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Graph Algorithms 



Graph Algorithms

● Graph algorithms
■ Should be largely review, easier for exam



Graphs

● A graph G = (V, E)
■ V = set of vertices
■ E = set of edges = subset of V × V
■ Thus |E| = O(|V|2)



Graph Variations

● Variations:
■ A connected graph has a path from every vertex to 

every other
■ In an undirected graph:

○ Edge (u,v) = edge (v,u)
○ No self-loops

■ In a directed graph:
○ Edge (u,v) goes from vertex u to vertex v, notated u→v



Graph Variations

● More variations:
■ A weighted graph associates weights with either 

the edges or the vertices
○ E.g., a road map: edges might be weighted w/ distance

■ A multigraph allows multiple edges between the 
same vertices

○ E.g., the call graph in a program (a function can get 
called from multiple points in another function)



Graphs

● We will typically express running times in 
terms of |E| and |V| (often dropping the |’s)
■ If |E| ≈ |V|2 the graph is dense
■ If |E| ≈ |V| the graph is sparse

● If you know you are dealing with dense or 
sparse graphs, different data structures may 
make sense



Representing Graphs

● Assume V = {1, 2, …, n}
● An adjacency matrix represents the graph as a 

n x n matrix A:
■ A[i, j] = 1 if edge (i, j) ∈ E   (or weight of edge)

= 0 if edge (i, j) ∉ E



Graphs: Adjacency Matrix

● Example:
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Graphs: Adjacency Matrix

● Example:

1

2 4

3

a

d

b c

A 1 2 3 4

1 0 1 1 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0



Graphs: Adjacency Matrix

● How much storage does the adjacency matrix 
require?
■ A: O(V2)

● What is the minimum amount of storage 
needed by an adjacency matrix representation 
of an undirected graph with 4 vertices?
■ A: 6 bits

○ Undirected graph → matrix is symmetric
○ No self-loops → don’t need diagonal



Graphs: Adjacency Matrix

● The adjacency matrix is a dense representation
■ Usually too much storage for large graphs
■ But can be very efficient for small graphs

● Most large interesting graphs are sparse
■ E.g., planar graphs, in which no edges cross, have 

|E| = O(|V|) by Euler’s formula
■ For this reason the adjacency list is often a more 

appropriate representation



Graphs: Adjacency List

● Adjacency list: for each vertex v ∈ V, store a 
list of vertices adjacent to v

● Example:
■ Adj[1] = {2,3}
■ Adj[2] = {3}
■ Adj[3] = {}
■ Adj[4] = {3}

● Variation: can also keep 
a list of edges coming into vertex
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Graphs: Adjacency List

● How much storage is required?
■ The degree of a vertex v = # incident edges

○ Directed graphs have in-degree, out-degree
■ For directed graphs, # of items in adjacency lists is

 Σ out-degree(v) = |E|
takes Θ(V + E) storage    (Why?)

■ For undirected graphs, # items in adj lists is
 Σ degree(v) = 2 |E|    (handshaking lemma)

also Θ(V + E) storage
● So: Adjacency lists take O(V+E) storage



Graph Searching

● Given: a graph G = (V, E), directed or 
undirected

● Goal: methodically explore every vertex and 
every edge

● Ultimately: build a tree on the graph
■ Pick a vertex as the root
■ Choose certain edges to produce a tree
■ Note: might also build a forest if graph is not 

connected



Breadth-First Search

● “Explore” a graph, turning it into a tree
■ One vertex at a time
■ Expand frontier of explored vertices across the 

breadth of the frontier
● Builds a tree over the graph

■ Pick a source vertex to be the root
■ Find (“discover”) its children, then their children, 

etc.



