Graph Algorithms

adapted from David Luebke

Graph Algorithms

e Graph algorithms

m Should be largely review, easier for exam

Graphs

e Agraph G=(V,E)
m V = set of vertices
m E =set of edges = subsetof VXV
m Thus [E| = O(|V]>)

Graph Variations

e Variations:

m A connected graph has a path from every vertex to
every other
m In an undirected graph:
o Edge (u,v) = edge (v,u)
o No self-loops
m In a directed graph:

o Edge (u,v) goes from vertex u to vertex v, notated u—v

Graph Variations

e More variations:

m A weighted graph associates weights with either
the edges or the vertices
o E.g., aroad map: edges might be weighted w/ distance
m A multigraph allows multiple edges between the
same vertices

o E.g., the call graph in a program (a function can get
called from multiple points in another function)

Graphs

e We will typically express running times 1n
terms of |E| and |V| (often dropping the |’s)
m If |E| = |V|? the graph is dense
m If |E| = |V]| the graph 1s sparse

e If you know you are dealing with dense or

sparse graphs, different data structures may
make sense

Representing Graphs

e Assume V={1,2,...,n}
e An adjacency matrix represents the graph as a
n X n matrix A:

m Ali,j] =11fedge(i,j) € E (or weight of edge)
=0i1fedge (i,/)) ¢ E

Graphs: Adjacency Matrix

e Example:

27

Graphs: Adjacency Matrix

e Example:
A |1 2 3
1 0 1 1
2 0 O 1
3 0O O 0
4 0 O 1

o O O O A

Graphs: Adjacency Matrix

e How much storage does the adjacency matrix
require?
m A: O(V?)

o What is the minimum amount of storage

needed by an adjacency matrix representation
of an undirected graph with 4 vertices?

m A: 6 bits

o Undirected graph — matrix is symmetric
o No self-loops — don’t need diagonal

Graphs: Adjacency Matrix

e The adjacency matrix 1s a dense representation
m Usually too much storage for large graphs
m But can be very efficient for small graphs

e Most large interesting graphs are sparse

m E.g., planar graphs, in which no edges cross, have
IE| = O(|V]|) by Euler’s formula

m For this reason the adjacency list 1s often a more
appropriate representation

Graphs: Adjacency List

e Adjacency list: for each vertex v € 'V, store a
list of vertices adjacent to v

e Example:
x Adj[1]={2,3}
s Adj[2] = {3}
= Adj[3] = {}
s Adj[4] = {3}

e Variation: can also keep
a list of edges coming into vertex

Graphs: Adjacency List

e How much storage 1s required?
m The degree of a vertex v = # incident edges

o Directed graphs have in-degree, out-degree
m For directed graphs, # of items 1n adjacency lists 1s
> out-degree(v) = |E|
takes ®O(V + E) storage (Why?)
m For undirected graphs, # items 1n adj lists 1s
> degree(v) =2 |[E| (handshaking lemma)
also O(V + E) storage

e So: Adjacency lists take O(V+E) storage

Graph Searching

e Given: a graph G = (V, E), directed or
undirected

e Goal: methodically explore every vertex and
every edge

e Ultimately: build a tree on the graph
m Pick a vertex as the root

m Choose certain edges to produce a tree

m Note: might also build a forest 1f graph is not
connected

Breadth-First Search

e “Explore” a graph, turning it into a tree
m One vertex at a time

m Expand frontier of explored vertices across the
breadth of the frontier

e Builds a tree over the graph
m Pick a source vertex to be the root

m Find (“discover”) its children, then their children,
etc.

Breadth-First Search

e Again will associate vertex “colors” to guide
the algorithm

m White vertices have not been discovered
o All vertices start out white

m Grey vertices are discovered but not fully explored
o They may be adjacent to white vertices

m Black vertices are discovered and fully explored
o They are adjacent only to black and gray vertices
e Explore vertices by scanning adjacency list of
grey vertices

Breadth-First Search

BFS (G, s) {
initialize vertices;
Q = {s}; // Q is a queue (duh), initialize to s
while (Q not empty) ({

u = RemoveTop (Q) ;
for each v € u->adj {
if (v->color == WHITE)
v->color = GREY; What does v->d represent?
v->d = u->d + 1;
v->p = u;

Enqueue (Q, V)

What does v->p represent?

