Red-Black Trees

Review: Binary

Search Trees

e Binary Search Trees (BSTs) are an important
data structure for dynamic sets

e In addition to satellite data, elements have:

m key: an 1dentifying field inducing a total ordering
m [eft: pointer to a left child (may be NULL)

m right. pointer to a right c]

n1ld (may be NULL)

m p: pointer to a parent noc

e (NULL for root)

Review: Binary Search Trees

e BST property:
key[left(x)] < key[x] < key[right(x)]
e Example:

Review: Inorder Tree Walk

e An inorder walk prints the set in sorted order:
TreeWalk (x)
TreeWalk (left[x]) ;
print(x) ;
TreeWalk (right[x]) ;
m Easy to show by induction on the BST property
m Preorder tree walk: print root, then left, then right
m Postorder tree walk: print left, then right, then root

BST Search

TreeSearch (x, k)
if (x = NULL or k = key[x])
return x;
if (k < key[x])
return TreeSearch(left[x], k)
else
return TreeSearch(right[x], k);

BST Search (lterative)

IterativeTreeSearch(x, k)

while (x !'= NULL and k != key[x])
if (k < key[x])
x = left[x];
else
x = right[x];

return x;

BST Insert

e Adds an element x to the tree so that the binary
search tree property continues to hold

e The basic algorithm

m Like the search procedure above
m Insert x 1n place of NULL

m Use a “trailing pointer” to keep track of where you
came from (like inserting into singly linked list)

e Like search, takes time O(%), i = tree height

Sorting With BSTs

e Basic algorithm:

m Insert elements of unsorted array from 1..n

m Do an morder tree walk to print in sorted order
e Running time:

m Worst case: ?

m Average case: ? (it’s a quicksort!)

Sorting With BSTs

e Average case analysis for i=1 to n
] . TreeInsert (A[i]);
m It’s a form of quicksort! InorderTreeWalk (root) ;

@%275 (3) (&)
\@ @75/
7N
& © G G

Search, Minimum and Maximum

ITERATIVE-TREE-SEARCH (x, k) TREE-MINIMUM (x)

1 while x £ NIL and k # /\(’\[\] | while /eft[x] # NIL
2 doif k < /\C’\[\] g, dOt.\‘ <« l(’ﬁ[\]
3 then x <« /eft[x] B, koo

4 else x <« right|x]

5 return x

TREE-MAXIMUM (x)

1 while right[x] % NIL
2 do x <« right|x]
3 return x

More BST Operations

e Minimum:
m Find leftmost node in tree

e Successor:

m X has a right subtree: successor 1s minimum node
in right subtree

m X has no right subtree: successor 1s first ancestor of
x whose left child 1s also ancestor of x
o Intuition: As long as you move to the left up the tree,
you’re visiting smaller nodes.

e Predecessor: similar to successor

More BST Operations

e x has a right subtree: successor 1s minimum node 1n
right subtree

e x has no right subtree: successor 1s closest ancestor of
x whose left child 1s also ancestor (or self) of x

Successor

e x has a right subtree: successor 1s minimum node 1n
right subtree

e x has no right subtree: successor 1s closest ancestor of
x whose left child 1s also ancestor (or self) of x

TREE-SUCCESSOR (x)

1 if right[x] # NIL

2 then return TREE-MINIMUM (right[x])
3y <« plx]

4 while y # NIL and x = right|[y]

5 dox <y

6 y < plyl

7 return y

More BST Operations

e Delete:
m X has no children:

o Remove x

m X has one child:

o Splice out x

Example: delete K
or H or B

m X has two children:
o Swap x with successor
o Perform case 1 or 2 to delete it

Delete

Delete

Delete

Red-Black Trees

e Red-black trees:

m Binary search trees augmented with node color

m Operations designed to guarantee that the height
h=0(g n)

e First: describe the properties of red-black trees
e Then: prove that these guarantee 7 = O(lg n)
e Finally: describe operations on red-black trees

Each node of the tree now contains the fields
color, key, left, right, and p

Red-Black Properties

o The red-black properties:
1. Every node is either red or black

2. The root 1s always black
3. Every leaf (orig. NULL) 1s black

o Note: this means every “real” node has 2 children

4. If a node 1s red, both children are black

o Note: can’t have 2 consecutive reds on a path

5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees

1. Every node 1s either red or black

2. The root 1s always black

3. Every leaf (orig. NULL) is black

4 If a node 1s red, both children are black
5

Every path from node to descendent leaf
contains the same number of black nodes

e black-height: # black nodes on path to leaf

m Label example with 4 and bh values

Example red-black tree

Figure 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a
red-black tree is either red or black, the children of a red node are both black, and every simple path
from a node to a descendant leaf contains the same number of black nodes. (a) Every leaf, shown
as a NIL, is black. Each non-NIL node is marked with its black-height; NIL’s have black-height 0.
(b) The same red-black tree but with each NIL replaced by the single sentinel nil[T |, which is always
black, and with black-heights omitted. The root’s parent is also the sentinel. (¢) The same red-black
tree but with leaves and the root’s parent omitted entirely. We shall use this drawing style in the
remainder of this chapter.