Breadth-First Search

● Again will associate vertex “colors” to guide 
the algorithm
■ White vertices have not been discovered

○ All vertices start out white
■ Grey vertices are discovered but not fully explored

○ They may be adjacent to white vertices
■ Black vertices are discovered and fully explored

○ They are adjacent only to black and gray vertices

● Explore vertices by scanning adjacency list of 
grey vertices



Breadth-First Search

BFS(G, s) {
    initialize vertices;
    Q = {s}; // Q is a queue (duh); initialize to s
    while (Q not empty) {    
        u = RemoveTop(Q);
        for each v ∈ u->adj {
            if (v->color == WHITE)
                v->color = GREY;
                v->d = u->d + 1;
                v->p = u;
                Enqueue(Q, v);
        }
        u->color = BLACK;
    }
}

What does v->p represent?

What does v->d represent?



Breadth-First Search



Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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BFS: The Code Again

BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {    
        u = RemoveTop(Q);
        for each v ∈ u->adj {
            if (v->color == WHITE)
                v->color = GREY;
                v->d = u->d + 1;
                v->p = u;
                Enqueue(Q, v);
        }
        u->color = BLACK;
    }
}

What will be the running time?

Touch every vertex: O(V)

u = every vertex, but only once
                                  (Why?)

So v = every vertex 
that appears in 
some other vert’s 
adjacency list

Total running time: O(V+E)



BFS: The Code Again

BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {    
        u = RemoveTop(Q);
        for each v ∈ u->adj {
            if (v->color == WHITE)
                v->color = GREY;
                v->d = u->d + 1;
                v->p = u;
                Enqueue(Q, v);
        }
        u->color = BLACK;
    }
}

What will be the storage cost 
in addition to storing the tree?

Total space used: 
O(max(degree(v))) = O(E)



Breadth-First Search: Properties

● BFS calculates the shortest-path distance to 
the source node
■ Shortest-path distance δ(s,v) = minimum number 

of edges from s to v, or ∞ if v not reachable from s
■ Proof given in the book (p. 472-5)

● BFS builds breadth-first tree, in which paths to 
root represent shortest paths in G
■ Thus can use BFS to calculate shortest path from 

one vertex to another in O(V+E) time



Depth-First Search

● Depth-first search is another strategy for 
exploring a graph
■ Explore “deeper” in the graph whenever possible
■ Edges are explored out of the most recently 

discovered vertex v that still has unexplored edges
■ When all of v’s edges have been explored, 

backtrack to the vertex from which v was 
discovered



David Luebke                       

DFS Code

DFS(G)
{
   for each vertex u ∈ G->V
   {
      u->color = WHITE;
   }
   time = 0;
   for each vertex u ∈ G->V
   {
      if (u->color == WHITE)
         DFS_Visit(u);
   }
}

DFS_Visit(u)
{
   u->color = YELLOW;
   time = time+1;
   u->d = time;
   for each v ∈ u->Adj[]
   {
      if (v->color == WHITE)
         DFS_Visit(v);
   }
   u->color = BLACK;
   time = time+1;
   u->f = time;
}



DFS Code





DFS Example
source
vertex
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DFS Example
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DFS Example
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DFS Example
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What is the structure of the yellow vertices?  
What do they represent?



DFS Example
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DFS Example
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DFS Example
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DFS: Kinds of edges

● DFS introduces an important distinction 
among edges in the original graph:
■ Tree edge: encounter new (white) vertex 

○ The tree edges form a spanning forest
○ Can tree edges form cycles?  Why or why not?



DFS Example
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DFS: Kinds of edges

● DFS introduces an important distinction 
among edges in the original graph:
■ Tree edge: encounter new (white) vertex 
■ Back edge: from descendent to ancestor

○ Encounter a yellow vertex (yellow to yellow)



DFS Example
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DFS: Kinds of edges

● DFS introduces an important distinction 
among edges in the original graph:
■ Tree edge: encounter new (white) vertex 
■ Back edge: from descendent to ancestor
■ Forward edge: from ancestor to descendent

○ Not a tree edge, though
○ From yellow node to black node



DFS Example
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DFS: Kinds of edges