}
u->color = BLACK;

Breadth-First Search

BES (G,)

1 foreach vertex u € V[G] — {s}
do color[u] <— WHITE

dlu] < oo

mlu] < NIL
color[s] <= GRAY
d[s] < 0
m[s] <= NIL
O <~
ENQUEUE(Q, s)
10 while Q # 0
11 do u < DEQUEUE(Q)
12 for each v € Adj[u]
13 do if color|v] = WHITE
14 then color|[v] < GRAY
15 d[v] < d[u] + 1
16 mT[v] < u
17 ENQUEUE(Q, v)
18 color[u] <= BLACK

O 0 1 O N B W

Breadth-First Search: Example

=)

(=)

©

©

(8-

GG

Breadth-First Search: Example

=)

@

©

©

(8-

GG

Breadth-First Search: Example

Breadth-First Search: Example

Breadth-First Search: Example

r S t u

o

Breadth-First Search: Example

Breadth-First Search: Example

3
é) 3

O:| v iuly

Breadth-First Search: Example

3
‘ 3

O:|u |y

Breadth-First Search: Example

O:|»y

Breadth-First Search: Example

0: 0

BFS: The Code Again

BFS (G, s) {
initialize vertices; <+ Touch every vertex: O(V)
Q = {s};
while (Q not empty) ({

u = RemoveTop(Q) ; «—— y = every vertex, but only once

for each v € u->adj { (Why?)
if (v->color == WHITE)
So v = every vertex v->color = GREY;
that appears in v->d = u->d + 1;

some other vert’s V2P = u;

; ; Enqueue (Q, V)
adjacency h}s d What will be the running tim

u->color = BLACK;

Total running time: O(V+E)

BFS: The Code Again

BFS (G, s) {
initialize vertices;
Q = {s};
while (Q not empty) ({
u = RemoveTop (Q) ;
for each v € u->adj ({
if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u; What will be the storage cost

Enqueue (Q, V); in addition to storing the tree?
}

u->color = BLACK;

} Total space used:
} O(max(degree(v))) = O(E)

Breadth-First Search: Properties

e BFS calculates the shortest-path distance to
the source node

m Shortest-path distance o(s,v) = minimum number
of edges from s to v, or oo 1f v not reachable from s

m Proof given 1n the book (p. 472-5)

e BFS builds breadth-first tree, in which paths to
root represent shortest paths in G

m Thus can use BFS to calculate shortest path from
one vertex to another in O(V+E) time

Depth-First Search

e Depth-first search 1s another strategy for
exploring a graph
m Explore “deeper” in the graph whenever possible

m Edges are explored out of the most recently
discovered vertex v that still has unexplored edges

m When all of v’s edges have been explored,
backtrack to the vertex from which v was
discovered

DFS Code

DF'S (G)
{

for each vertex u € G->V

{
u->color = WHITE;

}
time = O0;
for each vertex u € G->V

{
if (u->color == WHITE)
DFS Visit(u);

David Luebke

DFS Visit (u)
{
u->color = YELLOW;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;

" 1 for each vertex u € V[G]

DFS Code

DFS(G)

2 do color|[u] < WHITE

3 7 [u] < NIL

4 time < 0

5 for each vertex u € V[G]

6 do if color[u] = WHITE
7 then DFS-VISIT (1)

DFS-VISIT(u)

1 color[u] < GRAY > White vertex u# has just been discovered.
2 time < time +1

3 dlu] < time

4 for each v € Adj|u] > Explore edge (u, v).

5 do if color[v] = WHITE

6 then 7 [v] < u

7 DFS-VISIT (v)

8 colorlu] < BLACK > Blacken u; 1t 1s finished.

9 flu] < time < time +1

DFS Example

DFS Example

DFS Example

1

3

DFS Example

<

1

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

What is the structure of the yellow vertices?
What do they represent?

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

DFS Example

DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex

o The tree edges form a spanning forest
o Can tree edges form cycles? Why or why not?

DFS Example

Tree edges

DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex

m Back edge: from descendent to ancestor
o Encounter a yellow vertex (yellow to yellow)

DFS Example

Tree edges Back edges

DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex
m Back edge: from descendent to ancestor

m Forward edge: from ancestor to descendent
o Not a tree edge, though
o From yellow node to black node

DFS Example

Tree edges Back edges Forward edges

DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex
m Back edge: from descendent to ancestor
m Forward edge: from ancestor to descendent

m Cross edge: between a tree or subtrees
o From a yellow node to a black node

DFS Example

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex
m Back edge: from descendent to ancestor
m Forward edge: from ancestor to descendent
m Cross edge: between a tree or subtrees

e Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross

DFS: Kinds Of Edges

e Thm 23.9: If G 1s undirected, a DFS produces
only tree and back edges
e Proof by contradiction:

m Assume there’s a forward edge

o But F? edge must actually be a
back edge (why?)

