Hashing

adapted from David Luebke

Review: Linked Lists

e Think about a linked list as a structure for
dynamic sets. What 1s the running time of:

m Min () andMax ()’ These all take O(1) time

m Successor ()’

m Delete ()’

in a doubly linked list.
Can you think of a way
to do these in O(1) time
~ in ared-black tree?

o How can we make this O(1)? A: threaded red-black

tree w/ doubly linked list

m Predecessor () 7 connecting nodes in

m Search ()’
m Insert ()’

David Luebke

|

- sorted order

Goal: make these O(lg n) time

in a linked-list setting

|ldea: keep several levels of linked lists, with
high-level lists skipping some low-level items

Skip Lists (not included)

e The basic i1dea:

level 3
level 2

S

9

-
- -
<> <> <>

12

1o

29

39

e Keep a doubly-linked list of elements

s Min, max, successor, predecessor: O(1) time
m Delete 1s O(1) time, Insert 1s O(1)+Search time

3/

e During insert, add each level-i element to level
i+1 with probability p (e.g., p=1/2 or p = 1/4)

David Luebke

Skip List Search (not included)

e To search for an element with a given key:

m Find location 1n top list
o Top list has O(1) elements with high probability
o Location 1n this list defines a range of items 1n next list

m Drop down a level and recurse
e O(1) time per level on average
e O(lg n) levels with high probability
e Total time: O(lg n)

David Luebke

Skip List Insert (not included)

e Skip list insert: analysis
m Do a search for that key
m Insert element 1n bottom-level list
m With probability p, recurse to insert in next level
m Expected number of lists = 1+ p +p*+ ... = ???
= 1/(1-p) = O(1) 1f p 1s constant
m Total time = Search + O(1) = O(lg n) expected
e Skip list delete: O(1)

David Luebke

Skip Lists (not included)

e O(1) expected time for most operations
e O(lg n) expected time for insert
o O(n?) time worst case (Why?)

m But random, so no particular order of insertion
evokes worst-case behavior

e O(n) expected storage requirements (Why?)
e Easy to code

David Luebke

Hashing Tables

e Motivation: symbol tables

m A compiler uses a symbol table to relate symbols
to associated data
o Symbols: variable names, procedure names, etc.

o Associated data: memory location, call graph, etc.

m For a symbol table (also called a dictionary), we
care about search, insertion, and deletion

m We typically don’t care about sorted order

Hash Tables

e More formally:

m Given a table T and a record x, with key (= symbol)
and satellite data, we need to support:
o Insert (7, x)
o Delete (T, x)
o Search(7, x)
s We want these to be fast, but don’t care about sorting
the records

e The structure we will use 1s a hash table
m Supports all the above in O(1) expected time!

Hashing: Keys

e In the following discussions we will consider
all keys to be (possibly large) natural numbers

m How can we convert floats to natural
numbers for hashing purposes?

m How can we convert ASCII strings to
natural numbers for hashing purposes?

Direct Addressing

e Suppose:
m The range of keys 1s 0..m-1
m Keys are distinct

e The 1dea:

m Set up an array T[0..m-1] 1n which
o T[i]=x ifx& T and key[x] =i
o T[i]=NULL otherwise

m This 1s called a direct-address table
o Operations take O(1) time!
o So what’s the problem?

Direct Addressing

DIRECT-ADDRESS-SEARCH(T, k)
return 7 4]

DIRECT-ADDRESS-INSERT(7. x)
T'[key[x]] < x

DIRECT-ADDRESS-DELETE(T. x)
T [key[x]] <— NIL

Direct Addressing

key satellite data

N/

2 > 9
4
6
7
8 »lg
9

Figure 11.1 Implementing a dynamic set by a direct-address table 7. Each key in the universe
U = {0,1,...,9} corresponds to an index in the table. The set K = {2, 3,5, 8} of actual keys
determines the slots in the table that contain pointers to elements. The other slots, heavily shaded,
contain NIL.

The Problem With
Direct Addressing

Direct addressing works well when the range
m of keys 1s relatively small
But what 1f the keys are 32-bit integers?

m Problem 1: direct-address table will have
232 entries, more than 4 billion

m Problem 2: even 1f memory 1s not an 1ssue, the
time to initialize the elements to NULL may be

Solution: map keys to smaller range 0..m-1
This mapping is called a hash function

Hash Functions

e Next problem: collision

h(k))
h(k,)

(actual

- h(k,) = h(k,)

> h(k,)

m -1

Resolving Collisions

e How can we solve the problem of collisions?
e Avoid collisions
e Solution 1: chaining

e Solution 2: open addressing

Chaining

e Chaining puts elements that hash to the same
slot 1n a linked list:

—>| £, > k, -
—> k. > k|
— 4, B

—> &, > i, :J

Chaining

CHAINED-HASH-INSERT(T, x)
insert x at the head of list T'[h(key[x])]

CHAINED-HASH-SEARCH(T, k)
search for an element with key & in list 7' [/ (k)]

CHAINED-HASH-DELETE(T, x)
delete x from the list T'[h(key[x])]

Chaining

e How do we insert an element?
« The worst-case running time for insertion?