● DFS introduces an important distinction 
among edges in the original graph:
■ Tree edge: encounter new (white) vertex 
■ Back edge: from descendent to ancestor
■ Forward edge: from ancestor to descendent
■ Cross edge: between a tree or subtrees

○ From a yellow node to a black node



DFS Example
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DFS: Kinds of edges

● DFS introduces an important distinction 
among edges in the original graph:
■ Tree edge: encounter new (white) vertex 
■ Back edge: from descendent to ancestor
■ Forward edge: from ancestor to descendent
■ Cross edge: between a tree or subtrees

● Note: tree & back edges are important; most 
algorithms don’t distinguish forward & cross



DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces 
only tree and back edges

● Proof by contradiction:
■ Assume there’s a forward edge

○ But F? edge must actually be a 
back edge (why?)

source

F?



DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces 
only tree and back edges

● Proof by contradiction:
■ Assume there’s a cross edge

○ But C? edge cannot be cross:
○ must be explored from one of the 

vertices it connects, becoming a tree
vertex, before other vertex is explored

○ So in fact the picture is wrong…both
lower tree edges cannot in fact be
tree edges

so
ur
ce

C?



DFS And Graph Cycles

● Thm: An undirected graph is acyclic iff a DFS 
yields no back edges
■ If acyclic, no back edges (because a back edge 

implies a cycle
■ If no back edges, acyclic

○ No back edges implies only tree edges (Why?)
○ Only tree edges implies we have a tree or a forest
○ Which by definition is acyclic

● Thus, can run DFS to find whether a graph has 
a cycle



DFS And Cycles

● How would you modify the code to detect cycles?
DFS(G)
{
   for each vertex u ∈ G->V
   {
      u->color = WHITE;
   }
   time = 0;
   for each vertex u ∈ G->V
   {
      if (u->color == WHITE)
         DFS_Visit(u);
   }
}

DFS_Visit(u)
{
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v ∈ u->Adj[]
   {
      if (v->color == WHITE)
         DFS_Visit(v);
   }
   u->color = BLACK;
   time = time+1;
   u->f = time;
}



DFS And Cycles

● What will be the running time?
DFS(G)
{
   for each vertex u ∈ G->V
   {
      u->color = WHITE;
   }
   time = 0;
   for each vertex u ∈ G->V
   {
      if (u->color == WHITE)
         DFS_Visit(u);
   }
}

DFS_Visit(u)
{
   u->color = GREY;
   time = time+1;
   u->d = time;
   for each v ∈ u->Adj[]
   {
      if (v->color == WHITE)
         DFS_Visit(v);
   }
   u->color = BLACK;
   time = time+1;
   u->f = time;
}



DFS And Cycles

● What will be the running time?
● A: O(V+E)
● We can actually determine if cycles exist in 

O(V) time:
■ In an undirected acyclic forest, |E| ≤ |V| - 1 
■ So count the edges: if ever see |V| distinct edges, 

must have seen a back edge along the way



Topological Sort
Minimum Spanning Trees
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Review: Kinds of Edges



DFS And Cycles

● Running time: O(V+E)
● We can actually determine if cycles exist in 

O(V) time:
■ In an undirected acyclic forest, |E| ≤ |V| - 1 
■ So count the edges: if ever see |V| distinct edges, 

must have seen a back edge along the way
■ Why not just test if |E| <|V| and answer the 

question in constant time?



David Luebke                       

Directed Acyclic Graphs

● A directed acyclic graph or DAG is a directed 
graph with no directed cycles:



DFS and DAGs

● Argue that a directed graph G is acyclic iff a 
DFS of G yields no back edges:
■ Forward: if G is acyclic, will be no back edges

○ Trivial: a back edge implies a cycle
■ Backward: if no back edges, G is acyclic

○ Argue contrapositive: G has a cycle ⇒ ∃ a back edge
◆ Let v be the vertex on the cycle first discovered, and u be the 

predecessor of v on the cycle
◆ When v discovered, whole cycle is white
◆ Must visit everything reachable from v before returning from 

