by (randomly) picking the a’s
■ Use that hash function on all keys

Open Addressing

● Basic idea:
■ To insert: if slot is full, try another slot, …, until an

open slot is found (probing)
■ To search, follow same sequence of probes as

would be used when inserting the element
○ If reach element with correct key, return it
○ If reach a NULL pointer, element is not in table

● Good for fixed sets (adding but no deletion)
■ Example: spell checking

● Table needn’t be much bigger than n
● Advantage: no space use for pointers

Open Addressing

● Insert

Open Addressing

● Insert

Open Addressing

● Search

Open Addressing

● Deletion from an open-address hash table is
difficult. Why?

● We cannot simply mark that slot as empty by
storing null in it.

● One solution is to mark the slot by storing in it
the special value DELETED instead of null.

● Modify the procedure HASH-INSERT
● No modification of HASH-SEARCH

Open Addressing

● Three techniques are commonly used to
compute the probe sequences required

● linear probing,
● quadratic probing,
● double hashing.

Open Addressing, Linear Probing

● Given key k, the first slot probed is T [h’(k)]
● We next probe slot T [h’(k) + 1], and
● so on up to slot T [m − 1].
● Then we wrap around to slots T [0], T [1], . . .,

until we finally probe slot T [h(k) − 1].
● Suffers from a problem known as primary

clustering: Long runs of occupied slots build
up, increasing the average search time.

Open Addressing, Quadratic Probing

● This property leads to a milder form of
clustering, called secondary clustering.

Open Addressing, Double Hashing

● The initial probe is to position T [h1(k)]
● Successive probe positions are offset from

previous positions by the amount h2(k),
modulo m

● The probe sequence here depends in two ways
upon the key k, since the initial probe position,
the offset, or both, may vary.

Open Addressing, Double Hashing

79, 69, 72, 98, 50, 14
m: 13

The End