Example red-black tree

Figure 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a
red-black tree is either red or black, the children of a red node are both black, and every simple path
from a node to a descendant leaf contains the same number of black nodes. (a) Every leaf, shown
as a NIL, is black. Each non-NIL node is marked with its black-height; NIL’s have black-height 0.
(b) The same red-black tree but with each NIL replaced by the single sentinel ni/[T], which is always
black, and with black-heights omitted. The root’s parent is also the sentinel. (¢) The same red-black
tree but with leaves and the root’s parent omitted entirely. We shall use this drawing style in the
remainder of this chapter.

Example red-black tree

Figure 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a
red-black tree is either red or black, the children of a red node are both black, and every simple path
from a node to a descendant leaf contains the same number of black nodes. (a) Every leaf, shown
as a NIL, is black. Each non-NIL node is marked with its black-height; NIL’s have black-height 0.
(b) The same red-black tree but with each NIL replaced by the single sentinel ni/[T], which is always
black, and with black-heights omitted. The root’s parent is also the sentinel. (¢) The same red-black
tree but with leaves and the root’s parent omitted entirely. We shall use this drawing style in the
remainder of this chapter.

RB Trees: Worst-Case Time

e So we’ve proved that a red-black tree has
O(lg n) height

e Corollary: These operations take O(lg n) time:
s Minimum(), Maximum()
m Successor(), Predecessor()
m Scarch()

e Insert() and Delete():

s Will also take O(lg n) time
m But will need special care since they modify tree

Red-Black Trees: An Example

o Color this tree: @

© ©
©

Red-black properties:

1. Every node 1s either red or black

2. The root 1s always black

3. Every leaf (or1ig. NULL) 1s black

4. If a node 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

o Insert 8 @
m Where does it go? @ @

©

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (orig. NULL) 1s black

4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert & (7)
m Where does it go?

m What color e e
should it be? e 9

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (orig. NULL) 1s black

4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert & (7)
m Where does it go?

m What color e e
should it be? e 9

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (orig. NULL) 1s black

4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 11 G
m Where does it go?
O O

1. Every node is either red or black

2. The root 1s always black

3. Every leaf (orig. NULL) 1s black

4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 11

m Where does it go?
m What color?

1. Every node is either red or black
2. The root 1s always black

3. Every leaf (orig. NULL) 1s black
4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 11

m Where does it go?

m What color?
o Can’t be red! (#4)

1. Every node is either red or black
2. The root 1s always black

3. Every leaf (orig. NULL) 1s black
4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 11

m Where does it go?

m What color?
o Can’t be red! (#4)
o Can’t be black! (#5)

1. Every node is either red or black
2. The root 1s always black

3. Every leaf (orig. NULL) 1s black
4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 11

m Where does it go?
m What color?

o Solution:
recolor the tree

1. Every node is either red or black
2. The root 1s always black

3. Every leaf (orig. NULL) 1s black
4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 10
m Where does it go?

1. Every node is either red or black
2. The root 1s always black

3. Every leaf (orig. NULL) 1s black
4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 10

m Where does it go?
m What color?

1. Every node is either red or black
2. The root 1s always black

3. Every leaf (orig. NULL) 1s black
4. If anode 1s red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

e Insert 10

m Where does it go?

m What color?

o A:no color! Tree
1s too 1imbalanced

o Must change tree structure
to allow recoloring

m Goal: restructure tree in
O(lg n) time

RB Trees: Rotation

e Our basic operation for changing tree structure
1s called rotation:

rightRotate ({)

C A

<
leftRotate (x)

A B B C
e Does rotation preserve inorder key ordering?

o What would the code for rightRotate ()
actually do?

RB Trees: Rotation

rightRotate (y)

C > A
A B B &

e Answer: A lot of pointer manipulation
m x keeps its left child
m y keeps its right child
m x’s right child becomes y’s left child
m x’s and y’s parents change

o What is the running time?

Rotation Example

e Rotate left about 9:

Rotation Example

e Rotate left about 9:

04 ° | FECTTT T LT LT TT T I T T TP PI I ° Y
RIGHT-ROTATE(T, y)

p Y

LEFT-ROTATE (7, x)

1

Lo b

(U R SN

o0 J N

11
12

y < right|x]
right| x| < left|y]
if left|y] £ nl|T |

then plleft[y]] < x

ply] < plx]
if plx| = ml[T]
then roof[T | < vy

LEFT-ROTATE(T, x)
................................ I o
o p

> Set y.
> Turn y’s left subtree into x’s right subtree.

> Link x’s parent to y.

else if x = left[p[x]]
then /left|p[x]] < y

else right|p
left[y] < x
plx] <y

[x]] <y
> Put x on y’s left.

