
adapted from David Luebke

Graph Algorithms

Graph Algorithms

● Graph algorithms
■ Should be largely review, easier for exam

Graphs

● A graph G = (V, E)
■ V = set of vertices
■ E = set of edges = subset of V × V
■ Thus |E| = O(|V|2)

Graph Variations

● Variations:
■ A connected graph has a path from every vertex to

every other
■ In an undirected graph:

○ Edge (u,v) = edge (v,u)
○ No self-loops

■ In a directed graph:
○ Edge (u,v) goes from vertex u to vertex v, notated u→v

Graph Variations

● More variations:
■ A weighted graph associates weights with either

the edges or the vertices
○ E.g., a road map: edges might be weighted w/ distance

■ A multigraph allows multiple edges between the
same vertices

○ E.g., the call graph in a program (a function can get
called from multiple points in another function)

Graphs

● We will typically express running times in
terms of |E| and |V| (often dropping the |’s)
■ If |E| ≈ |V|2 the graph is dense
■ If |E| ≈ |V| the graph is sparse

● If you know you are dealing with dense or
sparse graphs, different data structures may
make sense

Representing Graphs

● Assume V = {1, 2, …, n}
● An adjacency matrix represents the graph as a

n x n matrix A:
■ A[i, j] = 1 if edge (i, j) ∈ E (or weight of edge)

= 0 if edge (i, j) ∉ E

Graphs: Adjacency Matrix

● Example:

1

2 4

3

a

d

b c

A 1 2 3 4

1

2

3 ??
4

Graphs: Adjacency Matrix

● Example:

1

2 4

3

a

d

b c

A 1 2 3 4

1 0 1 1 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0

Graphs: Adjacency Matrix

● How much storage does the adjacency matrix
require?
■ A: O(V2)

● What is the minimum amount of storage
needed by an adjacency matrix representation
of an undirected graph with 4 vertices?
■ A: 6 bits

○ Undirected graph → matrix is symmetric
○ No self-loops → don’t need diagonal

Graphs: Adjacency Matrix

● The adjacency matrix is a dense representation
■ Usually too much storage for large graphs
■ But can be very efficient for small graphs

● Most large interesting graphs are sparse
■ E.g., planar graphs, in which no edges cross, have

|E| = O(|V|) by Euler’s formula
■ For this reason the adjacency list is often a more

appropriate representation

Graphs: Adjacency List

● Adjacency list: for each vertex v ∈ V, store a
list of vertices adjacent to v

● Example:
■ Adj[1] = {2,3}
■ Adj[2] = {3}
■ Adj[3] = {}
■ Adj[4] = {3}

● Variation: can also keep
a list of edges coming into vertex

1

2 4

3

Graphs: Adjacency List

● How much storage is required?
■ The degree of a vertex v = # incident edges

○ Directed graphs have in-degree, out-degree
■ For directed graphs, # of items in adjacency lists is

 Σ out-degree(v) = |E|
takes Θ(V + E) storage (Why?)

■ For undirected graphs, # items in adj lists is
 Σ degree(v) = 2 |E| (handshaking lemma)

also Θ(V + E) storage
● So: Adjacency lists take O(V+E) storage

Graph Searching

● Given: a graph G = (V, E), directed or
undirected

● Goal: methodically explore every vertex and
every edge

● Ultimately: build a tree on the graph
■ Pick a vertex as the root
■ Choose certain edges to produce a tree
■ Note: might also build a forest if graph is not

connected

Breadth-First Search

● “Explore” a graph, turning it into a tree
■ One vertex at a time
■ Expand frontier of explored vertices across the

breadth of the frontier
● Builds a tree over the graph

■ Pick a source vertex to be the root
■ Find (“discover”) its children, then their children,

etc.

Breadth-First Search

● Again will associate vertex “colors” to guide
the algorithm
■ White vertices have not been discovered

○ All vertices start out white
■ Grey vertices are discovered but not fully explored

○ They may be adjacent to white vertices
■ Black vertices are discovered and fully explored

○ They are adjacent only to black and gray vertices

● Explore vertices by scanning adjacency list of
grey vertices

Breadth-First Search

BFS(G, s) {
 initialize vertices;
 Q = {s}; // Q is a queue (duh); initialize to s
 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
}

What does v->p represent?

What does v->d represent?