T
—>| £, > i, -
—> k. > k|
— 4, _
—> &, >k, _J

Chaining

e How do we delete an element?
m Do we need a doubly-linked list for efficient delete?
T

—>| £, > i, -

g L2 "L 51 LA
— 4, B

—> &, >k, :J

Chaining

e How do we search for a element with a given key?

T
—>| £, > i, -
—> k. > k|
— 4, _
—> &, >k, _J

Analysis of Chaining

e Assume simple uniform hashing: each key 1n
table 1s equally likely to be hashed to any slot

e (Given n keys and m slots 1n the table: the
load factor o = n/m = average # keys per slot

o What will be the cost of an unsuccessful
search for a key?
« Worst case?
« Average case?

. What will be the cost of a successful search for
a key?

Analysis of Chaining

Assume simple uniform hashing: each key 1n
table 1s equally likely to be hashed to any slot

Given n keys and m slots 1n the table, the
load factor o = n/m = average # keys per slot

What will be the average cost of an
unsuccessful search for a key? A: O(1+a)

What will be the average cost of a successful
search? A:O(1 +a/2)=0(1 + a)

Analysis of Chaining Continued

e So the cost of searching = O(1 + a)

o [f the number of keys n is proportional to the
number of slots in the table, what is o.?

e A:a=0(1)

m In other words, we can make the expected cost of
searching constant if we make o constant

David Luebke

Choosing A Hash Function

e Clearly choosing the hash function well 1s
crucial
m What will a worst-case hash function do?

m What will be the time to search in this case?
o What are desirable features of the hash
function?

m Should distribute keys uniformly into slots
s Should not depend on patterns in the data

Choosing A Hash Function

Heuristic techniques can often be used to create a hash
function that performs well.

Qualitative information about distribution of keys may be
useful 1n this design process.

For example, consider a compiler’s symbol table, in
which the keys are character strings representing
identifiers in a program.

Closely related symbols, such as pt and pts, often occur
in the same program.

A good hash function would minimize the chance that
such variants hash to the same slot.

Interpreting keys as natural
numbers

e most use the universe of keys 1s the set N= {0, 1, 2, .. .}
® a character string?

e radix notation:

m pt?
m the pair of decimal integers (112, 116), sincep =112
andt=116

m radix-128 integer, pt becomes (112 - 128)+116 =
14452

Hash Functions:
The Division Method

o (k) =kmodm
m In words: hash k& into a table with m slots using the slot
given by the remainder of & divided by m
m Hashing is quite fast!

e What happens to elements with adjacent values of k?
® What happens if m is a power of 2 (say 2¥)?

m /(k) is just the p lowest-order bits of k

m [t is better to make the hash function depend on all the bits of the key.
o What if m is a power of 10?

e Upshot: pick table size m = prime number not too close to a
power of 2 (or 10)

Hash Functions:
The Multiplication Method

e Foraconstant 4,0 <A4 <1:
o h(k)=1|m (k4 - LkAl) |

What does this term represent?

Hash Functions:
The Multiplication Method

Foraconstant 4, 0 <4 < 1:
h(k) =1 m (k4 - L k4)) |

Fractional part of kA

the value of m 1s not critical
Choose m =2°

Choose 4 not too close to 0 or 1
Knuth: Good choice for 4 = (V5 - 1)/2

Hash Functions:
Malicious adversary

e Scenario:
m You are given an assignment to implement hashing

m You will selt-grade 1n pairs, testing and grading
your partner’s implementation

m In a blatant violation of the honor code, your
partner:
o Analyzes your hash function

o Picks a sequence of “worst-case” keys, causing your
implementation to take O(n) time to search

Hash Functions:
Universal Hashing

e As before, when attempting to foil an
malicious adversary: randomize the algorithm

o Universal hashing: pick a hash function
randomly in a way that 1s independent of the
keys that are actually going to be stored

m Guarantees good performance on average, no
matter what keys adversary chooses

Review: The Division Method

e h(k)=Fkmod m

m In words: hash £ into a table with m slots using the
slot given by the remainder of k& divided by m

e Elements with adjacent keys hashed to
different slots: good

e If keys bear relation to m: bad

e Upshot: pick table size m = prime number not
too close to a power of 2 (or 10)

Review: The Multiplication Method

e Foraconstant 4,0 <A4 <1:
o h(k)=1|m (k4 - LkAl) |

F mctional' part of kA
e Upshot:

m Choose m =2F

m Choose 4 not too closeto 0 or 1
s Knuth: Good choice for 4 = (N5 - 1)/2

Review: Universal Hashing

e When attempting to foil an malicious
adversary, randomize the algorithm

o Universal hashing: pick a hash function
randomly when the algorithm begins
(not upon every 1nsert!)

