Graph Algorithms

adapted from David Luebke



Graph Algorithms

e Graph algorithms

m Should be largely review, easier for exam



Graphs

e Agraph G=(V,E)
m V = set of vertices
m E =set of edges = subsetof VXV
m Thus [E| = O(|V]>)



Graph Variations

e Variations:

m A connected graph has a path from every vertex to
every other
m In an undirected graph:
o Edge (u,v) = edge (v,u)
o No self-loops
m In a directed graph:

o Edge (u,v) goes from vertex u to vertex v, notated u—v



Graph Variations

e More variations:

m A weighted graph associates weights with either
the edges or the vertices
o E.g., aroad map: edges might be weighted w/ distance
m A multigraph allows multiple edges between the
same vertices

o E.g., the call graph in a program (a function can get
called from multiple points in another function)



Graphs

e We will typically express running times 1n
terms of |E| and |V| (often dropping the |’s)
m If |E| = |V|? the graph is dense
m If |E| = |V]| the graph 1s sparse

e If you know you are dealing with dense or

sparse graphs, different data structures may
make sense



Representing Graphs

e Assume V={1,2,...,n}
e An adjacency matrix represents the graph as a
n X n matrix A:

m Ali,j] =11fedge(i,j) € E (or weight of edge)
=0i1fedge (i,/)) ¢ E



Graphs: Adjacency Matrix

e Example:

27




Graphs: Adjacency Matrix

e Example:
A |1 2 3
1 0 1 1
2 0 O 1
3 0O O 0
4 0 O 1

o O O O A




Graphs: Adjacency Matrix

e How much storage does the adjacency matrix
require?
m A: O(V?)

o What is the minimum amount of storage

needed by an adjacency matrix representation
of an undirected graph with 4 vertices?

m A: 6 bits

o Undirected graph — matrix is symmetric
o No self-loops — don’t need diagonal



Graphs: Adjacency Matrix

e The adjacency matrix 1s a dense representation
m Usually too much storage for large graphs
m But can be very efficient for small graphs

e Most large interesting graphs are sparse

m E.g., planar graphs, in which no edges cross, have
IE| = O(|V]|) by Euler’s formula

m For this reason the adjacency list 1s often a more
appropriate representation



Graphs: Adjacency List

e Adjacency list: for each vertex v € 'V, store a
list of vertices adjacent to v

e Example:
x Adj[1]={2,3}
s Adj[2] = {3}
= Adj[3] = {}
s Adj[4] = {3}

e Variation: can also keep
a list of edges coming into vertex



Graphs: Adjacency List

e How much storage 1s required?
m The degree of a vertex v = # incident edges

o Directed graphs have in-degree, out-degree
m For directed graphs, # of items 1n adjacency lists 1s
> out-degree(v) = |E|
takes ®O(V + E) storage (Why?)
m For undirected graphs, # items 1n adj lists 1s
> degree(v) =2 |[E| (handshaking lemma)
also O(V + E) storage

e So: Adjacency lists take O(V+E) storage



Graph Searching

e Given: a graph G = (V, E), directed or
undirected

e Goal: methodically explore every vertex and
every edge

e Ultimately: build a tree on the graph
m Pick a vertex as the root

m Choose certain edges to produce a tree

m Note: might also build a forest 1f graph is not
connected



Breadth-First Search

e “Explore” a graph, turning it into a tree
m One vertex at a time

m Expand frontier of explored vertices across the
breadth of the frontier

e Builds a tree over the graph
m Pick a source vertex to be the root

m Find (“discover”) its children, then their children,
etc.



Breadth-First Search

e Again will associate vertex “colors” to guide
the algorithm

m White vertices have not been discovered
o All vertices start out white

m Grey vertices are discovered but not fully explored
o They may be adjacent to white vertices

m Black vertices are discovered and fully explored
o They are adjacent only to black and gray vertices
e Explore vertices by scanning adjacency list of
grey vertices



Breadth-First Search

BFS (G, s) {
initialize vertices;
Q = {s}; // Q is a queue (duh), initialize to s
while (Q not empty) ({

u = RemoveTop (Q) ;
for each v € u->adj {
if (v->color == WHITE)
v->color = GREY; What does v->d represent?
v->d = u->d + 1;
v->p = u;

Enqueue (Q, V)

What does v->p represent?