Breadth-First Search

Breadth-First Search: Example

∞

∞

∞

∞

∞

∞

∞

∞

r s t u

v w x y

Breadth-First Search: Example

∞

∞

0

∞

∞

∞

∞

∞

r s t u

v w x y

sQ:

Breadth-First Search: Example

1

∞

0

1

∞

∞

∞

∞

r s t u

v w x y

wQ: r

Breadth-First Search: Example

1

∞

0

1

2

2

∞

∞

r s t u

v w x y

rQ: t x

Breadth-First Search: Example

1

2

0

1

2

2

∞

∞

r s t u

v w x y

Q: t x v

Breadth-First Search: Example

1

2

0

1

2

2

3

∞

r s t u

v w x y

Q: x v u

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

BFS: The Code Again

BFS(G, s) {
 initialize vertices;
 Q = {s};
 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
}

What will be the running time?

Touch every vertex: O(V)

u = every vertex, but only once
 (Why?)

So v = every vertex
that appears in
some other vert’s
adjacency list

Total running time: O(V+E)

BFS: The Code Again

BFS(G, s) {
 initialize vertices;
 Q = {s};
 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
}

What will be the storage cost
in addition to storing the tree?

Total space used:
O(max(degree(v))) = O(E)

Breadth-First Search: Properties

● BFS calculates the shortest-path distance to
the source node
■ Shortest-path distance δ(s,v) = minimum number

of edges from s to v, or ∞ if v not reachable from s
■ Proof given in the book (p. 472-5)

● BFS builds breadth-first tree, in which paths to
root represent shortest paths in G
■ Thus can use BFS to calculate shortest path from

one vertex to another in O(V+E) time

Depth-First Search

● Depth-first search is another strategy for
exploring a graph
■ Explore “deeper” in the graph whenever possible
■ Edges are explored out of the most recently

discovered vertex v that still has unexplored edges
■ When all of v’s edges have been explored,

backtrack to the vertex from which v was
discovered

David Luebke

DFS Code

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = YELLOW;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

DFS Code

DFS Example
source
vertex

DFS Example

1 | | |

 | | |

 | |

d f

DFS Example

1 | | |

 | | |

2 | |

DFS Example

1 | | |

 | | 3 |

2 | |

DFS Example

1 | | |

 | | 3|4

2 | |

DFS Example

1 | | |

 | 5 |
3 |
4

2 | |

DFS Example

1 | | |

 |
5 |
6

3 |
4

2 | |

DFS Example

1 | 8 | |

 |
5 |
6

3 |
4

2 |
7

 |

DFS Example

1 | 8 | |

 |
5 |
6

3 |
4

2 |
7

 |

DFS Example

1 | 8 | |

 |
5 |
6

3 |
4

2 |
7

9 |

What is the structure of the yellow vertices?
What do they represent?

DFS Example

1 | 8 | |

 |
5 |
6

3 |
4

2 |
7

9
|10

DFS Example

1 |
8

|11
 |

 |
5 |
6

3 |
4

2 |
7

9
|10

DFS Example

1
|12

8
|11

 |

 |
5 |
6

3 |
4

2 |
7

9
|10

DFS Example

1
|12

8
|11

13|

 |
5 |
6

3 |
4

2 |
7

9
|10

DFS Example

1
|12

8
|11

13|

14|
5 |
6

3 |
4

2 |
7

9
|10

DFS Example

1
|12

8
|11

13|

14|
15

5 |
6

3 |
4

2 |
7

9
|10

DFS Example

1
|12

8
|11

13|
16

14|
15

5 |
6

3 |
4

2 |
7

9
|10

DFS: Kinds of edges

● DFS introduces an important distinction
among edges in the original graph:
■ Tree edge: encounter new (white) vertex

○ The tree edges form a spanning forest
○ Can tree edges form cycles? Why or why not?

DFS Example

1
|12

8
|11

13|
16

14|
15

5 |
6

3 |
4

2 |
7

9
|10

Tree edges

DFS: Kinds of edges

● DFS introduces an important distinction
among edges in the original graph:
■ Tree edge: encounter new (white) vertex
■ Back edge: from descendent to ancestor

○ Encounter a yellow vertex (yellow to yellow)

DFS Example

1
|12

8
|11

13|
16

14|
15

5 |
6

3 |
4

2 |
7

9
|10

Tree edges Back edges

DFS: Kinds of edges

● DFS introduces an important distinction
among edges in the original graph:
■ Tree edge: encounter new (white) vertex
■ Back edge: from descendent to ancestor
■ Forward edge: from ancestor to descendent

