
Red-Black Trees



Review: Binary Search Trees

● Binary Search Trees (BSTs) are an important 
data structure for dynamic sets

● In addition to satellite data, elements have:
■ key: an identifying field inducing a total ordering
■ left: pointer to a left child (may be NULL)
■ right: pointer to a right child (may be NULL)
■ p: pointer to a parent node (NULL for root)



Review: Binary Search Trees

● BST property: 
key[left(x)] ≤ key[x] ≤ key[right(x)]

● Example:
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Review: Inorder Tree Walk

● An inorder walk prints the set in sorted order:
TreeWalk(x)
    TreeWalk(left[x]);
    print(x);
    TreeWalk(right[x]);
■ Easy to show by induction on the BST property
■ Preorder tree walk: print root, then left, then right
■ Postorder tree walk: print left, then right, then root



BST Search

    TreeSearch(x, k)
        if (x = NULL  or  k = key[x])
            return x;
        if (k < key[x]) 
            return TreeSearch(left[x], k);
        else
            return TreeSearch(right[x], k);



BST Search (Iterative)

    IterativeTreeSearch(x, k)
        while (x != NULL  and  k != key[x]) 
            if (k < key[x])
                x = left[x];
            else
                x = right[x];
        return x;



BST Insert

● Adds an element x to the tree so that the binary 
search tree property continues to hold

● The basic algorithm
■ Like the search procedure above
■ Insert x in place of NULL
■ Use a “trailing pointer” to keep track of where you 

came from (like inserting into singly linked list)
● Like search, takes time O(h), h = tree height



Sorting With BSTs

● Basic algorithm:
■ Insert elements of unsorted array from 1..n
■ Do an inorder tree walk to print in sorted order

● Running time: 
■ Worst case: ?
■ Average case: ?  (it’s a quicksort!)



Sorting With BSTs

● Average case analysis
■ It’s a form of quicksort!

for i=1 to n
    TreeInsert(A[i]);
InorderTreeWalk(root);
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Search, Minimum and Maximum



More BST Operations

● Minimum: 
■ Find leftmost node in tree

● Successor: 
■ x has a right subtree: successor is minimum node 

in right subtree
■ x has no right subtree: successor is first ancestor of 

x whose left child is also ancestor of x
○ Intuition: As long as you move to the left up the tree, 

you’re visiting smaller nodes.  

● Predecessor: similar to successor



More BST Operations

● x has a right subtree: successor is minimum node in 
right subtree

● x has no right subtree: successor is closest ancestor of 
x whose left child is also ancestor (or self) of x



Successor

● x has a right subtree: successor is minimum node in 
right subtree

● x has no right subtree: successor is closest ancestor of 
x whose left child is also ancestor (or self) of x



More BST Operations

● Delete: 
■ x has no children: 

○ Remove x
■ x has one child: 

○ Splice out x
■ x has two children: 

○ Swap x with successor
○ Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K
or H or B



Delete



Delete



Delete



Red-Black Trees

● Red-black trees:
■ Binary search trees augmented with node color 
■ Operations designed to guarantee that the height

h = O(lg n)
● First: describe the properties of red-black trees
● Then: prove that these guarantee h = O(lg n)
● Finally: describe operations on red-black trees

Each node of the tree now contains the fields 
color, key, left, right, and p



Red-Black Properties

● The red-black properties:
1. Every node is either red or black
2.   The root is always black
3. Every leaf (orig. NULL) is black

○ Note: this means every “real” node has 2 children
4. If a node is red, both children are black

○ Note: can’t have 2 consecutive reds on a path
5. Every path from node to descendent leaf 

contains the same number of black nodes



Red-Black Trees

1. Every node is either red or black
2.   The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf 

contains the same number of black nodes
● black-height: # black nodes on path to leaf

■ Label example with h and bh values



Example red-black tree



Example red-black tree



Example red-black tree



RB Trees: Worst-Case Time

● So we’ve proved that a red-black tree has 
O(lg n) height

● Corollary: These operations take O(lg n) time: 
■ Minimum(), Maximum()
■ Successor(), Predecessor()
■ Search()

● Insert() and Delete():
■ Will also take O(lg n) time
■ But will need special care since they modify tree



Red-Black Trees: An Example

● Color this tree: 7

5 9
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Red-black properties:
1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes



● Insert 8
■ Where does it go?

Red-Black Trees: 
The Problem With Insertion
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1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes



● Insert 8
■ Where does it go?
■ What color 

should it be?

Red-Black Trees: 
The Problem With Insertion
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1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes



● Insert 8
■ Where does it go?
■ What color 

should it be?

Red-Black Trees: 
The Problem With Insertion
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1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes



Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

○ Can’t be red! (#4)

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

○ Can’t be red! (#4)
○ Can’t be black! (#5)

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

○ Solution: 
recolor the tree

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 10
■ Where does it go?

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 10
■ Where does it go?
■ What color?

1. Every node is either red or black
2.  The root is always black
3.    Every leaf (orig. NULL) is black
4.    If a node is red, both children are black
5.    Every path from node to descendent leaf 
contains the same number of black nodes
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Red-Black Trees:
The Problem With Insertion

● Insert 10
■ Where does it go?
■ What color?