}
u->color = BLACK;



Breadth-First Search

BES (G, )

1 foreach vertex u € V[G] — {s}
do color[u] <— WHITE

dlu] < oo

mlu] < NIL
color[s] <= GRAY
d[s] < 0
m[s] <= NIL
O <~
ENQUEUE(Q, s)
10 while Q # 0
11 do u < DEQUEUE(Q)
12 for each v € Adj[u]
13 do if color|v] = WHITE
14 then color|[v] < GRAY
15 d[v] < d[u] + 1
16 mT[v] < u
17 ENQUEUE(Q, v)
18 color[u] <= BLACK

O 0 1 O N B W



Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example




Breadth-First Search: Example




Breadth-First Search: Example
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Breadth-First Search: Example




Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example
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Breadth-First Search: Example

0: 0



BFS: The Code Again

BFS (G, s) {
initialize vertices; <+ Touch every vertex: O(V)
Q = {s};
while (Q not empty) ({

u = RemoveTop(Q) ; «—— y = every vertex, but only once

for each v € u->adj { (Why?)
if (v->color == WHITE)
So v = every vertex v->color = GREY;
that appears in v->d = u->d + 1;

some other vert’s V2P = u;

; ; Enqueue (Q, V)
adjacency h}s d What will be the running tim

u->color = BLACK;

Total running time: O(V+E)



BFS: The Code Again

BFS (G, s) {
initialize vertices;
Q = {s};
while (Q not empty) ({
u = RemoveTop (Q) ;
for each v € u->adj ({
if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u; What will be the storage cost

Enqueue (Q, V); in addition to storing the tree?
}

u->color = BLACK;

} Total space used:
} O(max(degree(v))) = O(E)



Breadth-First Search: Properties

e BFS calculates the shortest-path distance to
the source node

m Shortest-path distance o(s,v) = minimum number
of edges from s to v, or oo 1f v not reachable from s

m Proof given 1n the book (p. 472-5)

e BFS builds breadth-first tree, in which paths to
root represent shortest paths in G

m Thus can use BFS to calculate shortest path from
one vertex to another in O(V+E) time



Depth-First Search

e Depth-first search 1s another strategy for
exploring a graph
m Explore “deeper” in the graph whenever possible

m Edges are explored out of the most recently
discovered vertex v that still has unexplored edges

m When all of v’s edges have been explored,
backtrack to the vertex from which v was
discovered



DFS Code

DF'S (G)
{

for each vertex u € G->V

{
u->color = WHITE;

}
time = O0;
for each vertex u € G->V

{
if (u->color == WHITE)
DFS Visit(u);

David Luebke

DFS Visit (u)
{
u->color = YELLOW;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;



" 1 for each vertex u € V[G]

DFS Code

DFS(G)

2 do color|[u] < WHITE

3 7 [u] < NIL

4 time < 0

5 for each vertex u € V[G]

6 do if color[u] = WHITE
7 then DFS-VISIT (1)

DFS-VISIT(u)

1 color[u] < GRAY > White vertex u# has just been discovered.
2 time < time +1

3 dlu] < time

4 for each v € Adj|u] > Explore edge (u, v).

5 do if color[v] = WHITE

6 then 7 [v] < u

7 DFS-VISIT (v)

8 colorlu] < BLACK > Blacken u; 1t 1s finished.

9 flu] < time < time +1
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DFS Example

What is the structure of the yellow vertices?
What do they represent?



DFS Example
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DFS Example




DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex

o The tree edges form a spanning forest
o Can tree edges form cycles? Why or why not?



DFS Example

Tree edges



DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex

m Back edge: from descendent to ancestor
o Encounter a yellow vertex (yellow to yellow)



DFS Example

Tree edges Back edges



DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex
m Back edge: from descendent to ancestor

m Forward edge: from ancestor to descendent
o Not a tree edge, though
o From yellow node to black node



DFS Example

Tree edges Back edges Forward edges



DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex
m Back edge: from descendent to ancestor
m Forward edge: from ancestor to descendent

m Cross edge: between a tree or subtrees
o From a yellow node to a black node



DFS Example

Tree edges Back edges Forward edges Cross edges



DFS: Kinds of edges

e DFS introduces an important distinction
among edges in the original graph:
m [ree edge: encounter new (white) vertex
m Back edge: from descendent to ancestor
m Forward edge: from ancestor to descendent
m Cross edge: between a tree or subtrees

e Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross



DFS: Kinds Of Edges

e Thm 23.9: If G 1s undirected, a DFS produces
only tree and back edges
e Proof by contradiction:

m Assume there’s a forward edge

o But F? edge must actually be a
back edge (why?)




DFS: Kinds Of Edges

e Thm 23.9: If G 1s undirected, a DFS produces
only tree and back edges

e Proof by contradiction:

m Assume there’s a cross edge
o But C? edge cannot be cross:

o must be explored from one of the
vertices 1t connects, becoming a tree
vertex, before other vertex 1s explored

o So 1n fact the picture 1s wrong...both
lower tree edges cannot in fact be
tree edges

C?