○ Not a tree edge, though
○ From yellow node to black node

DFS Example

1
|12

8
|11

13|
16

14|
15

5 |
6

3 |
4

2 |
7

9
|10

Tree edges Back edges Forward edges

DFS: Kinds of edges

● DFS introduces an important distinction
among edges in the original graph:
■ Tree edge: encounter new (white) vertex
■ Back edge: from descendent to ancestor
■ Forward edge: from ancestor to descendent
■ Cross edge: between a tree or subtrees

○ From a yellow node to a black node

DFS Example

1
|12

8
|11

13|
16

14|
15

5 |
6

3 |
4

2 |
7

9
|10

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

● DFS introduces an important distinction
among edges in the original graph:
■ Tree edge: encounter new (white) vertex
■ Back edge: from descendent to ancestor
■ Forward edge: from ancestor to descendent
■ Cross edge: between a tree or subtrees

● Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross

DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces
only tree and back edges

● Proof by contradiction:
■ Assume there’s a forward edge

○ But F? edge must actually be a
back edge (why?)

source

F?

DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces
only tree and back edges

● Proof by contradiction:
■ Assume there’s a cross edge

○ But C? edge cannot be cross:
○ must be explored from one of the

vertices it connects, becoming a tree
vertex, before other vertex is explored

○ So in fact the picture is wrong…both
lower tree edges cannot in fact be
tree edges

so
ur
ce

C?

DFS And Graph Cycles

● Thm: An undirected graph is acyclic iff a DFS
yields no back edges
■ If acyclic, no back edges (because a back edge

implies a cycle
■ If no back edges, acyclic

○ No back edges implies only tree edges (Why?)
○ Only tree edges implies we have a tree or a forest
○ Which by definition is acyclic

● Thus, can run DFS to find whether a graph has
a cycle

DFS And Cycles

● How would you modify the code to detect cycles?
DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

DFS And Cycles

● What will be the running time?
DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

DFS And Cycles

● What will be the running time?
● A: O(V+E)
● We can actually determine if cycles exist in

O(V) time:
■ In an undirected acyclic forest, |E| ≤ |V| - 1
■ So count the edges: if ever see |V| distinct edges,

must have seen a back edge along the way

Topological Sort
Minimum Spanning Trees

1
|12

8
|11

13|
16

14|
15

5 |
6

3 |
4

2 |
7

9
|10

source
vertex

Tree edges Back edges Forward edges Cross edges

Review: Kinds of Edges

DFS And Cycles

● Running time: O(V+E)
● We can actually determine if cycles exist in

O(V) time:
■ In an undirected acyclic forest, |E| ≤ |V| - 1
■ So count the edges: if ever see |V| distinct edges,

must have seen a back edge along the way
■ Why not just test if |E| <|V| and answer the

question in constant time?

David Luebke

Directed Acyclic Graphs

● A directed acyclic graph or DAG is a directed
graph with no directed cycles:

DFS and DAGs

● Argue that a directed graph G is acyclic iff a
DFS of G yields no back edges:
■ Forward: if G is acyclic, will be no back edges

○ Trivial: a back edge implies a cycle
■ Backward: if no back edges, G is acyclic

○ Argue contrapositive: G has a cycle ⇒ ∃ a back edge
◆ Let v be the vertex on the cycle first discovered, and u be the

predecessor of v on the cycle
◆ When v discovered, whole cycle is white
◆ Must visit everything reachable from v before returning from

DFS-Visit()
◆ So path from u→v is yellow→yellow, thus (u, v) is a back edge

Topological Sort

● Topological sort of a DAG:
■ Linear ordering of all vertices in graph G such that

vertex u comes before vertex v if edge (u, v) ∈ G
● Real-world example: getting dressed

Getting Dressed
Underwe

ar Socks

ShoesPants

Belt

Shirt

Watch

Tie

Jacket

Getting Dressed

Underwear Socks

ShoesPants

Belt

Shirt

Watch

Tie

Jacket

Topological Sort Algorithm

Topological-Sort()
{

Run DFS
When a vertex is finished, output it
Vertices are output in reverse
topological order

}

● Time: O(V+E)
● Correctness: Want to prove that

(u,v) ∈ G ⇒ u→f > v→f

Topological Sort Algorithm

Correctness of Topological Sort

● Claim: (u,v) ∈ G ⇒ u→f > v→f
■ When (u,v) is explored, u is yellow

○ v = yellow ⇒ (u,v) is back edge. Contradiction (Why?)
○ v = white ⇒ v becomes descendent of u ⇒ v→f < u→f

(since must finish v before backtracking and finishing u)
○ v = black ⇒ v already finished ⇒ v→f < u→f

Minimum Spanning Tree

● Problem: given a connected, undirected,
weighted graph:

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree

● Problem: given a connected, undirected,
weighted graph, find a spanning tree using
edges that minimize the total weight

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree

● Which edges form the minimum spanning tree
(MST) of the below graph?