Insertion

. Insert node z into the tree T as 1f 1t were an
ordinary binary search tree, and then we color
z red.

. To guarantee that the red-black properties are
preserved, call an auxiliary procedure
RB-INSERT-FIXUP to recolor nodes and

perform rotations.

RB-INSERT-FIXUP

Which red-black properties can be violated?

e #2: which requires the root to be black

e #4, which says that a red node cannot have a red
child

e Property 2 1s violated if z is the root, and property 4
is violated 1f z’s parent 1s red.

(a)

Figure 13.5 Case | of the procedure RB-INSERT. Property 4 is violated, since z and its parent p[z]
are both red. The same action is taken whether (a) z is a right child or (b) z is a left child. Each of
the subtrees «, B, v, 6, and ¢ has a black root, and each has the same black-height. The code for
case | changes the colors of some nodes, preserving property 5: all downward paths from a node to
a leaf have the same number of blacks. The while loop continues with node z’s grandparent p[p[z]]
as the new z. Any violation of property 4 can now occur only between the new z, which is red, and
its parent, if it is red as well.

(a) o D)y

Figure 13.6 Cases 2 and 3 of the procedure RB-INSERT. As in case I, property 4 is violated in
either case 2 or case 3 because z and its parent p[z] are both red. Each of the subtrees «, 8, y,and §
has a black root («, g, and y from property 4, and § because otherwise we would be in case 1), and
each has the same black-height. Case 2 is transformed into case 3 by a left rotation, which preserves
property 5: all downward paths from a node to a leaf have the same number of blacks. Case 3
causes some color changes and a right rotation, which also preserve property 5. The while loop then
terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

Case 2 Case 3

Red-Black Trees: Insertion

e Insertion: the basic 1dea
m Insert x into tree, color x red
m Only r-b property 4 might be violated (if p[x] red)

o If so, move violation up tree until a place is found where
it can be fixed

m Total time will be O(lg n)

rbInsert (x)
treelnsert (x) ;

x->color = RED;
// Move violation of #3 up tree, maintaining #4 as invariant:
while (x!'=root && x->p->color == RED)

if (x->p == x->p->p->left)
Yy = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;

y->color = BLACK; Case

X->p->p->color = RED; 1

X = X->p->p;

else // y->color == BLACK

if (x == x->p->right)
X = X=>p; Case
leftRotate (x) ; 2

x->p->color = BLACK;

X->p->p->color = RED;

rightRotate (x->p->p) ;
else // x->p == x->p->p->right

(same as above, but with
“right” & “left” exchanged)

rbInsert (x)
treelnsert (x) ;
RED;

x->color

// Move violation of #3 up tree, maintaining #4 as invariant:

while (x!=root && x->p->color
x->p->p->left)

Yy = x->p->p->right;

RED)
x->p->color = BLACK;
BLACK;
X->p->p->color =

if (x->p

if (y->color
y->color =

RED;

X = X->p->p;

// y->color == BLACK

if (x

X =

else

x->p->right)
X->p;
leftRotate (x) ;
BLACK;
X->p->p->color = RED;
rightRotate (x->p->p) ;
// x->p
(same as above, but with
“right” & “left” exchanged)

x->p->color =

else

RED)

x->p->p->right

Case 1:

Case

uncle is RED

RB Insert: Case 1

if (y->color == RED) e C(Case 1: “uncle” 1s red

x->p->color = BLACK; e In figures below, all A’s are
equal-black-height subtrees

y—->color = BLACK;
X->p->p->color = RED;
X = X->p->p;

Change colors of some nodes, preserving #4. all downward paths have equal b.h.
The while loop now continues with x's grandparent as the new x

RB Insert: Case 1

if (y->color == RED) e C(Case 1: “uncle” 1s red

x->p->color = BLACK; e In figures below, all A’s are

y->color = BLACK; .
x->p->p->color = RED; equal-black-height subtrees

X = X->p->p;

G new x

©
A A A

Same action whether x is a left or a right child

RB Insert: Case 2

if (x == x->p->right) o (ase2:
X = X->p; m “Uncle” is black
leftRotate(x); = Node x is a right child

// continue with case 3 code

e Transform to case 3 via a
left-rotation

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 4: all downward paths contain same number of black nodes

RB Insert: Case 3

x->p->color = BLACK; e (Case3:
x->p->p->color = RED; m “Uncle” 1s black
rightRotate (x->p->p) ; s Node x is a left child

e Change colors; rotate right

G case 3

Perform some color changes and do a right rotation
Again, preserves property 4: all downward paths contain same number of black nodes

RB Insert; Cases 4-6

e Cases 1-3 hold if x’s parent 1s a left child

e [fx’s parent 1s a right child, cases 4-6 are
symmetric (swap left for right)

Red-Black Trees: Deletion

¢ And you thought insertion was tricky...
e We will not cover RB delete in class

m Read for the overall picture, not the details

The End