DFS And Graph Cycles

e Thm: An undirected graph 1s acyclic 1ff a DFS
yields no back edges
m If acyclic, no back edges (because a back edge
implies a cycle
m If no back edges, acyclic
o No back edges implies only tree edges (Why?)
o Only tree edges implies we have a tree or a forest
o Which by definition is acyclic
e Thus, can run DFS to find whether a graph has

a cycle



DFS And Cycles

o How would you modify the code to detect cycles?

DF'S (G)

{

for each vertex u € G->V
{

u->color = WHITE;
}
time = O0;
for each vertex u € G->V
{

if (u->color == WHITE)

DFS Visit(u);

DFS Visit (u)
{
u->color = GREY;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;



DFS And Cycles

o What will be the running time?

DFS (G)
{
for each vertex u € G->V
{
u->color = WHITE;
}
time = O0;
for each vertex u € G->V
{
if (u->color == WHITE)
DFS Visit(u);

DFS Visit (u)
{
u->color = GREY;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;



DFS And Cycles

o What will be the running time?

e A: O(V+E)

e We can actually determine 1f cycles exist in
O(V) time:
m In an undirected acyclic forest, |[E| <|V| - 1

m So count the edges: 1f ever see | V| distinct edges,
must have seen a back edge along the way



Topological Sort
Minimum Spanning Trees



Review: Kinds of Edges

source
vertex

T~

Tree edges Back edges Forward edges Cross edges



DFS And Cycles

¢ Running time: O(V+E)

e We can actually determine 1f cycles exist in
O(V) time:
m In an undirected acyclic forest, |E| < |V|- 1

m So count the edges: 1f ever see |V| distinct edges,
must have seen a back edge along the way

m Why not just test if |E| <|V| and answer the
question in constant time?



Directed Acyclic Graphs

e A directed acyclic graph or DAG 1s a directed
graph with no directed cycles:

David Luebke



DFS and DAGs

e Argue that a directed graph G 1s acyclic i1ff a
DEFES of G yields no back edges:

m Forward: if G 1s acyclic, will be no back edges
o Trivial: a back edge implies a cycle

m Backward: if no back edges, G is acyclic
o Argue contrapositive: G has a cycle = 3 a back edge

+ Let v be the vertex on the cycle first discovered, and u be the
predecessor of v on the cycle

+ When v discovered, whole cycle 1s white

+ Must visit everything reachable from v before returning from
DFS-Visit()

+ So path from u—v is yellow—yellow, thus (u, v) is a back edge



Topological Sort

e Topological sort of a DAG:

m Linear ordering of all vertices 1n graph G such that
vertex u comes before vertex v if edge (u, v) € G

e Real-world example: getting dressed



Getting Dressed

[ Um‘l;rwe [ Socks ]
* * [ Watch ]
[ Pants ] Shoes ]

Shirt ]
( o= ]/[ {

o Y R
<




Getting Dressed

[ Underwear [ Socks ]
* * [ Watch ]
[ Pants ] Shoes ]

@ (mdershort W '




Topological Sort Algorithm

Topological-Sort ()

{
Run DF'S

When a vertex is finished, output it

Vertices are output 1n reverse
topological order

}
e Time: O(V+E)

e Correctness: Want to prove that
(u,v) € G = u—t>v—-ot



Topological Sort Algorithm

TOPOLOGICAL-SORT(G)

1 call DES(G) to compute finishing times f[v] for each vertex v
2 as each vertex 1s finished, 1nsert i1t onto the front of a linked list
3 return the linked list of vertices
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Correctness of Topological Sort

e Claim: (u,v) € G = u—t > v—f

s When (u,v) 1s explored, u 1s yellow
o v=yellow = (u,v) 1s back edge. Contradiction (Why?)

o v = white = v becomes descendent of u = v—f <uy—f
(since must finish v before backtracking and finishing u)

o v =black = v already finished = v—f <u—f



Minimum Spanning Tree

e Problem: given a connected, undirected,
weighted graph:

15




Minimum Spanning Tree

e Problem: given a connected, undirected,
weighted graph, find a spanning tree using
edges that minimize the total weight

15




Minimum Spanning Tree

o Which edges form the minimum spanning tree
(MST) of the below graph?

15
®




Minimum Spanning Tree

e Answer:




Another MST




Another MST




Minimum Spanning Tree

e MSTs satisty the optimal substructure property: an

optimal tree 1s composed of optimal subtrees

m Let T be an MST of G with an edge (u,v) in the middle

= Removing (u,v) partitions T into two trees T, and T,

s Claim: T 1san MST of G, =(V ,E ), and T, 1s an MST of
G,=(V,,E) (Do V, and V, share vertices? Why?)

