
Red-Black Trees

Review: Binary Search Trees

● Binary Search Trees (BSTs) are an important
data structure for dynamic sets

● In addition to satellite data, elements have:
■ key: an identifying field inducing a total ordering
■ left: pointer to a left child (may be NULL)
■ right: pointer to a right child (may be NULL)
■ p: pointer to a parent node (NULL for root)

Review: Binary Search Trees

● BST property:
key[left(x)] ≤ key[x] ≤ key[right(x)]

● Example:

F

B H

KDA

Review: Inorder Tree Walk

● An inorder walk prints the set in sorted order:
TreeWalk(x)
 TreeWalk(left[x]);
 print(x);
 TreeWalk(right[x]);
■ Easy to show by induction on the BST property
■ Preorder tree walk: print root, then left, then right
■ Postorder tree walk: print left, then right, then root

BST Search

 TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x], k);
 else
 return TreeSearch(right[x], k);

BST Search (Iterative)

 IterativeTreeSearch(x, k)
 while (x != NULL and k != key[x])
 if (k < key[x])
 x = left[x];
 else
 x = right[x];
 return x;

BST Insert

● Adds an element x to the tree so that the binary
search tree property continues to hold

● The basic algorithm
■ Like the search procedure above
■ Insert x in place of NULL
■ Use a “trailing pointer” to keep track of where you

came from (like inserting into singly linked list)
● Like search, takes time O(h), h = tree height

Sorting With BSTs

● Basic algorithm:
■ Insert elements of unsorted array from 1..n
■ Do an inorder tree walk to print in sorted order

● Running time:
■ Worst case: ?
■ Average case: ? (it’s a quicksort!)

Sorting With BSTs

● Average case analysis
■ It’s a form of quicksort!

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

Search, Minimum and Maximum

More BST Operations

● Minimum:
■ Find leftmost node in tree

● Successor:
■ x has a right subtree: successor is minimum node

in right subtree
■ x has no right subtree: successor is first ancestor of

x whose left child is also ancestor of x
○ Intuition: As long as you move to the left up the tree,

you’re visiting smaller nodes.

● Predecessor: similar to successor

More BST Operations

● x has a right subtree: successor is minimum node in
right subtree

● x has no right subtree: successor is closest ancestor of
x whose left child is also ancestor (or self) of x

Successor

● x has a right subtree: successor is minimum node in
right subtree

● x has no right subtree: successor is closest ancestor of
x whose left child is also ancestor (or self) of x

More BST Operations

● Delete:
■ x has no children:

○ Remove x
■ x has one child:

○ Splice out x
■ x has two children:

○ Swap x with successor
○ Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K
or H or B

Delete

Delete

Delete

Red-Black Trees

● Red-black trees:
■ Binary search trees augmented with node color
■ Operations designed to guarantee that the height

h = O(lg n)
● First: describe the properties of red-black trees
● Then: prove that these guarantee h = O(lg n)
● Finally: describe operations on red-black trees

Each node of the tree now contains the fields
color, key, left, right, and p

Red-Black Properties

● The red-black properties:
1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black

○ Note: this means every “real” node has 2 children
4. If a node is red, both children are black

○ Note: can’t have 2 consecutive reds on a path
5. Every path from node to descendent leaf

contains the same number of black nodes

Red-Black Trees

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf

contains the same number of black nodes
● black-height: # black nodes on path to leaf

■ Label example with h and bh values

Example red-black tree

Example red-black tree

Example red-black tree

RB Trees: Worst-Case Time

● So we’ve proved that a red-black tree has
O(lg n) height

● Corollary: These operations take O(lg n) time:
■ Minimum(), Maximum()
■ Successor(), Predecessor()
■ Search()

● Insert() and Delete():
■ Will also take O(lg n) time
■ But will need special care since they modify tree

Red-Black Trees: An Example

● Color this tree: 7

5 9

1
2
12

5 9

7

Red-black properties:
1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

● Insert 8
■ Where does it go?

Red-Black Trees:
The Problem With Insertion

1
2

5 9

7

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

● Insert 8
■ Where does it go?
■ What color

should it be?

Red-Black Trees:
The Problem With Insertion

1
2

5 9

7

8

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

● Insert 8
■ Where does it go?
■ What color

should it be?

Red-Black Trees:
The Problem With Insertion

1
2

5 9

7

8

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

1
1

Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

○ Can’t be red! (#4)

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

1
1

Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

○ Can’t be red! (#4)
○ Can’t be black! (#5)

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

1
1

Red-Black Trees:
The Problem With Insertion

● Insert 11
■ Where does it go?
■ What color?

○ Solution:
recolor the tree

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

1
1

Red-Black Trees:
The Problem With Insertion

● Insert 10
■ Where does it go?

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

1
1

Red-Black Trees:
The Problem With Insertion

● Insert 10
■ Where does it go?
■ What color?