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree

● Answer:

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

Another MST

Another MST

Minimum Spanning Tree

● MSTs satisfy the optimal substructure property: an
optimal tree is composed of optimal subtrees
■ Let T be an MST of G with an edge (u,v) in the middle
■ Removing (u,v) partitions T into two trees T1 and T2
■ Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST of

G2 = (V2,E2) (Do V1 and V2 share vertices? Why?)
■ Proof: w(T) = w(u,v) + w(T1) + w(T2)

(There can’t be a better tree than T1 or T2, or T would be
suboptimal)

Minimum Spanning Tree

● Thm:
■ Let T be MST of G, and let A ⊆ T be subtree of T
■ Let (u,v) be min-weight edge connecting A to V-A
■ Then (u,v) ∈ T

Minimum Spanning Tree

● Thm:
■ Let T be MST of G, and let A ⊆ T be subtree of T
■ Let (u,v) be min-weight edge connecting A to V-A
■ Then (u,v) ∈ T

● Proof: in book (see Thm 24.1)

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

MST-Prim algorithm

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

14 10

3

6 4
5

2

9

15

8

Run on example graph

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

∞ ∞ ∞

∞ ∞ ∞

∞

∞

14 10

3

6 4
5

2

9

15

8

Run on example graph

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

∞ ∞ ∞

0 ∞ ∞

∞

∞

14 10

3

6 4
5

2

9

15

8

Pick a start vertex r

r

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

∞ ∞ ∞

0 ∞ ∞

∞

∞

14 10

3

6 4
5

2

9

15

8

Red vertices have been removed from Q

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

∞ ∞ ∞

0 ∞ ∞

3

∞

14 10

3

6 4
5

2

9

15

8

Red arrows indicate parent pointers

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
4

∞ ∞

0 ∞ ∞

3

∞

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
4

∞ ∞

0 ∞ ∞

3

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
4

∞ ∞

0 8 ∞

3

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

∞ ∞

0 8 ∞

3

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

∞ ∞

0 8 ∞

3

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

2 ∞

0 8 ∞

3

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

2 ∞

0 8
1
5

3

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

2 ∞

0 8
1
5

3

∞

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

2 9

0 8
1
5

3

∞

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

1
0

2 9

0 8
1
5

3

4

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

5 2 9

0 8
1
5

3

4

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

5 2 9

0 8
1
5

3

4

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

5 2 9

0 8
1
5

3

4

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

5 2 9

0 8
1
5

3

4

14 10

3

6 4
5

2

9

15

8

u

Prim’s Algorithm

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

5 2 9

0 8
1
5

3

4

14 10

3

6 4
5

2

9

15

8

u

adapted from David Luebke

Single-Source Shortest Path

Relaxation

● A key technique in shortest path algorithms is
relaxation
■ Idea: for all v, maintain upper bound d[v] on δ(s,v)
Relax(u,v,w) {
 if (d[v] > d[u]+w) then d[v]=d[u]+w;
}

95 2

75 2

Relax

65 2

65 2

Relax

Relaxation

Bellman-Ford Algorithm

Bellman-Ford Example

Bellman-Ford

● Note that order in which edges are processed affects
how quickly it converges

● Correctness: show d[v] = δ(s,v) after |V|-1 passes
■ Lemma: d[v] ≥ δ(s,v) always

○ Initially true
○ Let v be first vertex for which d[v] < δ(s,v)
○ Let u be the vertex that caused d[v] to change:

d[v] = d[u] + w(u,v)
○ Then d[v] < δ(s,v)

 δ(s,v) ≤ δ(s,u) + w(u,v) (Why?)
 δ(s,u) + w(u,v) ≤ d[u] + w(u,v) (Why?)

○ So d[v] < d[u] + w(u,v). Contradiction.

The End