○ A: no color! Tree 
is too imbalanced

○ Must change tree structure
to allow recoloring

■ Goal: restructure tree in 
O(lg n) time
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RB Trees: Rotation

● Our basic operation for changing tree structure 
is called rotation:

● Does rotation preserve inorder key ordering?
● What would the code for rightRotate() 

actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)



rightRotate(y)

RB Trees: Rotation

● Answer: A lot of pointer manipulation
■ x keeps its left child
■ y keeps its right child
■ x’s right child becomes y’s left child
■ x’s and y’s parents change

● What is the running time?

y

x C

A B

x

A y
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Rotation Example

● Rotate left about 9:
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Rotation Example

● Rotate left about 9:
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Rotation





Insertion

● Insert node z into the tree T as if it were an 
ordinary binary search tree, and then we color 
z red.

● To guarantee that the red-black properties are 
preserved, call an auxiliary procedure 
RB-INSERT-FIXUP to recolor nodes and 
perform rotations.



RB-INSERT-FIXUP

Which red-black properties can be violated?
● #2: which requires the root to be black
● #4, which says that a red node cannot have a red 

child
● Property 2 is violated if z is the root, and property 4 

is violated if z’s parent is red.



Case #1



Case #2



Red-Black Trees: Insertion

● Insertion: the basic idea
■ Insert x into tree, color x red
■ Only r-b property 4 might be violated (if p[x] red)

○ If so, move violation up tree until a place is found where 
it can be fixed

■ Total time will be O(lg n)



rbInsert(x)
  treeInsert(x);
  x->color = RED;
  // Move violation of #3 up tree, maintaining #4 as invariant:
  while (x!=root && x->p->color == RED)
  if (x->p == x->p->p->left)
      y = x->p->p->right;
      if (y->color == RED)
          x->p->color = BLACK;
          y->color = BLACK;
          x->p->p->color = RED;
          x = x->p->p;
      else   // y->color == BLACK
          if (x == x->p->right)
              x = x->p;
              leftRotate(x);
          x->p->color = BLACK;
          x->p->p->color = RED;
          rightRotate(x->p->p);
  else    // x->p == x->p->p->right
      (same as above, but with
       “right” & “left” exchanged)

Case 
1

Case 
2

Case 3



rbInsert(x)
  treeInsert(x);
  x->color = RED;
  // Move violation of #3 up tree, maintaining #4 as invariant:
  while (x!=root && x->p->color == RED)
  if (x->p == x->p->p->left)
      y = x->p->p->right;
      if (y->color == RED)
          x->p->color = BLACK;
          y->color = BLACK;
          x->p->p->color = RED;
          x = x->p->p;
      else   // y->color == BLACK
          if (x == x->p->right)
              x = x->p;
              leftRotate(x);
          x->p->color = BLACK;
          x->p->p->color = RED;
          rightRotate(x->p->p);
  else    // x->p == x->p->p->right
      (same as above, but with
       “right” & “left” exchanged)

Case 1: uncle is RED

Case 
2

Case 3



RB Insert: Case 1

if (y->color == RED)
    x->p->color = BLACK;
    y->color = BLACK;
    x->p->p->color = RED;
    x = x->p->p;

● Case 1: “uncle” is red
● In figures below, all Δ’s are 

equal-black-height subtrees

C
A D

Δ B

Δ Δ
Δ Δ

C
A D

Δ B

Δ Δ
Δ Δx

y

new x

Change colors of some nodes, preserving #4: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1



B

Δ Δ
x

RB Insert: Case 1

if (y->color == RED)
    x->p->color = BLACK;
    y->color = BLACK;
    x->p->p->color = RED;
    x = x->p->p;

● Case 1: “uncle” is red
● In figures below, all Δ’s are 

equal-black-height subtrees

C
A D

Δ Δ Δ

C
A D

Δ Δ
y

new x

Same action whether x is a left or a right child

B

Δ Δ
x Δ

case 1



B

Δ Δ
x

RB Insert: Case 2

if (x == x->p->right)
    x = x->p;
    leftRotate(x);
// continue with case 3 code

● Case 2:
■ “Uncle” is black
■ Node x is a right child

● Transform to case 3 via a 
left-rotation

C
A Δ

C
By

A

Δ Δ
x Δ

case 2

Δ
yΔ

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 4: all downward paths contain same number of black nodes



RB Insert: Case 3

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

● Case 3:
■ “Uncle” is black
■ Node x is a left child

● Change colors; rotate right

B
Ax

Δ

case 3C
B

A

Δ Δ
x Δ

yΔ C

Δ ΔΔ

Perform some color changes and do a right rotation
Again, preserves property 4: all downward paths contain same number of black nodes



RB Insert: Cases 4-6

● Cases 1-3 hold if x’s parent is a left child
● If x’s parent is a right child, cases 4-6 are 

symmetric (swap left for right)



Red-Black Trees: Deletion

● And you thought insertion was tricky… 
● We will not cover RB delete in class

■ Read for the overall picture, not the details



The End