DFS: Kinds Of Edges

e Thm 23.9: If G 1s undirected, a DFS produces
only tree and back edges

e Proof by contradiction:

m Assume there’s a cross edge
o But C? edge cannot be cross:

o must be explored from one of the
vertices 1t connects, becoming a tree
vertex, before other vertex 1s explored

o So 1n fact the picture 1s wrong...both
lower tree edges cannot in fact be
tree edges

C?

DFS And Graph Cycles

e Thm: An undirected graph 1s acyclic 1ff a DFS
yields no back edges
m If acyclic, no back edges (because a back edge
implies a cycle
m If no back edges, acyclic
o No back edges implies only tree edges (Why?)
o Only tree edges implies we have a tree or a forest
o Which by definition is acyclic
e Thus, can run DFS to find whether a graph has

a cycle

DFS And Cycles

o How would you modify the code to detect cycles?

DF'S (G)

{

for each vertex u € G->V
{

u->color = WHITE;
}
time = O0;
for each vertex u € G->V
{

if (u->color == WHITE)

DFS Visit(u);

DFS Visit (u)
{
u->color = GREY;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;

DFS And Cycles

o What will be the running time?

DFS (G)
{
for each vertex u € G->V
{
u->color = WHITE;
}
time = O0;
for each vertex u € G->V
{
if (u->color == WHITE)
DFS Visit(u);

DFS Visit (u)
{
u->color = GREY;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;

DFS And Cycles

o What will be the running time?

e A: O(V+E)

e We can actually determine 1f cycles exist in
O(V) time:
m In an undirected acyclic forest, |[E| <|V| - 1

m So count the edges: 1f ever see | V| distinct edges,
must have seen a back edge along the way

Topological Sort
Minimum Spanning Trees

Review: Kinds of Edges

source
vertex

T~

Tree edges Back edges Forward edges Cross edges

DFS And Cycles

¢ Running time: O(V+E)

e We can actually determine 1f cycles exist in
O(V) time:
m In an undirected acyclic forest, |E| < |V|- 1

m So count the edges: 1f ever see |V| distinct edges,
must have seen a back edge along the way

m Why not just test if |E| <|V| and answer the
question in constant time?

Directed Acyclic Graphs

e A directed acyclic graph or DAG 1s a directed
graph with no directed cycles:

David Luebke

DFS and DAGs

e Argue that a directed graph G 1s acyclic i1ff a
DEFES of G yields no back edges:

m Forward: if G 1s acyclic, will be no back edges
o Trivial: a back edge implies a cycle

m Backward: if no back edges, G is acyclic
o Argue contrapositive: G has a cycle = 3 a back edge

+ Let v be the vertex on the cycle first discovered, and u be the
predecessor of v on the cycle

+ When v discovered, whole cycle 1s white

+ Must visit everything reachable from v before returning from
DFS-Visit()

+ So path from u—v is yellow—yellow, thus (u, v) is a back edge

Topological Sort

e Topological sort of a DAG:

m Linear ordering of all vertices 1n graph G such that
vertex u comes before vertex v if edge (u, v) € G

e Real-world example: getting dressed

Getting Dressed

[Um‘l;rwe [Socks]
* * [Watch]
[Pants] Shoes]

Shirt]
(o=]/[{

o Y R
<

Getting Dressed

[Underwear [Socks]
* * [Watch]
[Pants] Shoes]

@ (mdershort W '

Topological Sort Algorithm

Topological-Sort ()

{
Run DF'S

When a vertex is finished, output it

Vertices are output 1n reverse
topological order

}
e Time: O(V+E)

e Correctness: Want to prove that
(u,v) € G = u—t>v—-ot

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)

1 call DES(G) to compute finishing times f[v] for each vertex v
2 as each vertex 1s finished, 1nsert i1t onto the front of a linked list
3 return the linked list of vertices

17/18

13/14

')/S

l7/18 11/16 l"/li 13/14 9/10 1/8

Correctness of Topological Sort

e Claim: (u,v) € G = u—t > v—f

s When (u,v) 1s explored, u 1s yellow
o v=yellow = (u,v) 1s back edge. Contradiction (Why?)

o v = white = v becomes descendent of u = v—f <uy—f
(since must finish v before backtracking and finishing u)

o v =black = v already finished = v—f <u—f

Minimum Spanning Tree

e Problem: given a connected, undirected,
weighted graph:

15

Minimum Spanning Tree

e Problem: given a connected, undirected,
weighted graph, find a spanning tree using
edges that minimize the total weight

15

Minimum Spanning Tree

o Which edges form the minimum spanning tree
(MST) of the below graph?