DFS-Visit()
◆ So path from u→v is yellow→yellow, thus (u, v) is a back edge



Topological Sort

● Topological sort of a DAG:
■ Linear ordering of all vertices in graph G such that 

vertex u comes before vertex v if edge (u, v) ∈ G
● Real-world example: getting dressed



Getting Dressed
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Getting Dressed

Underwear Socks

ShoesPants
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Shirt

Watch

Tie

Jacket



Topological Sort Algorithm

Topological-Sort()
{

Run DFS
When a vertex is finished, output it
Vertices are output in reverse 
topological order

}

● Time: O(V+E)
● Correctness: Want to prove that

(u,v) ∈ G ⇒ u→f > v→f



Topological Sort Algorithm





Correctness of Topological Sort

● Claim: (u,v) ∈ G ⇒ u→f  >  v→f
■ When (u,v) is explored, u is yellow

○ v = yellow ⇒ (u,v) is back edge.  Contradiction (Why?)
○ v = white ⇒ v becomes descendent of u ⇒ v→f < u→f 

(since must finish v before backtracking and finishing u)
○ v = black ⇒ v already finished ⇒ v→f < u→f



Minimum Spanning Tree

● Problem: given a connected, undirected, 
weighted graph:
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Minimum Spanning Tree

● Problem: given a connected, undirected, 
weighted graph, find a spanning tree using 
edges that minimize the total weight
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Minimum Spanning Tree

● Which edges form the minimum spanning tree 
(MST) of the below graph?
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G E D
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Minimum Spanning Tree

● Answer:

H B C

G E D

F
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Another MST



Minimum Spanning Tree

● MSTs satisfy the optimal substructure property: an 
optimal tree is composed of optimal subtrees
■ Let T be an MST of G with an edge (u,v) in the middle
■ Removing (u,v) partitions T into two trees T1 and T2
■ Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of 

G2 = (V2,E2)           (Do V1 and V2 share vertices?  Why?)
■ Proof: w(T) = w(u,v) + w(T1) + w(T2)

(There can’t be a better tree than T1 or T2, or T would be 
suboptimal)



Minimum Spanning Tree

● Thm: 
■ Let T be MST of G, and let A ⊆ T be subtree of T
■ Let (u,v) be min-weight edge connecting A to V-A
■ Then (u,v) ∈ T



Minimum Spanning Tree

● Thm: 
■ Let T be MST of G, and let A ⊆ T be subtree of T
■ Let (u,v) be min-weight edge connecting A to V-A
■ Then (u,v) ∈ T

● Proof: in book (see Thm 24.1)



Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);



MST-Prim algorithm



Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);

1
4

∞ ∞

0 ∞ ∞

3

∞

14 10

3

6 4
5

2

9

15

8
u



Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim(G, w, r)
    Q = V[G];
    for each u ∈ Q
        key[u] = ∞;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v ∈ Adj[u]
            if (v ∈ Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
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adapted from David Luebke                       

Single-Source Shortest Path



Relaxation

● A key technique in shortest path algorithms is 
relaxation
■ Idea: for all v, maintain upper bound d[v] on δ(s,v)
Relax(u,v,w) { 
    if (d[v] > d[u]+w) then d[v]=d[u]+w;
}
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Relaxation



Bellman-Ford Algorithm



Bellman-Ford Example



Bellman-Ford

● Note that order in which edges are processed affects 
how quickly it converges

● Correctness: show d[v] = δ(s,v) after |V|-1 passes
■ Lemma: d[v] ≥ δ(s,v) always

○ Initially true
○ Let v be first vertex for which d[v] < δ(s,v)
○ Let u be the vertex that caused d[v] to change: 

d[v] = d[u] + w(u,v)
○ Then d[v] < δ(s,v)

               δ(s,v) ≤ δ(s,u) + w(u,v) (Why?)
 δ(s,u) + w(u,v) ≤ d[u] + w(u,v) (Why?)

○ So d[v] < d[u] + w(u,v).  Contradiction.



The End