1. Every node is either red or black
2. The root is always black
3. Every leaf (orig. NULL) is black
4. If a node is red, both children are black
5. Every path from node to descendent leaf
contains the same number of black nodes

1
2

5 9

7

8

1
1

1
0

Red-Black Trees:
The Problem With Insertion

● Insert 10
■ Where does it go?
■ What color?

○ A: no color! Tree
is too imbalanced

○ Must change tree structure
to allow recoloring

■ Goal: restructure tree in
O(lg n) time

1
2

5 9

7

8

1
1

1
0

RB Trees: Rotation

● Our basic operation for changing tree structure
is called rotation:

● Does rotation preserve inorder key ordering?
● What would the code for rightRotate()

actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

rightRotate(y)

RB Trees: Rotation

● Answer: A lot of pointer manipulation
■ x keeps its left child
■ y keeps its right child
■ x’s right child becomes y’s left child
■ x’s and y’s parents change

● What is the running time?

y

x C

A B

x

A y

B C

Rotation Example

● Rotate left about 9:

1
2

5 9

7

8

1
1

Rotation Example

● Rotate left about 9:

5
1
2

7

9

1
1

8

Rotation

Insertion

● Insert node z into the tree T as if it were an
ordinary binary search tree, and then we color
z red.

● To guarantee that the red-black properties are
preserved, call an auxiliary procedure
RB-INSERT-FIXUP to recolor nodes and
perform rotations.

RB-INSERT-FIXUP

Which red-black properties can be violated?
● #2: which requires the root to be black
● #4, which says that a red node cannot have a red

child
● Property 2 is violated if z is the root, and property 4

is violated if z’s parent is red.

Case #1

Case #2

Red-Black Trees: Insertion

● Insertion: the basic idea
■ Insert x into tree, color x red
■ Only r-b property 4 might be violated (if p[x] red)

○ If so, move violation up tree until a place is found where
it can be fixed

■ Total time will be O(lg n)

rbInsert(x)
 treeInsert(x);
 x->color = RED;
 // Move violation of #3 up tree, maintaining #4 as invariant:
 while (x!=root && x->p->color == RED)
 if (x->p == x->p->p->left)
 y = x->p->p->right;
 if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;
 else // y->color == BLACK
 if (x == x->p->right)
 x = x->p;
 leftRotate(x);
 x->p->color = BLACK;
 x->p->p->color = RED;
 rightRotate(x->p->p);
 else // x->p == x->p->p->right
 (same as above, but with
 “right” & “left” exchanged)

Case
1

Case
2

Case 3

rbInsert(x)
 treeInsert(x);
 x->color = RED;
 // Move violation of #3 up tree, maintaining #4 as invariant:
 while (x!=root && x->p->color == RED)
 if (x->p == x->p->p->left)
 y = x->p->p->right;
 if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;
 else // y->color == BLACK
 if (x == x->p->right)
 x = x->p;
 leftRotate(x);
 x->p->color = BLACK;
 x->p->p->color = RED;
 rightRotate(x->p->p);
 else // x->p == x->p->p->right
 (same as above, but with
 “right” & “left” exchanged)

Case 1: uncle is RED

Case
2

Case 3

RB Insert: Case 1

if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;

● Case 1: “uncle” is red
● In figures below, all Δ’s are

equal-black-height subtrees

C
A D

Δ B

Δ Δ
Δ Δ

C
A D

Δ B

Δ Δ
Δ Δx

y

new x

Change colors of some nodes, preserving #4: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1

B

Δ Δ
x

RB Insert: Case 1

if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;

● Case 1: “uncle” is red
● In figures below, all Δ’s are

equal-black-height subtrees

C
A D

Δ Δ Δ

C
A D

Δ Δ
y

new x

Same action whether x is a left or a right child

B

Δ Δ
x Δ

case 1

B

Δ Δ
x

RB Insert: Case 2

if (x == x->p->right)
 x = x->p;
 leftRotate(x);
// continue with case 3 code

● Case 2:
■ “Uncle” is black
■ Node x is a right child

● Transform to case 3 via a
left-rotation

C
A Δ

C
By

A

Δ Δ
x Δ

case 2

Δ
yΔ

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 4: all downward paths contain same number of black nodes

RB Insert: Case 3

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

● Case 3:
■ “Uncle” is black
■ Node x is a left child

● Change colors; rotate right

B
Ax

Δ

case 3C
B

A

Δ Δ
x Δ

yΔ C

Δ ΔΔ

Perform some color changes and do a right rotation
Again, preserves property 4: all downward paths contain same number of black nodes

RB Insert: Cases 4-6

● Cases 1-3 hold if x’s parent is a left child
● If x’s parent is a right child, cases 4-6 are

symmetric (swap left for right)

Red-Black Trees: Deletion

● And you thought insertion was tricky…
● We will not cover RB delete in class

■ Read for the overall picture, not the details

The End