15
®

Minimum Spanning Tree

e Answer:

Another MST

Another MST

Minimum Spanning Tree

e MSTs satisty the optimal substructure property: an

optimal tree 1s composed of optimal subtrees

m Let T be an MST of G with an edge (u,v) in the middle

= Removing (u,v) partitions T into two trees T, and T,

s Claim: T 1san MST of G, =(V ,E), and T, 1s an MST of
G,=(V,,E) (Do V, and V, share vertices? Why?)

= Proot: w(T) =w(u,v) + w(T)) + w(T,)
(There can’t be a better tree than T, or T,, or T would be
suboptimal)

Minimum Spanning Tree

e Thm:
m LetT be MST of G, and let A & T be subtree of T

m Let (1,v) be min-weight edge connecting A to V-A
m Then (u,v) € T

Minimum Spanning Tree

e Thm:
m LetT be MST of G, and let A & T be subtree of T

m Let (1,v) be min-weight edge connecting A to V-A
m Then (u,v) € T

e Proof: in book (see Thm 24.1)

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

MST-Prim algorithm

MST-PRIM(G, w, 1)

1 foreachu € V|[G]

2 do keylu] <— o0

3 mlu] <= NIL

4 keylr] < 0

5 0 <« V|G]

6 while Q #0

7 do u < EXTRACT-MIN(Q)

8 for each v € Adj[u]

9 do if v € Q and w(u, v) < key|[v]
10 then 7|v]| < u
L key[v] < w(u, v)

Prim’s Algorithm

MST-Prim (G, w, r)

Q = VI[G]; ‘
for each u € Q

key[u] = «;
key[r] = 0; =

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ; Run on example graph
for each v € Adj[u]
if (v € Q and w(u,v) < key[vVv])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = VI[G]; ‘
for each u € Q

key[u] = «;
key[r] = 0; =

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ; Run on example graph
for each v € Adj[u]
if (v € Q and w(u,v) < key[vVv])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

r

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ; Pick a start vertex r
for each v € Adj[u]
if (v € Q and w(u,v) < key[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = VIG];) n

for each u € Q O
key[u] = «;

key[r] = 0;

u

15
p[r] = NULL; ©
while (Q not empty)
u = ExtractMin(Q) ; Red vertices have been removed from Q
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = VIG]; 0 n

for each u € Q O
key[u] = «;

key[r] = 0;

u

15
plr] = NULL; <E>
while (Q not empty)
u = ExtractMin(Q); Red arrows indicate parent pointers
for each v € Adj[u]
if (v € Q and w(u,v) < key[v])
plvl = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

u

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

15

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

15

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

15

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

15

Single-Source Shortest Path

adapted from David Luebke

Relaxation

e A key technique in shortest path algorithms 1s

relaxation

m Idea: for all v, maintain upper bound d[v] on o(s,V)

Relax(u,v,w) {

if (d[v] > d[u]+w) then d[v]=d[u]+w;

}

u 4 u Vv

® ——©0 &——®
E‘RELAX(UJ’,W) E‘RELAX(U,\’,M’)

U & v u 7 %

&——@ ®>—2>®

(b)

Relaxation

INITIALIZE-SINGLE-SOURCE (G, §)
1 for each vertex v € V[G]

2 do d[v] < o0
3 T[v] < NIL
4 d[s] <0

RELAX(u, v, w)

1 ifd[v] > du] + w(u,v)

2 then d[v] < d[u] + w(u, v)
3 mT[v] < u

Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori < 1to|V[G]|—1

3 do for each edge (u,v) € E[G]
4 do RELAX (u, v, w)

5 for each edge (u,v) € E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 return TRUE

Bellman-Ford Example

OMERC
LDV <)
° h Me

(a) (b) (c)

@4V4

'A\e

(d) (e)

Bellman-Ford

e Note that order in which edges are processed affects
how quickly it converges

e Correctness: show d[v] = o(s,v) after |V|-1 passes

m Lemma: d[v] > o(s,v) always

o Initially true

o Let v be first vertex for which d[v] < 6(s,v)

o Let u be the vertex that caused d[v] to change:
d[v] =d[u] + w(u,v)
Then d[v] <d(s,v)

o(s,v) < o(s,u) + w(u,v) (Why?)

o(s,u) + w(u,v) <d[u] + w(u,v) (Why?)
So d[v] <d[u] + w(u,v). Contradiction.

O

@)

The End