= Proot: w(T) =w(u,v) + w(T)) + w(T,)
(There can’t be a better tree than T, or T,, or T would be
suboptimal)



Minimum Spanning Tree

e Thm:
m LetT be MST of G, and let A & T be subtree of T

m Let (1,v) be min-weight edge connecting A to V-A
m Then (u,v) € T



Minimum Spanning Tree

e Thm:
m LetT be MST of G, and let A & T be subtree of T

m Let (1,v) be min-weight edge connecting A to V-A
m Then (u,v) € T

e Proof: in book (see Thm 24.1)



Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);



MST-Prim algorithm

MST-PRIM(G, w, 1)

1 foreachu € V|[G]

2 do keylu] <— o0

3 mlu] <= NIL

4 keylr] < 0

5 0 <« V|G]

6 while Q #0

7 do u < EXTRACT-MIN(Q)

8 for each v € Adj[u]

9 do if v € Q and w(u, v) < key|[v]
10 then 7|v]| < u
L key[v] < w(u, v)



Prim’s Algorithm

MST-Prim (G, w, r)

Q = VI[G]; ‘
for each u € Q

key[u] = «;
key[r] = 0; =

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ; Run on example graph
for each v € Adj[u]
if (v € Q and w(u,v) < key[vVv])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = VI[G]; ‘
for each u € Q

key[u] = «;
key[r] = 0; =

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ; Run on example graph
for each v € Adj[u]
if (v € Q and w(u,v) < key[vVv])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

r

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ; Pick a start vertex r
for each v € Adj[u]
if (v € Q and w(u,v) < key[v])
plv] = u;
key[v] = w(u,v);



Prim’s Algorithm

MST-Prim (G, w, r)

Q = VIG]; ) n

for each u € Q O
key[u] = «;

key[r] = 0;

u

15
p[r] = NULL; ©
while (Q not empty)
u = ExtractMin(Q) ; Red vertices have been removed from Q
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);



Prim’s Algorithm

MST-Prim (G, w, r)

Q = VIG]; 0 n

for each u € Q O
key[u] = «;

key[r] = 0;

u

15
plr] = NULL; <E>
while (Q not empty)
u = ExtractMin(Q);  Red arrows indicate parent pointers
for each v € Adj[u]
if (v € Q and w(u,v) < key[v])
plvl = u;
key[v] = w(u,v);



Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

u

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);



Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G]; 0
for each u € Q

key[u] = «;
key[r] = 0; 15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

15

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);
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Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = 0;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);




Prim’s Algorithm

MST-Prim (G, w, r)

Q = V[G];

for each u € Q
key[u] = «;

key[r] = O;

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key|[v])
plv] = u;
key[v] = w(u,v);

15




Single-Source Shortest Path

adapted from David Luebke



Relaxation

e A key technique in shortest path algorithms 1s

relaxation

m Idea: for all v, maintain upper bound d[v] on o(s,V)

Relax(u,v,w) {

if (d[v] > d[u]+w) then d[v]=d[u]+w;

}

u 4 u Vv

® ——©0 &——®
E‘RELAX(UJ’,W) E‘RELAX(U,\’,M’)

U & v u 7 %

&——@ ®>—2>®

(b)



Relaxation

INITIALIZE-SINGLE-SOURCE (G, §)
1 for each vertex v € V[G]

2 do d[v] < o0
3 T[v] < NIL
4 d[s] <0

RELAX(u, v, w)

1 ifd[v] > du] + w(u,v)

2 then d[v] < d[u] + w(u, v)
3 mT[v] < u



Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori < 1to|V[G]|—1

3 do for each edge (u,v) € E[G]
4 do RELAX (u, v, w)

5 for each edge (u,v) € E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 return TRUE



Bellman-Ford Example

OMERC
LDV <)
° h Me

(a) (b) (c)

@4V4

'A\e

(d) (e)



Bellman-Ford

e Note that order in which edges are processed affects
how quickly it converges

e Correctness: show d[v] = o(s,v) after |V|-1 passes

m Lemma: d[v] > o(s,v) always

o Initially true

o Let v be first vertex for which d[v] < 6(s,v)

o Let u be the vertex that caused d[v] to change:
d[v] =d[u] + w(u,v)
Then d[v] <d(s,v)

o(s,v) < o(s,u) + w(u,v) (Why?)

o(s,u) + w(u,v) <d[u] + w(u,v) (Why?)
So d[v] <d[u] + w(u,v). Contradiction.

O

@)



The End