m Guarantees good performance on average, no
matter what keys adversary chooses

m Need a family of hash functions to choose from

Universal Hashing

e Let 7 be a (finite) collection of hash functions
m ...that map a given universe U of keys...
m ...into the range {0, 1, ..., m - 1}.

e 7/1s said to be universal 1f:

m for each pair of distinct keys x, y € U,
the number of hash functionsh € A
for which h(x) = h(y) is || /m

m In other words:

o With a random hash function from /Z, the chance of a
collision between x and y 1s exactly 1/m (x #)

Universal Hashing

e Theorem 12.3:

m Choose % from a universal family of hash functions
m Hash » keys 1nto a table of m slots, n <m

m Then the expected number of collisions involving a
particular key x 1s less than 1

m Proof:
o For each pair of keys y, z, let Chp ™ 1 if y and z collide, 0 otherwise
o E[cyz] = 1/m (by definition)
o Let C_be total number of collisions involving key x

E[C,] =) El,] =

yel
. VEX
o Since n <m, we have E[C] <1

o n—1

m

A Universal Hash Function

e Choose table size m to be prime

e Decompose key x 1nto +1 bytes, so that
X=4{x, X, .., X}
m Only requlrement 1s that max value of byte < m

m Leta={a,a, ..., a} denote a sequence of r+1
elements chosen randomly from {0, 1, ..., m - 1}

m Define corresponding hash function » € 7.

h(x)= Zax mod m

= With this deﬁnltlon, 7‘/ has m"*! members

A Universal Hash Function

e 7/1s a universal collection of hash functions
(Theorem 12.4)

e How to use:
m Pick » based on m and the range of keys in U

m Pick a hash function by (randomly) picking the a’s
m Use that hash function on all keys

Open Addressing

e Basic idea:

m To insert: if slot 1s full, try another slot, ..., until an
open slot 1s found (probing)

m To search, follow same sequence of probes as
would be used when inserting the element
o If reach element with correct key, return it
o If reach a NULL pointer, element 1s not in table

e Good for fixed sets (adding but no deletion)
s Example: spell checking

e Table needn’t be much bigger than »

. Advantaoce: no snace use for nointers

. Insert

Open Addressing

HASH-INSERT(T7, k)

1 1«0
2 repeat j <« h(k,1)
3 £ T[j] =NIL

4 thenT[/] < k
S return j
6 else 1 <1+ 1
1 until 1 = m

8 error ‘“hash table overflow”

. Insert

Open Addressing

HASH-INSERT(T7, k)

1 1«0
2 repeat j <« h(k,1)
3 £ T[j] =NIL

4 thenT[/] < k
S return j
6 else 1 <1+ 1
1 until 1 = m

8 error ‘“hash table overflow”

Open Addressing

. Search

HASH-SEARCH(T, k)

1 1 <0

2 repeat j <« h(k,1)

£, BT[]l =k

- then return ;

5 | «— 1+ 1

6 until 7[/] = NIL ori = m
7 return NIL

Open Addressing

. Deletion from an open-address hash table 1s
difficult. Why?

. We cannot simply mark that slot as empty by
storing null 1n 1t.

. One solution 1s to mark the slot by storing 1n it
the special value DELETED instead of null.

. Modify the procedure HASH-INSERT
. No modification of HASH-SEARCH

Open Addressing

. Three techniques are commonly used to
compute the probe sequences required

. linear probing,
. quadratic probing,
. double hashing.

Open Addressing, Linear Probing

hk,i)= (h'(k) + i) mod m

. Given key k, the first slot probed 1s T [h’(k)]
. We next probe slot T [h’(k) + 1], and
. soonuptoslotT [m—1].

. Then we wrap around to slots T [0], T [1], .. .,
until we finally probe slot T [h(k) — 1].

. Suffers from a problem known as primary
clustering: Long runs of occupied slots build
up, increasing the average search time.

Open Addressing, Quadratic Probing

hk,i)= (W' (k) +cii + (‘31'2) mod m

. This property leads to a milder form of
clustering, called secondary clustering.

Open Addressing, Double Hashing

h(k,1) = (hy(k)+1h>(k)) mod m .

. The mitial probe 1s to position T [h1(k)]
. Successive probe positions are offset from

previous positions by the amount h2(k),
modulo m

. The probe sequence here depends 1n two ways
upon the key k, since the initial probe position,
the offset, or both, may vary.

Open Addressing, Double Hashing

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with i (k) =
kmod 13 and /p(k) = 14+ (k mod 11). Since 14 =1 (mod 13) and 14 =3 (mod 11), the key 14
is inserted into empty slot 9, after slots 1 and 5 are examined and found to be occupied.

79, 69, 72, 98, 50, 14
m: 13

h(k,i) = (hi(k)4+1h>(k)) mod m ,

O XX NN N ks W o = O

S

p— f—
N

The End

